5 The Binomial and Poisson Distributions

5.1 The Binomial distribution

- Consider the following circumstances (binomial scenario):

1. There are n trials.
2. The trials are independent.
3. On each trial, only two things can happen.

We refer to these two events as success and failure.
4. The probability of success is the same on each trial.

This probability is usually called p.
5. We count the total number of successes.

This is a discrete random variable, which we denote by X, and which can take any value between 0 and n (inclusive).

- The random variable X is said to have a binomial distribution with parameters n and p; abbreviated

$$
X \sim \operatorname{Bin}(n, p)
$$

- It is easy to show that if $X \sim \operatorname{Bin}(n, p)$ then

$$
\mathrm{P}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for $k=0,1, \ldots, n$.

- $\binom{n}{k}$ is the binomial coefficient and is the number of sequences of length n containing k successes.

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- The expectation and variance of X are given by

$$
\begin{aligned}
\mathrm{E}[X] & =n p \\
\operatorname{Var}[X] & =n p(1-p)
\end{aligned}
$$

The Binomial Distribution: Example

The shape of the distribution depends on n and p.

Example:

Suppose that it is known that 40% of voters support the Conservative party. We take a random sample of 6 voters. Let the random variable Y represent the number in the sample who support the Conservative party.

1. Explain why the distribution of Y might be binomial.
2. Write down the probability distribution of Y as a table of probabilities.
3. Find the mean and variance of Y directly from the probability distribution.
4. Check your answers using the standard results $\mathrm{E}[Y]=n p$ and $\operatorname{Var}[Y]=n p(1 p)$.

Suggested Exercises: Q27-30.

5.2 The Poisson distribution

- The binomial distribution is about counting successes in a fixed number of well-defined trials, ie n is known and fixed.
- This can be limiting as many counts in science are open-ended counts of unknown numbers of events in time or space.
- Consider the following circumstances:

1. Events occur randomly in time (or space) at a fixed rate λ
2. Events occur independently of the time (or location) since the last event.
3. We count the total number of events that occur in a time period s, and we let X denote the event count.

- The random variable X has a Poisson distribution with parameter (λs); abbreviated

$$
X \sim \operatorname{Po}(\lambda s)
$$

- If $X \sim \operatorname{Po}(\lambda s)$ then

$$
\mathrm{P}[X=x]=e^{-\lambda s} \frac{(\lambda s)^{x}}{x!}
$$

for $k=0,1,2, \ldots$.

- The expectation and variance of X are given by

$$
\begin{aligned}
\mathrm{E}[X] & =\lambda s \\
\operatorname{Var}[X] & =\lambda s
\end{aligned}
$$

The Poisson Distribution

Like the binomial distribution, the shape of the Poisson distribution changes as we change its parameter.

Example: Yeast

Gossett, the head of quality control at Guiness brewery c. 1920 (and discoverer of the t distribution), arranged for counts of yeast cells to be made in sample vessels of fluid. He found that at a certain stage of brewing the counts were $\operatorname{Po}(0.6)$. Let X be the count from a sample. Find $\mathrm{P}[X \leq 3]$.

5.3 The Poisson approximation to the Binomial

The Poisson approximation to the Binomial

- Consider the Poission scenario with events occurring randomly over a time period s at a fixed rate λ.
- Now, split the time interval s into n subintervals of length s / n (very small).
- Lets consider each mini-interval as a "success" if there is an event in it.
- Now we have n independent trials with $p \approx \frac{\lambda s}{n}$
- The counts X are then binomial.
- If we assume there is no possibility of obtaining two events in the same interval, then we can say

$$
\mathrm{P}[X=x] \approx \mathrm{P}[T=x]=\binom{n}{x}\left(\frac{\lambda s}{n}\right)^{x}\left(1-\frac{\lambda s}{n}\right)^{n-x}
$$

- It can be shown that as n increases and p decreases, this formula converges to

$$
e^{-\lambda s} \frac{(\lambda s)^{x}}{x!}
$$

- Hence the Binomial distribution $T \sim \operatorname{Bin}(n, p)$, can be approximated by the Poisson $T \sim \operatorname{Po}(n p)$ when $n p$ is small.
- This approximation is good if $n \geq 20$ and $p \leq 0.05$, and excellent if $n \geq 100$ and $n p \leq 10$.

Example: Computer Chip Failure

A manufacturer claims that a newly-designed computer chip is has a 1% chance of failure because of overheating. To test their claim, a sample of 120 chips are tested. What is the probability that at least two chips fail on testing?
Suggested Exercises: Q30-34.

6 The Normal Distribution

6.1 The Normal Distribution

The Normal Distribution

- The most widely useful continuous distribution is the Normal (or Gaussian) distribution.
- In practice, many measured variables may be assumed to be approximately normal.
- Derived quantities such as sample means and totals can also be shown to be approximately normal.
- A rv X is Normal with parameters μ and σ^{2}, written $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, when it has density function

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]
$$

for all real x, and $\sigma>0$.

The Normal Distribution

The Standard Normal

- The standard Normal random variable is a normal rv with $\mu=0$, and $\sigma^{2}=1$. It is usually denoted Z, so that $Z \sim \mathrm{~N}(0,1)$.
- The cumulative distribution function for Z is denoted $\Phi(z)$ and is

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right) d x
$$

- Unfortunately, there is no neat expression for $\Phi(z)$, so in practice we must rely on tables (or computers) to calculate probabilities.

Properties of the Standard Normal \& Tables

- $\Phi(0)=0.5$ due to the symmetry
- $\mathrm{P}[a \leq Z \leq b]=\Phi(b)-\Phi(a)$.
- $\mathrm{P}[Z<-a]=\Phi(-a)=1-\Phi(a)=\mathrm{P}[Z>a]$, for $a \geq 0$ - hence tables only contain probabilities for positive z.
- Φ is very close to $1(0)$ for $z>3(z<-3)$ - most tables stop after this point.

Example

i Find the probability that a standard Normal rv is less than 1.6.
ii Find a value c such that $P(-c \leq Z \leq c)=0.95$.

6.2 Standardisation

- If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then $Z=\frac{X-\mu}{\sigma}$ is the standardized version of X, and $Z \sim \mathrm{~N}(0,1)$.
- Even more importantly, the distribution function for any normal rv X is given by

$$
F_{X}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

and so the cumulative probabilities for any normal rv X can be expressed as probabilities of the standard normal Z.

- This is why only the standard Normal distribution is tabulated.

Example

1. Let X be $\mathrm{N}(12,25)$. Find $\mathrm{P}[X>3]$
2. Let Y be $\mathrm{N}(1,4)$. Find $\mathrm{P}[-1<X<2]$.

6.3 Other properties

Other properties

- Expectation and variance of Z :

$$
\begin{aligned}
\mathrm{E}[Z] & =\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=0, \quad \text { (integrand is an odd fn) } \\
\mathrm{E}\left[Z^{2}\right] & =1, \text { (integrate by parts) } \\
\operatorname{Var}[Z] & =1 .
\end{aligned}
$$

- Using our scaling properties it follows that for $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$,

$$
\begin{aligned}
\mathrm{E}[X] & =\mu, \\
\operatorname{Var}[X] & =\sigma^{2} .
\end{aligned}
$$

- If X and Y are Normally distributed then the sum $S=X+Y$ is also Normally distributed (regardless of whether X and Y are independent).

6.4 Interpolation

Interpolation

- Normal distribution tables are limited and only give us values of $\Phi(Z)$ for a fixed number of Z.
- Often, we want to know $\Phi(Z)$ for values of Z in between those listed in the tables.
- To do this we use linear interpolation - suppose we are interested in $\Phi(b)$, where $b \in[a, c]$ and we know $\Phi(a)$ and $\Phi(c)$.
- If we draw a straight line connecting $\Phi(a)$ and $\Phi(c)$ then (since Φ is smooth) we would expect $\Phi(b)$ to lie close to that line. Then

$$
\Phi(b) \simeq \Phi(a)+\left(\frac{b-a}{c-a}\right)(\Phi(c)-\Phi(a))
$$

Example

- Estimate the value of $\Phi(0.53)$ by interpolating between $\Phi(0.5)$ and $\Phi(0.6)$.

6.5 Normal Approximation to the Binomial

- Regardless of p, the $\operatorname{Bin}(n, p)$ histogram approaches the shape of the normal distribution as n increases. (This is actually a consequence of the strong law of large numbers; without going into more detail, the strong law simply says that certain distributions, under certain circumstances, converge to the normal distribution.)
- We can approximate the binomial distribution by a Normal distribution with the same mean and variance:

$$
\operatorname{Bin}(n, p) \text { is approximately } \mathrm{N}(n p, n p(1-p))
$$

- The approximation is acceptable when

$$
n p \geq 10 \text { and } n(1-p) \geq 10
$$

and the larger these values the better.

- For smallish n, a continuity correction might be appropriate to improve the approximation.
- If $X \sim \operatorname{Bin}(n, p)$ and $X^{\prime} \sim \mathrm{N}(n p, n p(1-p))$, then

$$
\begin{aligned}
P(X \leq k) & \simeq P\left(X^{\prime} \leq k+1 / 2\right) \\
P\left(k_{1} \leq X \leq k_{2}\right) & \simeq P\left(k_{1}-1 / 2 \leq X^{\prime} \leq k_{2}+1 / 2\right)
\end{aligned}
$$

Example: Memory chips

Let X_{1}, X_{2}, and X_{3} be independent lifetimes of memory chips. Suppose that each X_{i} has a normal distribution with mean 300 hours and standard deviation 10 hours. Compute the probability that at least one of the three chips lasts at least 290 hours.

Suggested Exercises: Q35-38.

