Single Maths B: Introduction to Probability

Overview

Lecturer	Dr Jonathan Cumming
Email	j.a.cumming@durham.ac.uk
Office	CM233
Homework	None!
Webpage	http://maths.dur.ac.uk/stats/people/jac/singleb/

1 Introduction to Probability

1.1 Introduction

What is probability?

- Probability the mathematical study of uncertainty
- Probability is a useful concept like mass or energy and its behaviour is extremely simple. It is attached to events and satisfies some very simple rules.
- Some events can be said to be uncertain - we do not know their outcomes before they occur and we observe what happened.
- Standard mathematics deals only with the certain, so we need some new tools which will allow us to capture, manipulate and reason with this uncertainty
- We begin by quantifying this uncertainty by assigning numbers to each of the possible outcomes to give a measure of "what is likely to happen."
- Larger values will indicate a particular outcome is more likely.

Lower numbers will indicate an outcome is less likely.

$$
\begin{aligned}
\mathrm{P}[\text { fair coin lands heads }] & =\frac{1}{2}, \\
\mathrm{P}[\text { climate change }] & =?
\end{aligned}
$$

Why is it useful?

- Probability can be fundamental to our understanding of the world Quantum mechanics, statistical mechanics, Ising model of magnetism, genetics
- Probability can used to build models of complex systems or phenomena Epidemics, population growth, chemical interactions, financial markets, routing within networks
- Probability theory leads to the discipline of statistics
- Statistics can be used to analyse data gathered from experiments, and drawing conclusion under uncertainty
Important to all the experimental sciences

1.2 Events

- Probability theory is used to describe any process whose outcome is not known in advance with certainty. In general, we call these situations experiments or trials.
- The set of all possible outcomes of an experiment (or random phenomenon) is the sample space S.
- An event is a subset of the outcomes in a sample space.
- We treat events as sets, and so have three basic operations to combine and manipulate them.

Event operations

- Let A, B be some events.
- The event not A is A^{c} (the complement), which is the set of all outcomes in \mathcal{S} and not in A.
- The event A or B is $A \cup B$ (the union), which the set of all outcomes in A, or in B or in both.
- The event A and B is $A \cap B$ (the intersection), which is the set of all outcomes that are both in A and in B.

Disjoint Events

- Two (or more) events are called disjoint (or incompatible, or mutually exclusive) if they cannot occur at the same time.
- The event which contains no outcomes is written \emptyset, and is called the empty set.
- So if A and B are disjoint, then we must have $A \cap B=\emptyset$

Example: Cluedo

Dr. Black has been murdered! There are four possible suspects: Colonel Mustard, Professor Plum, Miss Scarlet, Reverend Green. There are three possible murder weapons: Candlestick, Lead Piping, Rope. There can be only one murderer and one murder weapon.

Working with Events

The following basic set rules will be useful when working with events:

Event Rules

Commutivity:

$$
A \cup B=B \cup A, \quad A \cap B=B \cap A
$$

Associativity:

$$
(A \cup B) \cup C=A \cup(B \cup C), \quad(A \cap B) \cap C=A \cap(B \cap C)
$$

Distributivity:

$$
(A \cap B) \cup C=(A \cup C) \cap(B \cup C), \quad(A \cup B) \cap C=(A \cap C) \cup(B \cap C)
$$

DeMorgan's laws:

$$
(A \cup B)^{c}=A^{c} \cap B^{c},
$$

$$
(A \cap B)^{c}=A^{c} \cup B^{c}
$$

1.3 Probability

Axioms of Probability

- We associate a probability with every outcome (and hence every event) in the sample space \mathcal{S}.
- For any event A (i.e. any subset of \mathcal{S}) we define a number $\mathrm{P}[A]$ which we call the probability of A.
- $\mathrm{P}[A]$ is the quantification of our uncertainty about the occurrence of the event A.
- Note: A is an event which is a set, $\mathrm{P}[A]$ is a probability which is a number, and $\mathrm{P}[\cdot]$ is a function which maps events to numbers.

The Axioms of Probability (Komolgorov)

1. $0 \leq P[A] \leq 1-$ probability is a number in the interval $[0,1]$.
2. $P[\mathcal{S}]=1$ - some outcome from the sample space must happen; certain events have probability 1.
3. If A and B are disjoint events, then $P[A \cup B]=P[A]+P[B]$

- We can think of these three axioms as the "Laws of Probability"

Consequences of the Axioms

- These axioms imply some additional useful properties of probabilities:

Consequences to the Axioms of Probability

1. $P\left[A^{c}\right]=1-P[A]$.
2. $P[\emptyset]=0$ - impossible events have probability zero
3. In general for any events A and $B, P[A \cup B]=P[A]+P[B]-P[A \cap B]$.
4. If A and B are events, and A contains all of the outcomes in B and more, then we say that B is a subset of $A, B \subset A$ and $P[B]<P[A]$.

Probability Interpretations

- There are three different interpretations of probability:

1. Classical probability: considers only sample spaces where every outcome is equally likely. If we have n outcomes in our sample space $(\# \mathcal{S}=n)$, then for every outcome $s \in \mathcal{S}$ and event $A \subseteq \mathcal{S}$ we have

$$
\mathrm{P}[\{s\}]=\frac{1}{n}, \quad \mathrm{P}[A]=\frac{\# A}{n}=\frac{\text { number of ways A can occur }}{\text { total no. outcomes }} .
$$

2. Frequentist probability: Suppose we repeat the trial n times, and count the number of trials where the event A occurred. The frequentist approach claims that the probability of the event A occurring is the limit of its relative frequency in a large number of trials:

$$
\mathrm{P}[A]=\lim _{n \rightarrow \infty} \frac{n_{A}}{n}
$$

3. Subjective probability views the probability of an event as a measure of an individual's degree of belief that that event will occur.

- Regardless of which interpretation of probability we use, all probabilities must follow the same laws and axioms to be coherent.

Examples

- The probability that student A will fail a certain examination is 0.5 , for student B the probability is 0.2 , and the probability that both A and B will fail the examination is 0.1 . What is the probability that at least one of A and B will fail the examination?
- In the Cluedo example, suppose the probabilities of the guilty suspect are as follows:

Guilty Suspect	M	P	S	G
Probability	0.5	0.25	0.1	p

1. Deduce the value of the missing probability p.
2. Find the probability that both Col. Mustard and Rev. Green are innocent.

Suggested Exercises: Q1-11.

1.4 Conditional Probability

Conditional Probability and Independence

- For any two events A, B, the notation $P[A \mid B]$ means the conditional probability that event A occurs, given that the event B has already occurred.
- Conditional probabilities are obtained either directly or by using the conditional probability rule:

The conditional probability rule

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[A \cap B]}{\mathrm{P}[B]}, \text { for } \mathrm{P}[B]>0
$$

- Rearranging this equation gives the multiplication rule, useful in simplifying probabilities: for any two events A, B,

The multiplication rule

$$
\mathrm{P}[A \cap B]=\mathrm{P}[A \mid B] \mathrm{P}[B] .
$$

Independence

- Two events are said to be independent when the occurrence of one has no bearing on the occurrence of the other.
- In terms of probability, if A, B are independent then

$$
\mathrm{P}[A \mid B]=\mathrm{P}[A]
$$

as the knowledge that B occurred is irrelevant.

- For independent events A, B, the multiplication rule can then be simplified,

$$
\mathrm{P}[A \cap B]=\mathrm{P}[A] \mathrm{P}[B] .
$$

- Note: Beware of confusing independent events with disjoint events. Independent events do not affect each other in any way, whereas disjoint events cannot occur together - disjoint events are very much dependent on each other.

Example: Two Dice

Two fair dice are rolled, what is the probability that the sum of the two numbers that appear is even?

Example: Nuclear Power Station

Suppose that a nuclear power station has three separate (and independent) devices for detecting a problem and shutting down the reactor. Suppose that each device has a probability of 0.9 of working correctly. In the event of a problem, what is the probability that the reactor will be shut down?

Partitions

- Suppose that n events E_{1}, \ldots, E_{n} are disjoint, and suppose that exactly one must happen. Such a collection of events is called a partition.
- Now we can write any other event A in combination with this partition: in general,

$$
\mathrm{P}[A]=\mathrm{P}\left[A \cap E_{1}\right]+\mathrm{P}\left[A \cap E_{2}\right]+\ldots+\mathrm{P}\left[A \cap E_{n}\right]
$$

- Using the multiplication rule, we can simplify this to get

The partition theorem (or theorem of total probability)

$$
\mathrm{P}[A]=\mathrm{P}\left[A \mid E_{1}\right] \mathrm{P}\left[E_{1}\right]+\mathrm{P}\left[A \mid E_{2}\right] \mathrm{P}\left[E_{2}\right]+\ldots+\mathrm{P}\left[A \mid E_{n}\right] \mathrm{P}\left[E_{n}\right]
$$

- Often, this is the most convenient way of getting at certain hard-to-think-about events: to associate them with a suitable partition, and then use conditional probability to simplify matters.

Bayes Theorem

- For any two events A, B, the multiplication rule gives the formula

$$
\mathrm{P}[A \cap B]=\mathrm{P}[A \mid B] \mathrm{P}[B]
$$

- Another equivalent formula is obviously

$$
\mathrm{P}[A \cap B]=\mathrm{P}[B \cap A]=\mathrm{P}[B \mid A] \mathrm{P}[A] .
$$

- By equating these two formulae and rearranging, we obtain the formula known as

Bayes theorem

$$
\mathrm{P}[A \mid B]=\frac{\mathrm{P}[B \mid A] \mathrm{P}[A]}{\mathrm{P}[B]}
$$

- It is useful mainly as a way of "inverting" probabilities. Often, the probability in the denominator must be calculated using the simplifying method shown in the last section; i.e. via a partition.

Example: Diagnosing Diseases

A clinic offers a test for a very rare and unpleasant disease which affects $1 / 10000$ people. The test itself is 90% reliable, i.e. test results are positive 90% of the time given you have the disease. If you don't have the disease the test reports a false positive only 1% of the time. You decide to take the test. What is the probability that the test is positive? Your test returns a positive result. What is the probability you have the disease now?
Suggested Exercises: Q2-17.

2 Random Variables

- A random variable (rv) is a variable which takes different numerical values, according to the different possible outcomes of an experiment or random phenomenon.
- Random variables are discrete if they only take a finite number of values (e.g. outcome of a coin flip).
- The opposite is a continuous random variable with an infinite sample space (e.g. a real-valued measurement).

2.1 Discrete Random Variables

Discrete Random Variables and Probability Distributions

- A discrete random variable X is defined by a pair of two lists

Possible values:	x_{1}	x_{2}	x_{3}	\ldots
Attached	$\mathrm{P}\left[X=x_{1}\right]$	$\mathrm{P}\left[X=x_{2}\right]$	$\mathrm{P}\left[X=x_{3}\right]$	\ldots

- This collection of all possible values with their probabilities is called the probability distribution of X.
- The probabilities in a probability distribution must:

1. be non-negative $-\mathrm{P}\left[X=x_{i}\right] \geq 0, \forall i$
2. add to one $-\sum_{i} \mathrm{P}\left[X=x_{i}\right]=1$

Joint and Marginal Distributions

- When we have two (or more) random variables X and Y, the joint probability distribution is the table of every possible (x, y) value for X and Y, with the associated probabilities $\mathrm{P}[X=x, Y=y]$:

	x_{1}	\ldots	x_{n}
y_{1}	$\mathrm{P}\left[X=x_{1}, Y=y_{1}\right]$	\ldots	$\mathrm{P}\left[X=x_{n}, Y=y_{1}\right]$
\vdots	\vdots	\ddots	\vdots
y_{m}	$\mathrm{P}\left[X=x_{1}, Y=y_{m}\right]$	\ldots	$\mathrm{P}\left[X=x_{n}, Y=y_{m}\right]$

- Given the joint distribution for the random variables (X, Y), we can obtain the distribution of X (or Y) alone - the marginal probability distribution for X (or Y) - by summing across the rows or columns:

$$
\mathrm{P}[X=x]=\sum_{\text {all } y} \mathrm{P}[X=x, Y=y]
$$

Example: Discrete Random Variables

Let X be the random variable which takes value 3 when a fair coin lands heads up, and takes value 0 otherwise. Let Y be the value shown after rolling a fair dice. Write down the distributions of X, and Y, and the joint distribution of (X, Y). You may assume that X and Y are independent. Thus find the probability that $X>Y$

Suggested Exercises: Q18-22.

2.2 Continuous Random Variables

Continuous random variables

- Discrete rvs only make sense when our sample space is finite.
- When our experimental outcome is a measurement of some quantity, then our sample space is actually part of the real line and so is infinite.
- A random variable X which can assume every real value in an interval (bounded or unbounded) is called a continuous random variable.
- Since our sample space is now infinite we cannot write down a table of probabilities for every possibly outcome to describe the distribution of X.
- Instead, the probability distribution for X is described by a probability density function (pdf), $f(x)$, which is a function that describes a curve over the range of possible values taken by the random variable.

Continuous random variables

- A valid probability density function, $f(x)$, must

1. be non-negative everywhere: $f(x) \geq 0, \forall x$,
2. integrate to $1: \int_{-\infty}^{\infty} f(x) d x=1$,

- The probability for a range of values is given by the area under the curve.

$$
\mathrm{P}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

Note: $f(x) \neq \mathrm{P}[X=x]$ - probability densities are not probabilities

- We can describe the probability by the function

$$
F(x) \equiv \int_{-\infty}^{x} f(y) d y=\mathrm{P}[X \leq x]
$$

which is called the cumulative distribution function (cdf) of X.

- We also have the result that $f(x)=F^{\prime}(x)$.

Joint and Marginal Distributions

- When we have two (or more) continuous random variables, we describe them via their joint probability density function $f_{x y}(x, y)$, which satisfies the usual conditions for pdfs
- The probability that X and Y fall into some region A of the $x y$-plane is then

$$
\mathrm{P}[(X, Y) \in A]=\int_{A} \int f_{x y}(x, y) d x d y
$$

- Given the joint pdf $f_{x y}(x, y)$, we can obtain the marginal pdf of x or y by integrating out the other variable

$$
f_{x}(x)=\int_{-\infty}^{\infty} f_{x y}(x, y) d y
$$

- When two continuous random variables x and y are independent, their joint pdf can be expressed as the product of the marginal pdfs

$$
f_{x y}(x, y)=f_{x}(x) f_{y}(y)
$$

Example: The Exponential Distribution

Let X be a continuous random variable with probability density function:

$$
f(x)= \begin{cases}\beta e^{-\beta x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}
$$

Show that $f(x)$ is a valid probability density function when $\beta>0$. Find the cdf of X, and hence $\mathrm{P}[X>3]$.
Suggested Exercises: Q23-26.

3 Expectation and Variance

Distribution Summaries

- The distribution of a random variable X contains all of the probabilistic information about X.
- However, the entire distribution of X can often be too complex to work with.
- Summaries of the distribution, such as its average or spread can be useful for conveying information about X without trying to describe it in its entirety.
- Formally, we measure the average of the distribution by calculating its expectation, and we measure the spread by its variance.

3.1 Expectation

- Suppose that X has a discrete distribution, then the expectation of X is given by

$$
\mathrm{E}[X]=\sum_{\text {all } x} x \mathrm{P}[X=x]
$$

- If a random variable X has a continuous distribution with a $\operatorname{pdf} f(\cdot)$, then the expectation of X is defined as:

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

- The value $E(X)$ is the theoretical average of the probability distribution. Because of this, it is often referred to it as the mean or average for the distribution.

Properties of Expectation

- Expectation of a function: If X is a random variable, then the expectation of the function $r(X)$ is given by

$$
\mathrm{E}[r(X)]=\sum_{\text {all } x} r(x) \mathrm{P}[X=x], \quad \text { or } \mathrm{E}[r(X)]=\int_{-\infty}^{\infty} r(x) f(x) d x
$$

- Linearity: If $Y=a+b X$ where a and b are constants, then

$$
\mathrm{E}[Y]=a+b \mathrm{E}[X]
$$

- Additivity: If $X_{1}, X_{2}, \ldots, X_{n}$ are any random variables then

$$
\mathrm{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathrm{E}\left[X_{1}\right]+\mathrm{E}\left[X_{2}\right]+\cdots+\mathrm{E}\left[X_{n}\right]
$$

- If X_{1}, X_{2} are any pair of independent random variables then

$$
\mathrm{E}\left[X_{1} X_{2}\right]=\mathrm{E}\left[X_{1}\right] \mathrm{E}\left[X_{2}\right]
$$

3.2 Variance

- Suppose that X is a random variable with mean $\mu=\mathrm{E}[X]$. The variance of X, denoted $\operatorname{Var}[X]$, is defined as follows:

$$
\operatorname{Var}[X]=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

- Note: Since $\operatorname{Var}[X]$ is the expected value of a non-negative random variable $(X-\mu)^{2}$, it follows that $\operatorname{Var}[X] \geq 0$.
- We can re-write the variance formula in the following simpler form:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}
$$

- The standard deviation of a random variable is defined as the square root of the variance: $\mathrm{SD}[X]=$ $\sqrt{\operatorname{Var}[X]}$.

Properties of Variance

- For constants a and b :

$$
\operatorname{Var}[a+b X]=b^{2} \operatorname{Var}[X], \quad \mathrm{SD}[a+b X]=b \mathrm{SD}[X]
$$

- If X_{1}, \ldots, X_{n} are independent random variables, then

$$
\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{n}\right]
$$

Example: National Lottery

The National lottery has a game called 'Thunderball'. You pick 5 numbers in the range 1-34 and one number (the Thunderball number) in the range 1-14. You win a prize if you match at least two numbers, including the Thunderball number. Let X be the amount you win in a single game. The probability distribution for X is given below. Find the expectation and variance of X.

Matches	k, Prize $£$	$\operatorname{Pr}(X=k)$
$5+\mathrm{Tb}$	250000	0.000000257
5	5000	0.000003337
$4+\mathrm{Tb}$	250	0.000037220
4	100	0.000483653
$3+\mathrm{Tb}$	20	0.001041124
3	10	0.013368984
$2+\mathrm{Tb}$	10	0.009293680
$1+\mathrm{Tb}$	5	0.029585799
Other	0	0.946185946
Sum		1.000000000

Suggested Exercises: Q18-26.

