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Abstract

In recent years, we have seen a diverse range of crises and controversies concerning

food safety, animal health and environmental risks including foot and mouth disease,

dioxins in seafood, GM crops and more recently the safety of Irish pork. This has

led to the recognition that the handling of uncertainty in risk assessments needs

to be more rigorous and transparent. This would mean that decision makers and

the public could be better informed on the limitations of scientific advice. The

expression of the uncertainty may be qualitative or quantitative but it must be well

documented. Various approaches to quantifying uncertainty exist, but none are

yet generally accepted amongst mathematicians, statisticians, natural scientists and

regulatory authorities.

In this thesis we discuss the current risk assessment guidelines which describe the

deterministic methods that are mainly used for risk assessments. However, proba-

bilistic methods have many advantages, and we review some probabilistic methods

that have been proposed for risk assessment. We then develop our own methods

to overcome some problems with the current methods. We consider including var-

ious uncertainties and looking at robustness to the prior distribution for Bayesian

methods. We compare nonparametric methods with parametric methods and we

combine a nonparametric method with a Bayesian method to investigate the effect

of using different assumptions for different random quantities in a model. These

new methods provide alternatives for risk analysts to use in the future.
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Chapter 1

Introduction

This chapter offers an explanation of the motivation for this thesis and introduces

the particular areas of risk assessment that are discussed later in the thesis. It

also provides an outline of the focus of subsequent chapters and introduces the

collaborators for the project.

1.1 Motivation

Recent years have seen a diverse range of crises and controversies concerning food

safety, animal health and environmental risks, e.g. the safety of Irish pork, dioxins in

seafood, foot and mouth disease and GM crops. These crises have led to increased

recognition of the need for improvement in risk assessment, risk management and

risk communication. It is important to improve the handling of uncertainty in

risk assessment, so that decision makers and the public are better informed on the

limitations of scientific advice. Codex, which is the international forum for food

safety issues, annually adopts new working principles for risk analysis. These in-

clude, “Constraints, uncertainties and assumptions having an impact on the risk

assessment should be explicitly considered at each step in the risk assessment and

documented in a transparent manner. Expression of uncertainty or variability in risk

estimates may be qualitative or quantitative, but should be quantified to the extent

that is scientifically achievable.” (Codex, 2007). Various approaches to quantifying

uncertainty exist, but none of them are yet generally accepted amongst mathemati-

1



1.1. Motivation 2

cians, statisticians, natural scientists and regulatory authorities.

In this thesis we introduce new methods for two specific areas of risk assessment.

One is ecotoxicological risk assessment (e.g. protection of ecosystems from pesti-

cides) and the other is food safety risk assessment (e.g. protection of humans from

food additives and contaminants). We discuss current guidelines for risk assessment

for ecosystems and for human dietary exposure. Both are based on deterministic

approaches in which a conservative exposure estimate is compared with a threshold

value. Deterministic methods are methods where point values are used to represent

random quantities, rather than probabilistic methods which assume a distribution

for each random quantity. The difficulty with probabilistic methods is that decision

makers may not fully understand the results and the effect of assumptions made in

the methods may not be clear. Probabilistic methods present results as a distribu-

tion or as bounds on distributions. They may produce results where the majority of

the distribution or the bounds on the distribution fall below a safe threshold. This

can make it difficult to determine if the chemical is safe enough to be licensed. There

are also many uncertainties in risk assessments that are ignored because it is not

easy to include them in an analysis, for example, because appropriate methodology

has not yet been developed or because there is not enough information available to

choose distributions.

There are many agencies working in the area of pesticides and food safety risk

assessment. These include regulatory bodies and research agencies who consider

which methods should be used and how reliable current methods are. As we are in

the UK, we focus on the EU legislation and on the guidance provided by the UK

Chemicals Regulation Directorate (CRD). On behalf of the UK government, the

CRD of the Health and Safety Executive (HSE) implements European and National

schemes to assess the risks associated with biocides, pesticides and plant protec-

tion products. These schemes are used to ensure that potential risks to people

and the environment from these substances are properly controlled. The CRD are

the UK Competent Authority (CA) regulating chemicals, pesticides, biocides and

detergents and are authorised to act on behalf of ministers. As the CA for the

UK, they are authorised to carry out work under programmes such as the Biocidal
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Products Directive (BPD)1, the REACH (Registration, Evaluation, Authorisation

and Restriction of Chemicals) regulation and Plant Protection Products directives

and regulations. They also have ongoing regulatory responsibilities under the UK

Control of Pesticides Regulations (CoPR). Each European Union Member State has

the responsibility of establishing their own CA and is responsible for implement-

ing the Directives into their national legislation. In UK law this is through the

Biocidal Products Regulations 2001 (BPR)2 and the Biocidal Products Regulations

(Northern Ireland) 20013 and corresponding legislation for pesticides. The CRD is

responsible for representing the UK and making recommendations at the Commis-

sion of the European Communities (CEC’s) and Standing Committee on Biocides

(SCB) and the Standing Committee on Plant Health (SCPH) as well as examin-

ing the recommendations proposed by other EU Member States. The CRD works

closely with the Department of the Environment, Food and Rural Affairs (Defra).

Defra is responsible for strategic policy for pesticides, chemicals and detergents.

Further information can be found on the CRD website (www.pesticides.gov.uk) or

the biocides area of the HSE website (http://www.hse.gov.uk/biocides/about.htm).

There are also advisory groups such as the European Food Safety Agency (EFSA).

They work in collaboration with national authorities and stakeholders to provide ob-

jective and independent scientific advice and clear communication on various risks

based on the most up-to-date scientific information and knowledge available. EFSA

was set up in January 2002, following a series of food crises in the late 1990s, to

provide an independent source of scientific advice and communication for risks in

several areas including food safety, animal health and welfare and plant protection.

Their aim is to improve EU food safety, to ensure that consumers are protected

and to try to restore and then maintain confidence in the EU food supply. EFSA

is responsible for producing scientific opinions and advice to direct EU policies and

legislation and to support the European Commission, European Parliament and EU

member states in taking effective risk management decisions.

1http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0008:EN:NOT
2http://www.opsi.gov.uk/si/si2001/20010880.htm
3http://www.opsi.gov.uk/sr/sr2001/20010422.htm
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Currently the deterministic methods used in risk assessment use safety or uncer-

tainty factors to include uncertainty in the risk assessment. Frequently these factors

are used for various uncertain extrapolation steps and it is often difficult to assess

which factor is used for which extrapolation. For example, when using rat data to

predict toxicity for humans, the current method would divide the toxicity value by

an overall factor of 1000 which should account for several extrapolation steps, e.g.

species-to-species extrapolation, within species extrapolation and short-term expo-

sure to long-term exposure. Often the overall extrapolation factor is interpreted as

the product of these three extrapolation steps, hence the assumption that a factor

of 10 is used for each of them. However, this assumption cannot be justified based

on the literature. Other factors may be applied if there are other uncertainties,

for example, lab-to-field extrapolation. Unfortunately it is not clear whether these

factors of 10 are too conservative or not conservative enough. A discussion of the

deterministic method is given by Renwick (2002). The factors are not transparent in

the sense that it is not clear which uncertainties they represent and the uncertainties

included vary between assessments. Probabilistic methods that take variability and

uncertainty (explained in Section 2.6.1) into account will provide more information

on the distribution of risk. Therefore they can be a better representation of the risk

distribution than the point estimate from a deterministic risk assessment.

The aim of this research is to provide new methods which quantify uncertainty

to provide decision makers with a more transparent and realistic description of the

risks to individuals or populations. To do this, we consider a new method that can

include various uncertainties, Bayesian probability boxes (p-boxes), and a method

that does not require strong distributional assumptions, nonparametric predictive

inference (NPI). We also provide a method that allows analysts to mix Bayesian

methods with NPI.

Bayesian probability boxes, presented in Chapter 3, were developed because of

the advantages of the probability bounds analysis framework. These advantages

include easily interpreted output, methodology that allows us to assume nothing

about dependence between random quantities and methodology for sensitivity anal-

ysis. Currently p-boxes for distributions with more than one parameter fail to
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take parameter dependence into account. Therefore we developed a Bayesian p-box

method because Bayesian methods can include parameter dependence.

In Chapter 4, we look at nonparametric predictive inference (NPI) as this method

has not been implemented in exposure risk assessment before. It has useful charac-

teristics, such as only making Hill’s assumption and not having to assume a distri-

bution. In contrast, Bayesian methods require the choice of a prior distribution and

a distribution for the data.

In Chapter 5, we present a new hybrid method that allows us to combine random

quantities modelled by NPI with random quantities modelled by Bayesian methods.

This is useful when we have different levels of information about each random quan-

tity in the model. We show that NPI can be combined with the Bayesian posterior

predictive distribution and Bayesian two-dimensional Monte Carlo Simulation (2D

MCS).

In this thesis we make several contributions to knowledge. These include de-

veloping the Bayesian p-box to represent variability and uncertainty for random

quantities for ecotoxicological risk assessment. Bayesian p-boxes are useful as they

can use tools from the general probability bounds framework. These tools include

combining random quantities without making assumptions about dependence and

sensitivity analysis by pinching p-boxes to a single distribution and seeing how this

affects the output. We illustrate how NPI can be used for exposure assessment for

food safety risk assessment as it has not been implemented in this field before and it

has the advantage of not having to assume a parametric distribution. We propose a

method that combines Bayesian methods with NPI as they have not been combined

in a model before. This allows analysts to make different levels of assumptions about

random quantities in the model. For example, analysts may only be prepared to

assume Hill’s assumption, A(n), which is weaker than a parametric distributional as-

sumption. These methods have been developed or implemented specifically for the

ecotoxicological or food safety risk assessments. However they may be applicable

in many other types of risk assessment. For example, p-boxes are currently used in

the fields of reliability and engineering and NPI has applications in areas such as

survival analysis.
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1.2 Outline of Thesis

In this thesis we aim to add to the methods available for risk assessment. We be-

gin in Chapter 2 by discussing the current state of risk assessment and the various

uncertainties that need to be considered, when appropriate, in risk assessment. We

explain why methods that model variability and uncertainty separately are used

when answering questions about population risk. We provide an overview of several

methods that are currently available. We look both at methods that model variabil-

ity and uncertainty separately and those that do not. We explain the advantages

and disadvantages of several of the methods and provide a simple exposure model

(Section 2.2) which we focus on throughout the thesis. The use of this model allows

us to illustrate methods clearly.

One of our main contributions to the literature is a new method called Bayesian

p-boxes, which models variability and uncertainty separately to look at the risk to

populations including parameter uncertainty. We present this in Chapter 3, and pro-

vide an illustration of how it works for two different distributions. We look at two

different classes of prior distributions to include robustness to the prior distribution

in the analysis and show how fixed measurement uncertainty can be incorporated

in the analysis. We compare Bayesian p-boxes to other methods and show that a

Bayesian p-box produces bounds that take parameter uncertainty and the depen-

dence between parameters into account. We also illustrate the results of combining

Bayesian p-boxes using the method by Williamson and Downs (1990), which allows

us to make no assumptions about dependence between random quantities. The

majority of this research will appear as Montgomery et al. (In press).

In Chapter 4, we illustrate how nonparametric predictive inference (NPI) can

be used for exposure assessment by forming NPI lower and upper cumulative dis-

tribution functions (cdfs) for exposure. NPI can incorporate left-censored data in

the analysis which is useful because left-censoring is a common occurrence with

concentration data sets. We investigate how NPI lower and upper cdfs are affected

by strongly and weakly correlated data sets and how known measurement uncer-

tainty can be included in an NPI analysis. We compare NPI with another predic-

tive method, the Bayesian posterior predictive distribution, where NPI compares
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favourably because it includes interval uncertainty and makes no distributional as-

sumptions. Then we consider an ad hoc method to form robust NPI lower and upper

cdfs.

In Chapter 5 we develop a hybrid method that allows us to combine random

quantities modelled by NPI and random quantities modelled by Bayesian posterior

predictive distributions. We illustrate this method and investigate the effect of

sampling variation and sample size using a simple exposure model. A robust hybrid

method is presented where we include robustness for each random quantity in the

model. We also illustrate a method of combining 2D Monte Carlo Simulation with

NPI. Papers based on Chapters 4 and 5 and aimed at both the risk assessment and

statistics literatures are in preparation.

In Chapter 6 we sum up the results of this thesis and the contribution we have

made to the area of risk assessment. We also suggest some areas that we think would

be useful for future research, including combining random quantities using uncertain

correlations, forming Bayesian p-boxes for other distributions, and developing the

methods we have considered for more realistic models.

Appendix A contains the specific parameterisations for all the distributions used

in this thesis. All computations were performed using Matlab (Release 2006b, The

Mathworks).

1.3 Collaborators

This thesis is the result of a collaboration between Durham University and the Risk

Analysis team at Central Science Laboratory in York. Central Science Laboratory

is a government agency that is dedicated to applying science for food safety and

environmental health. The Risk Analysis team specialises in quantitative risk as-

sessment for environment, agriculture and food safety. Their main work is to develop

and implement probabilistic approaches for risk assessment. They also undertake

consultancy work and contribute to international expert committees.



Chapter 2

Statistical methods for risk

assessment

2.1 Introduction

In this chapter we introduce two different types of risk assessment, food safety and

ecotoxicological (pesticide) risk assessment and statistical methods that are cur-

rently used for different parts of a risk assessment. We have investigated these due

to the recognised need, by policy makers and analysts, that the handling of uncer-

tainty in risk assessment must be improved. This is a consequence of previous health

scares (e.g. dioxins in seafood, GM crops, etc). It is also important to communicate

the limitations of scientific advice to decision makers and the public in a transparent

way. There are difficulties with terminology in risk assessment, as users and analysts

often interchange the use of the terms ‘random quantities’, ‘variables’ and ‘parame-

ters’ and frequentist confidence intervals are often interpreted as Bayesian credible

intervals. Therefore it is important to communicate exactly what the results from a

particular approach show and which uncertainties have been taken into account to

arrive at those results.

We begin by explaining the different parts of a risk assessment for chemicals

(Section 2.2) and introduce a specific exposure model that we will use throughout

the thesis to illustrate various methods. In Section 2.3, we discuss the current EU

guidance for plant protection products and food safety risk assessment and describe

8
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some of the data sets that are available for effects assessment and exposure as-

sessment (both assessments are explained in Section 2.2). In exposure assessment,

there is the added difficulty of left-censored data sets for concentration, which is dis-

cussed in Section 2.4. For the effects assessment for ecotoxicological risk assessment,

we consider species sensitivity distributions (Section 2.5) to describe the variation

between different species’ sensitivities to various chemicals.

When a risk manager wants to make a decision about a population, an important

concept is the separate modelling of variability and uncertainty (both defined in

Section 2.6.1). A population is defined as the group of individuals or entities to

which a distribution refers. We discuss some important types of uncertainty and

provide an example that explains why analysts and risk managers want to model

variability and uncertainty separately when considering a population.

In Sections 2.7 - 2.12, several methods for risk assessment are briefly explained,

all of which are implemented in the thesis. These include Bayesian methods, non-

parametric predictive inference (NPI), probability bounds analysis and methods for

dealing with dependence between random quantities. Some of these methods model

variability and uncertainty separately and would thus be useful for questions about

populations, while others, e.g. NPI and the Bayesian posterior predictive distri-

bution, do not model variability and uncertainty separately. These methods are

important for decision making if the interest is in an individual randomly selected

from the population. In Section 2.13, we also look at some alternative methods

which have been used in risk assessment but not in the research reported in this

thesis.

2.2 Risk assessment of chemicals

Chemicals are tested to assess their risk to a population or to an individual. If risk

managers deem the risk to be small enough, the chemical will be licensed and can

be used. Risk assessments are performed in different ways depending on their in-

tended purpose and other factors such as available data and resources. Van Leeuwen

and Hermens (1995) define risk assessment as a process which entails the following
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elements: hazard identification, effects assessment, exposure assessment and risk

characterisation.

Hazard identification is the process of determining if a substance can cause

adverse health effects in organisms. It also includes investigating what those effects

might be. It involves evaluating data on the types of possible health effects and

looking at how much exposure will lead to environmental damage or diseases. Data

may be available from laboratory or field studies.

Effects Assessment is the determination of the relationship between the mag-

nitude of exposure to a substance and the severity or frequency of occurrence, or

both, of associated adverse health effects. One chemical may produce more than

one type of dose-response relationship, for example, a high dose over a short time

period may be fatal, but a low dose over a long time period may lead to effects such

as cancer. The data available are usually laboratory data. Extrapolation factors

are sometimes used when only surrogate data sets are available, e.g. if we want to

look at the effect of a particular exposure on humans but we only have data for

tests done on rats. In human risk assessment, the variations in exposure routes (e.g.

dermal absorption, inhalation or ingestion) and variation in the sensitivity of differ-

ent individuals to substances may be considered. A discussion of species-to-species

extrapolation and other research needs in environmental health risk assessment is

provided by Aitio (2008).

Exposure Assessment is the evaluation of the likely intake of substances.

It involves the prediction of concentrations or doses of substances to which the

population of interest may be exposed. Exposure can be assessed by considering

the possible exposure pathways and the rate of movement and degradation of a

substance. A simple exposure model that we consider throughout the thesis is:

Exposure =
Concentration× Intake

Bodyweight
(2.1)

where exposure is measured in µg/kg bw/day, concentration in µg/kg, intake in
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kg/day and bodyweight in kg. As stated by Crocker (2005), in the context of birds’

exposure to pesticides, if we assume that the only exposure pathway is through food,

the simplest estimated theoretical exposure is the food intake rate multiplied by con-

centration of the pesticide and divided by the bodyweight of the bird. There are

several other factors affecting birds, such as the proportion of food items obtained

from a field that has been sprayed with pesticide, and these can be incorporated to

make a more detailed model. Similarly for human risk assessment there are com-

plicated exposure models available, where analysts are trying to combine different

exposure pathways, for an example see Brand et al. (2007). However, as our aim in

this thesis is to explore different methodologies, we restrict attention to the simple

model (2.1), where we only consider the exposure pathway from food or drink via

the random quantity Intake. From here on we will refer to model (2.1) as the Ex-

posure Model.

Risk Characterisation is the assessment of the probability of occurrence of

known or potential adverse health effects in a population, together with their ef-

fects, due to an actual or predicted exposure to a substance. It is based on hazard

identification, effects assessment and exposure assessment and aims to include vari-

ability and uncertainty.

2.3 Current EU guidance

The above steps for risk assessment for chemicals have been implemented at the EU

level. Currently under EU legislation, risk assessments for plant protection prod-

ucts are mainly deterministic. Probabilistic methods are mentioned as a refinement

option in the current EU guidance documents on assessing environmental risks of

pesticides (European Commission, 2002a,c). These documents recognise the poten-

tial usefulness of probabilistic methods, but they also express reservations about the

lack of reliable information for specifying distributions of random quantities, about

the validity of assumptions, and about the lack of officially endorsed statistical

methods.
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In deterministic modelling for exposure assessment, point estimates, either mean

values or worst-case values chosen by experts, are used for each different random

quantity in an exposure model. The resulting point estimate is assumed to be a

conservative estimate of exposure. The endpoint of the risk assessment for birds,

wild mammals, aquatic organisms and earthworms is the Toxicity-Exposure-Ratio

(TER), which is the ratio of the measure of effects and an exposure value. The

measure of effects is the toxicity value that is relevant for the assessment. This may,

for example, be an LD50, which is the concentration at which a chemical kills 50%

of the individuals in the tested population. Alternatively it may be a no-effect level,

which is the highest concentration at which the chemical causes no toxicological

effects. The exposure value is the value calculated using the deterministic values

mentioned previously. The risk is considered acceptable if the TER is greater than a

chosen threshold value. If this is not the case, the pesticide is not acceptable unless

it can be shown by higher tier risk assessment, e.g. probabilistic risk assessment or

field studies, that the substance is likely to have a low risk.

For food safety risk assessment a similar framework is used where a conserva-

tive deterministic exposure assessment is carried out and compared to a threshold

toxicity value. However approaches used in the EU to assess exposure vary in de-

tail between different types of chemicals and foods which are controlled by different

parts of legislation. An overview of the approaches used in different areas is given

by EFSA (2005).

For exposure assessments in both types of risk assessment, it is common to

use conservative point estimates as inputs to an exposure model, as the aim is to

protect the whole population including the individuals most at risk. However, when

conservative assumptions are made for several random quantities, the compounding

effect is frequently not quantitatively understood (Frey, 1993). These assumptions

may lead to so-called hyperconservativism, where several conservative assumptions

are made and compound each other to create a level of conservatism that is extreme

(Ferson, 2002).
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2.4 Data sets for risk assessment

In ecotoxicological effects assessment, we may be faced with data sets containing

as few as one or two observations for toxicity, or there may only be surrogate data

available. When modelling these data, the small sample size leads to several of the

uncertainties that will be discussed in Subsection 2.6.2. These uncertainties include

uncertainty about the distribution that the data have come from, extrapolation

uncertainty and measurement uncertainty.

One of the main databases of toxicity data is the ECOTOX database1, provided

by the US environmental protection agency (USEPA). Another is the e-toxbase2,

provided by the Netherlands National Institute of Public Health and the Environ-

ment (RIVM). These provide chemical toxicity information for both aquatic and

terrestrial species. They contain toxicity values for test endpoints, which include

the concentration at which half of the tested population experiences an effect such

as behavioural changes, effects on growth, mortality etc. and the highest measured

concentration at which no effects are observed (NOEC). The records contain specific

information such as the chemical name, toxic mode of action, species name and test

endpoint. There are generally very few observations available for new chemicals that

are tested in order to be licensed and there are generally more data available for

aquatic species than for terrestrial species.

Consider the number of observations available in the AQUIRE database (the

aquatic section of the ECOTOX database) for various chemicals for aquatic species.

There are 4127 chemicals, of which 1742 have only been tested on one species, 185

have been tested on more than 25 species, and of these, 71 have been tested on more

than 50 species.

In food safety risk assessment there tends to be more data available as data

are collected for every day of a short (e.g. between 1 and 4 days) or long (e.g.

around 7 days) survey on the intake of food for hundreds or thousands of people.

However, there are often problems with the data including measurement uncertainty

1http://cfpub.epa.gov/ecotox/
2http://www.e-toxbase.com/default.aspx
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and missing values, where e.g. some intakes of food are not recorded. The relatively

short length of the food surveys leads to issues with extrapolation for predictions for

individuals over longer time spans. An example of a dietary database is the UK Data

Archive Study No. 3481 − National Diet, Nutrition and Dental Survey of Children

Aged 1.5 − 4.5 years, 1992 − 19933. This is a 4 day survey for 1717 individuals

giving information such as their age, sex, weight, height and their consumption of

different types of food and drink.

For the exposure assessment for a food safety risk assessment there is concentra-

tion data available about chemicals in different food types. A problem that often

occurs with concentration data is that there are observations that are only recorded

as less than a specific limit. When the concentration of a chemical is measured,

there is often a positive limit of detection (LOD) below which the equipment can-

not measure. The measured concentrations of the chemical which fall below the

LOD will be recorded as less than the LOD. Some methods can easily incorporate

left-censored data including Bayesian methods (Section 2.7), NPI (Section 2.9) and

bootstrap methods (Subsection 2.13.1).

2.5 Species sensitivity distributions

Species sensitivity distributions (SSDs) are used in effects assessment to describe

the distribution of the variation in toxicity of a compound between species. There

are biological differences between living organisms and these mean that different

species will respond in different ways to compounds at varying concentrations. We

can model these differences using an SSD. The SSD is formed from a sample of tox-

icity data for different species, for example, the No Observed Effect Concentrations

(NOEC). An SSD is often represented by the cumulative distribution function (cdf)

of a distribution that is fitted to the data. This may be a parametric distribution

or the empirical distribution function for the data. For a detailed account of the

theory and application of SSDs, see Posthuma et al. (2002).

As toxicity data sets tend to be small there is a lot of uncertainty about the

3http://www.esds.ac.uk/findingdata/snDescription.asp?sn=3481&key=coding
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distribution that is fitted to the data. However, in some cases other information may

be available to suggest a particular distribution. When parametric distributions are

fitted to the data sample, there may also be uncertainty about the parameters of

the SSD. In practice, uncertainty about the parameters of the chosen distribution

can be included in the analysis to provide lower and upper bounds on the SSD. To

include parameter uncertainty, the SSD may be formed in many ways including the

use of a Bayesian p-box (Chapter 3), the Bayesian pointwise method (Subsection

2.7.7) or a nonparametric p-box (Subsection 2.10.1).

2.6 Variability and uncertainty

In this section variability and uncertainty that may be present in a risk assessment

are explained and discussed. In Subsection 2.6.4, we illustrate with an example, why

variability and uncertainty need to be modelled separately when the population is

of interest.

2.6.1 Description of variability and uncertainty

The definitions below are taken from Burmaster and Wilson (1996).

Variability represents heterogeneity or diversity in a well-characterised popu-

lation which is usually not reducible through further measurement or study. For

example, different people in a population have different body weights, no matter

how carefully we weigh them.

Uncertainty represents ignorance about a poorly characterised phenomenon

which is sometimes reducible through further measurement or study. For example,

the analyst may be able to reduce his or her uncertainty about the volume of wine

consumed in a week by different people through a survey of the population.
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It is possible to reduce variability in some situations. For example, if government

advice is to eat 500g of fish a week and people follow that advice, the variability in

the amount of fish consumed in a week may reduce.

2.6.2 Types of uncertainty

There are many uncertainties that may need to be accounted for in a risk assess-

ment. A selection of uncertainties relevant to the problems addressed in this thesis

is explained here.

Parameter uncertainty refers to the uncertainty about parameters of input

distributions for a model. For every random quantity in the model for which we

assume a parametric distribution, we must choose values or a distribution for the

parameter(s). Common statistical methods for fitting distributions to data include

the maximum likelihood method or the method of moments (Rice, 1995). However,

these choose a single parameter value for the distribution and ignore any uncertainty

about that value. Bayesian methods (Section 2.7) and parametric p-boxes (Subsec-

tion 2.10.2) can be used to express parameter uncertainty.

Uncertainty about dependence may refer to dependence between observable

random quantities or dependence between parameters of a distribution. In many

risk analyses there is no information available about the relationships between all

the random quantities in the model and therefore many analyses assume indepen-

dence between random quantities, e.g. Fan et al. (2005); Havelaar et al. (2000). This

assumption may lead to some uncertainty not being captured in the results of the

analysis. This is discussed and illustrated in Section 3.7. If analysts have enough

information about dependence, they can incorporate it into the analysis using meth-

ods such as copulas (Subsection 2.11.1). Dependence between the parameters of a

distribution can be included in a Bayesian framework whereas it is not included

in methods such as parametric p-boxes. The importance of including dependence

between parameters is discussed in Section 3.6.
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Data uncertainty can arise from measurement errors, censoring (see Section

2.4) or extrapolation uncertainty (explained in Effects Assessment in Section 2.2),

or all three. Measurement errors include human error and inaccuracy of measuring

equipment and may be presented as an interval within which the datapoint falls.

We consider measurement errors in Subsection 3.5.5 and Section 4.7.

Model uncertainty refers to the fact that the models that we use to analyse

phenomena do not fully describe the real world. Two different models may explain

observed behaviour equally well, yet may produce significantly different predictions.

The performance of models can be tested by comparing the results with observa-

tions from laboratory experiments or field studies. Model uncertainty may refer to

choosing the distribution of a random quantity. This can be difficult, because if the

data set is small, almost any distribution will fit, and if the data set is large, often no

standard distributions, such as the Normal, Gamma or Exponential distributions,

will fit.

2.6.3 Modelling variability and uncertainty

In the literature it is stated that variability and uncertainty should be considered

separately (Burmaster and Wilson, 1996; Frey, 1993; Vose, 2001). The motivation

for this appears to be that decision makers and analysts want to see which has more

influence on the results. Also, they may find it more useful to have estimates of the

proportion or number of people that will be affected, together with a measure of the

uncertainty of that estimate, rather than an estimate of the probability that a ran-

dom individual is affected. Modelling variability and uncertainty separately provides

a clearer picture of how much uncertainty surrounds the output for a population.

These methods, which we refer to as 2D methods, can be used to identify important

random quantities with large uncertainty or variability or both, which may have a

large effect on the overall risk. A case study providing motivation for modelling

variability and uncertainty separately in exposure risk assessments is given by Frey

(1993). Modelling variability and uncertainty separately helps to identify further

data collection needs, as uncertainty can usually be reduced by more data collection
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whereas variability cannot. However, gathering more information may be useful

in quantifying the variability correctly. The separate modelling of variability and

uncertainty helps the risk manager in deciding whether it is better to collect more

data on the risk or act immediately to reduce it.

Modelling variability and uncertainty separately is important when risk managers

want to make a decision about a population. When dealing with a population, if

variability and uncertainty are not modelled separately it can lead to assessments

where sensitive individuals may be put at risk. We illustrate this in the next section

by implementing a one-dimensional method which mixes variability and uncertainty

and comparing it to a two-dimensional method that models variability and uncer-

tainty separately.

2.6.4 Example

We explore the use of two Bayesian methods, one which mixes variability and uncer-

tainty, which we call method A, and one which models variability and uncertainty

separately, which we call method B. These methods allow us to illustrate the need

to model variability and uncertainty separately for a population.

Assume that we have the following data {1, 1, 1, 2, 3, 4, 5, 5, 10, 23} in µg/kg for

concentration of benzene in different cans of soft drink. We assume that the con-

centrations follow a Lognormal distribution. We use the same non-informative

p(µ, σ) = 1
σ

prior for both method A and method B, where µ and σ are the pa-

rameters for the Normal distribution assumed for the log10 of the data.

Using method A we can predict a concentration value for a random can from

the population of cans by integrating over the posterior distribution. This leads to

a Student t-distribution with location parameter y, scale parameter
(
1 + 1

n

) 1
2 s and

n−1 degrees of freedom (Gelman et al., 1995). We can plot the cdf for this Student

t-distribution after transforming the values back to the original scale. This is shown

in red in Figure 2.1.

In method B we first need to look at what is variable and what is uncertain.

Each can of drink has a different concentration of benzene in it due to the natural

variability in the concentration of benzene between cans. We do not know the
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parameters of the Lognormal distribution, so these are treated as uncertain. We

model this parameter uncertainty by sampling 1,000 values for the parameters σ

and µ|σ, so we have (µi, σi), i = 1, ..., 1, 000. The cdfs for each (µi, σi) pair can be

plotted. Then if we want e.g. 95% limits on the concentration, we calculate 2.5th

and 97.5th percentiles pointwise at 1,000 values between 0 and 1 (i.e. by taking

horizontal slices through the 1,000 cdfs). This then provides the 95% pointwise

bounds shown in Figure 2.1.

Figure 2.1: Method A (red) and 95% pointwise bounds from method B (black)
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As indicated by the arrows in Figure 2.1, we can see that the 90th percentile

when using method A is 14.97 µg/kg, whereas for method B the 90th percentile

is between 1.00 and 74.22 µg/kg with 95% probability. So method B shows that

the concentration in the can of drink can be as high as 74.22 µg/kg at the 90th

percentile given the 95% limits on the 90th percentile. A concentration of 14.97

µg/kg may be relatively safe, leading a risk manager to declare the cans of drink

safe for consumption without being aware that the 90th percentile could be as high

as 74.22 µg/kg, which may be high enough to be of concern. Therefore, to make

sure that we are protecting a population and in particular, the sensitive individuals

in the population, it is important to model variability and uncertainty separately.

We consider the 90th percentile and the 95% level of credibility for method B. The

choice of percentile to consider, i.e. the level of protection required, and the level of

confidence or credibility about that percentile are risk management decisions.
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These decisions may involve social, economic, ethical, political and legal considera-

tions that are outside the scope of the scientific estimation of risk.

2.7 Bayesian methods

In this section we discuss Bayesian methods and introduce some concepts that are

important for later chapters in this thesis. A basic introduction to Bayesian statistics

is given by Lee (2004), while a guide to Bayesian data analysis is given by Gelman

et al. (1995). Bayesian methods are very versatile and can be used in many ap-

plications, such as in meat quality analysis (Blasco, 2005) and cost-effectiveness

analysis from clinical trial data (O’Hagan and Stevens, 2001). An overview of

Bayesian methodology and applications is presented by Berger (2000) and O’Hagan

and Forster (2004). Two case studies illustrating Bayesian inference in practice are

given by O’Hagan and Forster (2004) and many applications of Bayesian statistics

are illustrated by Congdon (2001).

Bayesian methods involve choosing a parametric model, M(X|θ), where M rep-

resents the model, X is the random quantity of interest and θ represents the pa-

rameters. Then a prior distribution, p(θ), needs to be selected for each parameter.

The likelihood function, L(θ|x), is p(x|θ) where p(x|θ) is a function of θ for given

X. We then use Bayes Theorem to multiply the prior distribution(s) with the like-

lihood function for the chosen model to give a posterior distribution. This allows

any prior information that we have about a random quantity to be included in the

analysis via the prior distribution. It also naturally models the joint distribution of

the parameters. An advantage of Bayesian methods is that additional observations

can be used to update the output. Once a joint probability distribution for all ob-

servable and unobservable quantities has been chosen, posterior distributions and

Bayesian posterior predictive distributions (see Subsection 2.7.4) can be calculated.

The Bayesian posterior predictive distributions for Normal and Lognormal distribu-

tions are well known for specific priors (Gelman et al., 1995). When distributions

do not have closed-form solutions, Markov Chain Monte Carlo (MCMC) methods
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can be implemented using software like WinBUGS (1990), so we can make inferences

by sampling from the posterior distribution.

2.7.1 Credible or posterior intervals and regions

A 100(1−α)% Bayesian credible or posterior interval for a random quantity X is the

interval that has the posterior probability (1−α) that X lies in the interval (Gelman

et al., 1995). There are different types of credible interval, including a central interval

of posterior probability which for a 100(1−α)% interval is the range of values between

the α
2

and 1−α
2

percentiles. Another way of summarising the posterior distribution

is by considering the highest posterior density (hpd) interval (or hpd region in

higher dimensions). This set contains 100(1− α)% of the posterior probability, and

the posterior density within the interval is never lower than the density outside the

interval. The central posterior interval is identical to the hpd interval if the posterior

distribution is unimodal and symmetric. If the posterior distribution is multimodal,

the central posterior interval may contain areas of low pdf values whereas the hpd

region will consist of several intervals. When the posterior distribution is integrated

over these intervals, they will contain 100(1 − α)% of the probability. Therefore

the hpd intervals provide more information about the posterior distribution than

the credible interval as they indicate that the posterior distribution is multimodal

which the credible interval does not. If Θ represents multiple parameters, then the

hpd space is a subset of the joint posterior parameter space for all parameters in Θ.

Next we show an example of an hpd region for the Normal distribution.

2.7.2 Example of hpd region for the Normal distribution

To find the hpd region for a Normal distribution with parameters µ and σ we

can follow the steps by Box and Tiao (1973). We start with the non-informative

prior, p(µ, σ) = 1
σ
, and find the posterior distribution for µ and σ. Each contour

p(µ, σ|data) = c is a curve in the (µ, σ) plane, where c > 0 is a suitable constant.
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The density contour is given by

−(n + 1)ln(σ)− ((n− 1)s2 + n(µ− y)2)

2σ2
= d (2.2)

where n is the sample size, y is the sample mean, s is the sample standard deviation

and d is a function of c. The posterior probability contained in this contour can be

calculated by integrating the posterior pdf over the contour. An example of an hpd

region for the Lognormal distribution is illustrated in Subsection 3.3.3. For large

samples a χ2 approximation can be used to approximate the hpd region (see Box

and Tiao (1973) for more details). This approximation is needed to form Bayesian

p-boxes for large n, as discussed in Section 3.6.2.

2.7.3 Prior distributions

Bayesian analyses are often criticised because a prior distribution has to be chosen

and may lead to biased posterior distributions that do not produce results consistent

with the data. If information is available about the random quantity of interest then

it is useful to try and incorporate this into the prior distribution. However, it is often

the case that analysts assume a non-informative prior to try and avoid biasing the

analysis.

One choice of prior distribution is a conjugate prior distribution. These have

the advantage that they lead to a posterior distribution with the same distribution

family as the prior distribution. For example, the Normal distribution is conjugate

to itself for µ when σ2 is known, so combining a Normal prior distribution with

the Normal likelihood function leads to a Normal posterior distribution. Similarly

the Gamma distribution is the conjugate prior for one parameterisation of the Ex-

ponential distribution (see Appendix A). The advantages of conjugate families are

discussed by Gelman et al. (1995). These advantages include that they can often

be put in analytic form and they simplify computations. There are infinitely many

subjective prior distributions and a selection are discussed by O’Hagan and Forster

(2004). Distributions that integrate to 1 are called proper distributions whereas

those that do not are called improper distributions. However if the data dominates
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the analysis, it is possible that an improper prior can lead to a proper posterior

distribution (Gelman et al., 1995).

There are also objective priors such as reference priors and Jeffrey’s prior which

are discussed by O’Hagan and Forster (2004). A review of methods for constructing

’default’ priors is given by Kass and Wasserman (1996). Default priors are intended

to make the prior choice as automatic as possible. Box and Tiao (1973) discuss

non-informative priors and how to check if prior distributions are non-informative

in different scenarios.

It is also possible to choose a prior distribution using expert elicitation. There is

much discussion about how best to elicit distributions from experts and the pitfalls

that face analysts trying to get such information (O’Hagan, 1998; Kadane and Wolf-

son, 1998). Difficulties may arise when experts disagree and their opinions need to

be combined in some way. Some applications of expert elicitation in risk assessment

are given by Krayer von Krauss et al. (2004), Walker et al. (2001) and Walker et al.

(2003).

2.7.4 Bayesian posterior predictive distribution

The Bayesian posterior predictive distribution for a future observation ŷ is given by:

p(ŷ|data) =

∫
θ

p(ŷ|θ, data)p(θ|data) dθ

(2.3)

where θ represents the parameters of the distribution and the data are assumed to be

independent and identically distributed. For the Normal distribution, with a non-

informative prior, p(µ, σ) = 1
σ
, the Bayesian posterior predictive distribution can

be shown to be a Student t-distribution with location parameter y, scale parameter(
1 + 1

n

) 1
2 s and n − 1 degrees of freedom (Gelman et al., 1995). Therefore we can

sample from this distribution to produce predictions for a random individual in a

population. The posterior predictive distribution can also be used to predict for any

number of future observations.



2.7. Bayesian methods 24

The Bayesian posterior predictive distribution can also be used to check that the

chosen distribution for the data set is a plausible model. We can do this by taking

a sample from the Bayesian posterior predictive distribution and comparing it with

the observed data set. If the sample does not resemble the observed data then we

would know that the model (here, choice of distribution) or the prior distribution is

not appropriate (Gelman et al., 1995). We would then need to investigate why this

was the case, for example, it may be due to some surprising features of the data or

due to a lack of knowledge about the random quantity.

2.7.5 Robustness to the prior distribution

Robustness to the prior distribution can be achieved by using classes of prior distri-

butions to see how sensitive the results of an analysis are to the prior distributions

that are used. There are several classes of prior distributions available and some

are discussed by Berger (1990). These include the conjugate class, classes with

approximately specified moments, neighbourhood classes and density ratio classes.

The class of all distributions is not useful because this produces vacuous posterior

distributions. Berger (1985) introduces the ε-contamination class and Berger and

Berliner (1986) recommend using this class when investigating posterior robustness

for several reasons. Firstly, it is natural to specify an initial prior and then adjust it

by ε after more thought or discovering new information. Therefore we should include

the priors that differ by ε in the analysis. Secondly, this class is easy to work with

and flexible through the choice of the class of contaminations (Berger and Berliner,

1986). Robust Bayesian analysis involves minimising and maximising over the class

of prior distributions. As explained by Berger (1990), often we need to find a low

dimensional subclass of prior distributions which contains the minimising or max-

imising prior distribution. Optimisation can then be carried out numerically over

this smaller subclass. Examples for different criteria are given by Berger (1990).

Robust Bayesian analysis has been conducted in many areas, such as on the

linear regression model by Chaturvedi (1996). In this model an ε-contamination

class of priors is used, where the starting prior is a g-prior distribution with specific

parameters. The g-prior distribution is a form of conjugate prior distribution for
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the parameters in a linear regression model developed by Zellner (1986). Bayesian

robustness of mixture classes of priors was investigated by Bose (1994). Clearly,

robust Bayesian analysis can be useful in risk assessment as it would provide an

indication of how sensitive the output is to the prior distributions and therefore

may show how robust a decision based on the results can be. Robustness and

choices for the class of prior distributions are also discussed by O’Hagan and Forster

(2004).

2.7.6 Bayesian methods for left-censored data

In a Bayesian framework censored data can be accounted for via the likelihood

function. Where this is a closed form solution, we can sample from the relevant

distribution. However if this is not the case or we want to model variability and

uncertainty separately, censoring can be dealt with using data augmentation (Tanner

and Wong, 1987). To use the method for a Lognormal distribution, we take the log of

the data and then assume initial values for the parameters of a Normal distribution.

There are two steps. First we sample k values from the tail below the LOD, where

k is the number of censored values. Secondly, we sample a value for µ and a value

for σ from the joint posterior distribution based on the original data above the LOD

and the data we sampled in the first step. Both these steps can be repeated several

times to obtain samples of the posterior distribution of the parameters.

2.7.7 Bayesian pointwise method

Aldenberg and Jaworska (2000) devised a method for dealing with uncertainty

about specific percentiles of a (Log)Normal distribution, we will refer to this as

the Bayesian pointwise method. The Bayesian pointwise method is used to describe

posterior uncertainty around percentiles of a (Log)Normal distribution and uses

pointwise bounds on cdfs to represent uncertainty. The width of the bounds at each

percentile depends only on the shape of a non-central t-distribution with (n−1) de-

grees of freedom scaled by 1√
n

(Aldenberg and Jaworska, 2000). When n is small this

distribution is very skewed, so wide intervals are observed at high and low percentiles.
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At the median, there are narrower credible intervals. As n increases, the skewness

in the non-central t-distribution quickly reduces, producing narrower bounds. This

method can only be used for (Log)Normal distributions. For more complex models

with several random quantities, distributions other than (Log)Normal distributions

and non closed-form posterior distributions, two-dimensional Monte Carlo Simula-

tion (see Subsection 2.12.2) could be used. Aldenberg and Jaworska (2000) also

display the median distribution which is found by calculating the 50th percentile

of the possible cdfs horizontally at several percentiles. An example of the Bayesian

pointwise output with the median distribution and credible intervals for each per-

centile is given in Section 3.6.

2.8 Frequentist confidence methods

The frequentist alternative to a p% credible region is a p% confidence region. This

has the interpretation that in a large number of repeated trials m, (m →∞), the true

values of the parameters would fall in the p% confidence region mp
100

times. As with

the Bayesian methods, visualising and plotting confidence regions is difficult when

working with more then three parameters. In Burmaster and Thompson (1998),

maximum likelihood estimation is used to fit parametric distributions to data. Point

estimates of parameters are obtained and used to produce joint confidence regions

using standard methods (e.g. Mood et al. (1974); Cox and Snell (1989)). Both a χ2

approximation and the standard Taylor series approximation are used to illustrate

approximate confidence regions. The confidence regions differ depending on which

approximation is used but as n → ∞, where n is the sample size, the confidence

regions will converge. This is similar to the Bayesian credible region which will

differ depending on the prior distribution that is chosen for the parameters. As

n → ∞, generally the likelihood function of the data will dominate and the prior

distribution will have less influence. The maximum likelihood method is illustrated

for both the Normal and Beta distributions in Burmaster and Thompson (1998) and

an assumption that the parameters of both the Normal distribution and the Beta

distribution are distributed according to a Multivariate Normal distribution is made.
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The Bayesian framework allows the choice of other distributions for the parameters

via the prior distribution and the likelihood function. There are other methods

available such as given by Bryan et al. (2007), who construct confidence regions

of expected optimal size, and Evans et al. (2003) who consider a hybrid Bayesian-

frequentist confidence region with the frequentist coverage properties. The Bayesian

framework allows more flexibility as it can include prior information using the prior

distribution which the frequentist methods cannot. The frequentist method however

has the advantage that there is no need to choose a prior distribution if there is

no information available a priori. In this thesis, for illustration, we use Bayesian

credible regions and thus illustrate the Bayesian p-box. However different p-boxes

could be constructed in the same way as for the Bayesian p-box by using different

regions such as the ones illustrated by Burmaster and Thompson (1998), Evans et al.

(2003) and Bryan et al. (2007). These would produce frequentist p-boxes with the

interpretation that p% of the time, where p is some chosen confidence level, the true

distribution would fall within the p-box.

2.9 Nonparametric Predictive Inference (NPI)

Nonparametric Predictive Inference (NPI) is a method that provides lower and up-

per probabilities for the predicted value(s) of one or more future observation(s) of

random quantities. NPI is based on Hill’s assumption A(n), explained in Subsection

2.9.1, and uses interval probability to quantify uncertainty (Coolen, 2006). It is

an alternative to robust Bayes-like imprecise probability methods (Walley, 1991).

NPI has been presented for many applications including comparison of proportions

(Coolen and Coolen-Schrijner, 2007), adaptive age replacement strategies (Coolen-

Schrijner et al., 2006) and right-censored data (Coolen and Yan, 2004). Due to its

use of A(n) in deriving the lower and upper probabilities, NPI fits into a frequentist

framework of statistics, but can also be interpreted from a Bayesian perspective

(Hill, 1988; 1993). Other advantages of NPI include that it is consistent within in-

terval probability theory (Augustin and Coolen, 2004), in agreement with empirical

probabilities, exactly calibrated in the sense of Lawless and Fredette (2005), and it
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allows the analyst to study the effect of distribution assumptions in other methods.

NPI makes only few assumptions, one of which is that the data are exchangeable,

so inferences do not depend on the ordering of the data. There is also an underlying

assumption that there is a uniform distribution of the intervals between the data

points but without further specification on how the probabilities are distributed

within these intervals. NPI has never been implemented before in the area of expo-

sure assessment but as it can provide predictive probability bounds for the exposure

of an individual without making an assumption about the distribution that the data

have come from, it seems useful to implement it. Therefore we present an NPI anal-

ysis for exposure assessment on the simple Exposure Model (Section 2.2) in Chapter

4, to explain how it can be implemented and to illustrate the advantages of using a

nonparametric method.

2.9.1 Hill’s A(n)

Nonparametric Predictive Inference (Section 2.9) is based on the assumption A(n),

proposed by Hill (1968) for prediction when there is very vague prior knowledge

about the form of the underlying distribution of a random quantity. Let x(1), ..., x(n)

be the order statistics of data x1, ..., xn, and let Xi be the corresponding random

quantities prior to obtaining the data, so that the data consist of the realised values

Xi = xi, i = 1, ..., n. Then the assumption A(n) is defined as follows (Hill, 1993):

1. The observable random quantities X1, ... , Xn are exchangeable.

2. Ties have probability 0, so p(xi = xj) = 0,∀ i 6= j

3. Given data xi, i = 1, .., n, the probability that the next observation, Xn+1 falls

in the open interval Ij = (x(j−1), xj) is 1
n+1

, for each j = 1, ..., n + 1, where we

define x(0) = −∞ and x(n+1) = ∞

For nonnegative random quantities, we define x(0) = 0 instead and similarly if

other bounds for the values are known. Hill’s A(n) can be adjusted to include ties

(Hill, 1988) by assigning the probability c−1
n+1

to the tied data point, where c is the

number of times the value is present in the data set and n is the sample size. In the
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NPI framework, a repeated value can be regarded as a limiting situation where the

interval between the repeated observations is infinitesimally small, but can still be

considered as an interval to which we can assign the probability 1
n+1

.

2.9.2 Lower and Upper probabilities

As explained in Augustin and Coolen (2004), we can find lower and upper bounds

for the probability of Xn+1 ∈ B given the intervals I1, ..., In+1 and the assumption

A(n), where B is an element of B and B is the Borel σ-field over R. The Borel

σ-field is the set consisting of all sets of intervals on the real line. The lower bound

is then L(Xn+1 ∈ B) = 1
n+1

|{j : Ij ⊆ B}| and the upper bound is U(Xn+1 ∈ B) =

1
n+1

|{j : Ij ∩ B 6= ∅}|, where | · | denote absolute values. The lower bound only

takes into account the probability mass that must be in B, which only occurs with

probability mass 1
n+1

per interval Ij when the interval Ij is completely contained

within B. The upper bound takes into account any probability mass that could be

in B, which occurs with probability mass 1
n+1

per interval Ij if the intersection of

the interval Ij and B is nonempty. The NPI lower and upper cdfs for Xn+1 can then

be calculated by taking B = (−∞, x], where x ∈ (x(0), x(n+1)). Subsection 4.2.3

explains how we can form NPI lower and upper cdfs for left-censored data.

2.9.3 M function

One useful tool for representing the probability mass on intervals for NPI is an M

function which is a Dempster-Shafer structure. A Dempster-Shafer structure can

represent the partial specification of a probability distribution on intervals with no

restrictions as to where the probability mass falls in the interval. For example,

instead of a discrete probability mass function over the real-line with probabilities

for each point, a Dempster-Shafer structure might give a probability mass that

corresponds to an interval rather than a point value (Ferson et al., 2004). The

masses must sum to one and the sets containing non-zero mass are called focal

elements. This structure can be represented using the notation of the M function

for a random quantity, say X. The probability mass assigned for a random quantity
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X to an interval (a, b) can be denoted by MX(a, b). It is important to note that the

intervals to which positive M function values are assigned can overlap.

2.10 Probability Boxes (p-boxes)

In ecotoxicological risk assessment there is often a lack of information available to

quantify random quantities and the uncertainty around them. Probability bounds

analysis incorporates established results on bounding distributions and random

quantities by, e.g. Chebyshev (1874) and Markov (1886), with modern computa-

tional methods to solve two common problems: (1) not knowing the exact input

distributions, and (2) not knowing dependencies between the inputs. The idea of

p-boxes is that the output p-box will contain all possible output distributions that

could result from the input distributions, assuming the distributions of the random

quantities actually lie in their respective p-boxes (Ferson and Tucker, 2003). They

may be nonparametric or parametric as discussed next.

2.10.1 Nonparametric p-boxes

Some p-boxes do not need a large amount of information, for example some types can

be constructed based on the minimum, maximum, mean or variance of the data or a

combination of these. Nonparametric p-boxes may have confidence levels associated

with them, such as the 95% Kolmogorov-Smirnov (KS) confidence limits introduced

below, or they may be formed assuming 100% confidence. For more information on

nonparametric p-boxes see Ferson et al. (2003).

Methods based on the maximum and minimum values do not model sampling

uncertainty separately, where sampling uncertainty is the uncertainty that arises

from only having one small sample from a larger population. For example, if a

second sample was taken the empirical distribution for the first sample would not

be the same as for the second sample. It is similar to parameter uncertainty (see

Subsection 2.6.2), but it is termed sampling uncertainty here because we have no

specific distribution and no parameters. Kolmogorov-Smirnov (KS) confidence limits

(Kolmogorov, 1941; Smirnov, 1939), can be used to include sampling uncertainty.
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These bounds rely on the calculation of the one-sample Kolmogorov-Smirnov critical

statistic D(α, n) for confidence level 100(1 − α)% and sample size n. Kolmogorov

proved that these confidence limits can be used for entire distributions and Smirnov

produced a formula to calculate D(α, n). KS confidence limits are distribution-free

bounds for the empirical cdf, so they are bounds on a probability distribution as a

whole. Miller (1956) improved the formulation for D(α, n) and provided extensive

tables of D(α, n) values. The KS confidence limits are frequentist bounds that

have the interpretation that they will totally enclose the true empirical distribution

function in 95% of a given number of trials. An example to illustrate KS confidence

limits for a random sample including and excluding measurement uncertainty is

given by Ferson et al. (2003). In theory, the left tails of the KS limits continue to

negative infinity and the right tails of the KS limits continue to positive infinity. In

practice these may be truncated at reasonable values that depend on the data or

any other available information.

An example of KS confidence limits is shown in Section 3.6. The advantage of

KS confidence limits is that no distribution has to be assumed. A disadvantage of

the KS confidence limits, which it shares with other nonparametric methods, is that

for small n, the bounds are often too wide to be of practical use. However if there

is no other information available then these infinite tails are useful because they

express this lack of knowledge to risk managers.

2.10.2 Parametric p-boxes

For parametric models where the distribution is specified, but the parameter esti-

mates are only described by intervals, probability bounds can be calculated (Ferson

et al., 2003). This works well for single parameter distributions, assuming there is

some justification for the choice of interval for the parameter. However for distribu-

tions with more than one parameter, the method proposed by Ferson et al. (2003)

does not include the dependence between the parameters. For example, if we as-

sume that a random quantity X has a Normal distribution, to create a parametric

p-box for X we need to choose intervals for µ and σ. Assume we choose the intervals

µ ∈ [µl, µu] and σ ∈ [σl, σu], then the Normal p-box is constructed by taking the
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envelope of the four Normal distributions, N(µl, σ
2
l ), N(µl, σ

2
u), N(µu, σ

2
l ), N(µu, σ

2
u).

This leads to a Normal p-box as shown in Figure 2.2.

Figure 2.2: Normal p-box
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In Section 3.6 we use 95% frequentist confidence intervals to form the Normal

p-box as is done by Aughenbaugh and Paredis (2006). Therefore we will call this the

frequentist Normal p-box to distinguish between the Bayesian p-boxes introduced

in Chapter 3 and this type of p-box that is formed using frequentist confidence

intervals. As a consequence of ignoring the dependency between parameters, the

frequentist parametric p-boxes may lead to wider or narrower bounds than necessary

at some percentiles, although this depends on how the intervals for the parameters

are chosen. This is discussed in Subsection 3.6.1 where we compare the Bayesian

Normal p-box, developed in Chapter 3, which does include parameter dependence

with the frequentist Normal p-box. In Subsection 3.6.1 we briefly mention some

frequentist approximations which could be used to improve the frequentist Normal

p-box by including parameter dependence.

2.10.3 Discussion

There are some problems with both nonparametric and frequentist parametric p-

boxes, such as where to truncate the p-box and not knowing the probability of any of

the distributions within the p-box. Advantages of p-boxes are that there is a method

for combining p-boxes for different random quantities without assuming anything

about the dependence between random quantities (explained in Section 2.11) and

they are useful tools for sensitivity analysis as explained further by Ferson and
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Tucker (2006), who consider pinching the p-boxes for each random quantity in the

model to single distributions and then looking at the effect on the output. They also

compare combining the p-boxes for the random quantities assuming independence

with p-boxes based on no assumptions about dependence. Numerical examples

of the use of p-boxes for ecotoxicological risk assessment, effects assessments, and

discussion of issues such as truncation, are given by Ferson (2002) and Ferson and

Tucker (2003). P-boxes have been used for species sensitivity distributions (Dixon,

2007a) and for uncertainty propagation for salinity risk models (Dixon, 2007b).

2.11 Dependence between random quantities

In this section we discuss dependence between random quantities and how this can

be included in a risk assessment. We first look at copulas which are used to include

known correlations between random quantities and we then look at the case where

we make no assumption about dependence. It is common in risk assessments to

assume independence between random quantities, e.g. Fan et al. (2005); Havelaar

et al. (2000) and Chow et al. (2005). We include the explanation of copulas to aid

the understanding of Fréchet bounds which are important for the method developed

by Williamson and Downs (1990). This method enables the derivation of bounds

for the combination of random quantities whilst making no assumptions about the

dependence between them. It is useful to consider these bounds and then compare

them with the bounds formed under the assumption of independence, to see how

much the assumption of independence influences the results. Ferson et al. (2004)

discuss dependence in probabilistic modelling including copulas, Fréchet bounds and

the method developed by Williamson and Downs. We briefly explain these methods

here.

2.11.1 Copulas

Copulas are used as a general way of representing various types of dependence in

models. For an introduction to copulas see Nelsen (2002), while an introduction to

copulas in risk assessment is given by Haas (1999). Sklar’s Theorem (Sklar, 1959)
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underlies most applications of copulas. The theorem states that if we have a joint

distribution function F for n random quantities then there exists a copula C which

joins the marginal distributions of the random quantities to form the joint distri-

bution function. For example, for any bivariate distribution, F (x, y), let G(x) and

H(y) be the marginal probability distributions. Then there exists a copula C such

that F (x, y) = C(G(x), H(y)). Also, if the marginal distributions are continuous,

the copula function is unique.

There are many families of copulas available, such as Normal (Gaussian) copulas

which are derived from the bivariate Normal distribution using Sklar’s Theorem

and can cover the entire range of correlation from -1 to 1. The family of bivariate

Gaussian copulas is parameterised by the linear correlation matrix
(

1 ρ
ρ 1

)
, where ρ is

the rank correlation. As we only use the Gaussian copula in this thesis, we do not

elaborate on the other families here.

2.11.2 Dependency bounds

When we have very little or no information about dependencies between the random

quantities in a model, it may be useful to compute bounds on the results of an

analysis without making an assumption about any of the dependencies. If we have

two marginal cdfs, F and G with finite positive variances and we have the set Π ≡

Π(F, G) of all cdfs H on R2, then contained within Π are two cdfs that correspond

to the maximum and minimum correlation (Whitt, 1976). This was discovered by

Fréchet (1951) and Hoeffding (1940) who showed that the lower bound for all copulas

is W (u, v) = max(u + v − 1, 0) for two random quantities U and V and the upper

bound for all copulas for two random quantities is min(u, v). These are often referred

to as Fréchet bounds or Fréchet-Hoeffding limits.

Williamson and Downs (1990) explain how Fréchet bounds can be used to com-

bine probability boxes with no assumption about dependence. Ferson et al. (2004)

state that if the p-box for a random quantity X is [FX , FX ] and the p-box for a

random quantity Y is [F Y , F Y ], where F represents the lower cdf and F represents

the upper cdf, then the p-box for X+Y , without any assumptions about dependence

between X and Y , can be written as:
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FX+Y (z) = sup
z=x+y

max(FX(x) + F Y (y)− 1, 0)

FX+Y (z) = inf
z=x+y

min(FX(x) + F Y (y), 1)

There are similar formulas for subtraction, multiplication and division, given by

Ferson et al. (2004). Williamson and Downs (1990) provide algorithms for efficient

calculation of these limits. This method can be used for any type of p-box and is

implemented in Section 3.7 to combine Bayesian p-boxes with no assumptions about

dependence. It can also be used to combine other types of bounds, such as those

produced in the Bayesian pointwise method or in a 2D Monte Carlo Simulation

(Section 2.12.2). This allows a comparison between making no assumption about

dependence and assuming independence which may provide useful information to

decision makers. However, they contain all possible dependencies and cannot exclude

dependencies so they may not be useful if, for example, it is known that there is no

negative correlation between the two random quantities.

Ferson et al. (2004) show the Fréchet bounds on conjunctions of events. For

example, using the Fréchet inequality, max(0, a + b − 1) ≤ P(A ∩ B) ≤ min(a, b),

where a = P(A) and b = P(B), we can calculate the interval of probability that A

and B occur. This can be generalised to the multivariate case, giving max(0, a1 +

a2 + ...+an− (n− 1)) ≤ P(A1∩A2∩ ...∩A3) ≤ min(a1, a2, ...an). We use this result

to combine p-boxes in Section 3.7.

2.12 Monte Carlo Simulation

Monte Carlo simulation (MCS) is one of several techniques currently employed to

carry out risk assessments. In the 1940s MCS, originated at Los Alamos from the

work of Ulam, von Neumann and Fermi, as a random sampling technique for solving

difficult deterministic equations (Ulam, 1976; Cullen and Frey, 1999). An overview

of the history of Monte Carlo Simulation is given by Rugen and Callahan (1996).

Since then Monte Carlo methods have continued to evolve and due to advances in
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computing they can now be used in many applications. Two-dimensional Monte

Carlo simulation (2D MCS) is used in a wide range of applications including human

health risk assessment, (Burmaster and Wilson, 1996; Glorennec, 2006; Pouillot

et al., 2007), avian risk assessment, (Hart et al., 2007), environmental flood risk

assessment, (Lindenschmidt et al., 2008) and microbial risk assessment (Miconnet

et al., 2005; Vicari et al., 2007).

2.12.1 One-Dimensional Monte Carlo Simulation

One-Dimensional Monte Carlo simulation (1D MCS) is a method which provides

predictive results for a random individual from a population. There are different

implementations of one-dimensional Monte Carlo Simulation (1D MCS) of which one

is given by Frey (1993), who states that each input random quantity is assigned a

distribution based on observed data values. Assigning a distribution is usually done

by using maximum likelihood methods or the method of moments. The model is then

run for many iterations using sampled values from the input distributions for each

random quantity. Typically anything from 100 to 10,000 iterations are made giving

a set of sample values for a random quantity of interest. The number of iterations

used is generally determined by the analyst using trial and error by looking at the

output after each run and checking it is consistent with all the previous runs. If it

is, then the number of iterations is considered sufficient. The number of iterations

required will depend on the complexity of the model and the sampling technique

used.

2.12.2 Two-Dimensional Monte Carlo Simulation

Two-dimensional Monte Carlo simulation (2D MCS) is an extension of Monte Carlo

simulation. In 2D MCS there are two loops (as opposed to just one in MCS) allowing

variability and uncertainty to be modelled separately. The variability is modelled in

the inner loop and the uncertainty in the outer loop. An introduction to modelling

variability and uncertainty separately and for setting up a 2D MCS in a classical
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framework is given by Burmaster and Wilson (1996).

2D MCS can be implemented in a Bayesian framework because it assumes that

the distribution parameters are uncertain. However, the advantage of a Bayesian

2D MCS has not always been recognised and non-Bayesian versions have been im-

plemented. In these non-Bayesian versions, distributions for the parameters are

selected by analysts and dependencies between the parameters are often ignored.

In the Bayesian framework, prior distributions are assigned for parameters of the

random quantities and then updated using the data. This accounts for parame-

ter uncertainty and the dependencies between parameters, so we only describe a

Bayesian 2D MCS in this thesis.

Bayesian 2D MCS can produce bounds on the output of a particular model at

any credible level and it takes into account parameter uncertainty for each random

quantity in the model. Some advantages of Monte Carlo methods are listed by Vose

(2001). These include the availability of software to implement the procedure and

that it can be used as a sensitivity analysis by making adjustments to the model

and then comparing the results from each adjustment to see the effect of changes.

Model uncertainty (Subsection 2.6.2) can also be included by setting up different

models and comparing or enveloping the results from each of them. Also, 2D MCS

can be implemented with copulas (explained in Subsection 2.11.1) to take account of

any known correlations between the random quantities in the model. Problems with

2D MCS have been described by Ferson (1996), including difficulties with assigning

input distributions and dealing with unknown correlations.

2.13 Alternative methods

In this section we provide a brief overview of some methods that have been used for

risk assessment but are not used further in this thesis.

2.13.1 Bootstrapping

Introductions to bootstrapping are presented by Davison and Hinkley (1997), Efron

and Tibshirani (1993), Vose (2001) and many others. Bootstrapping is a compu-
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tationally intensive approach to statistical inference. It is commonly used to find

confidence intervals for particular parameters, such as the mean, when sampling

from an approximate distribution such as the commonly used empirical distribution

of the data set. Generally one can sample many times with replacement from the

observed data set to get new data sets of the same size and then calculate the statis-

tic of interest for each sample. We can sample with or without replacement and we

can sample smaller or larger size data sets from the whole data set if desired.

Bootstrapping is a useful alternative to parametric methods which require strong

assumptions about the distribution of the data. However, in exposure risk assess-

ment we are often interested in the tails of distributions and resampling from the

data set that we have can never provide information on more extreme values than

those observed. To deal with this, a parametric model can be fitted to the data and

then random samples can be drawn from this distribution, but this does not account

for uncertainty about the parameter values themselves. Bootstrap methods can also

be used to deal with censored data as illustrated by Zhao and Frey (2004).

Bootstrapping has also been used for species sensitivity distributions (SSDs)

(Section 2.5) as illustrated by Grist et al. (2002) and Verdonck et al. (2001). Grist

et al. (2002) illustrate their method of a bootstrap regression for estimation of SSDs

for the aquatic environment. They use the empirical distribution function (edf)

so each observation has a probability of 1
n
. They point out that with their choice

of edf, at least n = 20 is necessary for a 5th percentile to exist as the minimum

percentile of the edf is 100
n

. Therefore, with data sets less than 20, which is a common

situation for toxicity in birds and mammals, no 5th percentile can be calculated.

Even with a sample of 20, bootstrapping may not capture the 5th percentile in

the confidence limits. Therefore, it appears that bootstrapping should not be used

on small samples. However the coverage of bootstrap confidence intervals can be

improved by using a bias corrected or bias corrected accelerated confidence interval,

explained by Efron and Tibshirani (1993), Grist et al. (2002) and Vose (2001).
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2.13.2 Worst-case analysis

One approach for ecotoxicological risk assessment is worst-case analysis, which works

by recognising there is uncertainty about the values of random quantities but does

not model this uncertainty explicitly. The uncertainty is accounted for by selecting

values in such a way that it is believed that the overall risk estimate will be conser-

vative. The EU guidance for birds and mammals (European Commission, 2002b)

contains an example where worst-case analysis is used for part of the model. The

approach has been criticised by Frey (1993) because the compounding effect of using

several conservative estimates is often not understood. Ferson (2002) asserts that

another problem is that the conservatism is unquantified and inconsistent among

different assessments. As the levels of conservatism for different analyses are un-

known, they cannot be compared for decision making purposes. Worst-case analysis

can be used as a screening assessment to see if further refinement is required. A com-

parison of worst-case analysis and a probabilistic assessment is given by Vermeire

et al. (2001).

2.13.3 Interval analysis

This method uses intervals to describe the possible values that a random quantity can

take. These intervals can then be manipulated using the rules of interval arithmetic.

Ferson et al. (2007) discuss data with interval uncertainty including descriptions of

the basic operations, addition, subtraction, division and multiplication. It is possible

to compute bounds on all elementary mathematical operations. If a random quantity

is repeated in the analysis, the uncertainty for the random quantity is added for each

repetition leading to suboptimal bounds, where the optimal bounds are the tightest

possible bounds given the inputs. When there are no repeated random quantities

in the model, interval analysis is guaranteed to yield the optimal bounds given the

inputs (Moore, 1966). Therefore if possible, it is better to manipulate the model so

random quantities only occur once.

The advantage of interval analysis is that it can deal with any kind of uncertainty

and provide bounds given the data. If the input random quantities lie within their
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intervals and we combine the intervals in the correct way it can be guaranteed

that the true result will lie in the output interval. Unfortunately the intervals

become more conservative as more mathematical operations are performed and as

they become wider they give less information on the result. So this method suffers

from hyperconservatism. There is also no indication of which values are more or

less likely in the interval so if the decision is based on a threshold value, interval

analysis would only indicate which decision to make if the threshold value does

not lie in the interval. Interval analysis for risk assessments can be performed in

RiskCalc software4. Details of methodology with examples of applications are given

by Ferson et al. (2007). Applications of interval analysis in engineering are given by

Moller and Beer (2008).

2.13.4 Fuzzy arithmetic

Fuzzy numbers are a generalisation of interval analysis where we have an interval

and we have a membership function which describes our beliefs about the interval

in which the value of the random quantity falls. Arithmetic operations can be

performed on fuzzy numbers by using interval arithmetic for each possibility level

between 0 and 1. Details of a comparison between a frequentist 2D MCS and fuzzy

2D MCS are given by Kentel and Aral (2005). In the 2D fuzzy Monte Carlo, they

assign membership functions for the mean and standard deviation. The membership

functions must be chosen by an analyst or expert and the dependencies between

parameters are not taken into account by the fuzzy method. A posterior distribution

automatically takes into account the dependence between parameters and therefore

it appears that 2D MCS in a Bayesian framework is preferable to the 2D fuzzy MCS.

2.13.5 Sensitivity analysis

A sensitivity analysis is often considered the most straightforward approach to deter-

mine which random quantities in the model have the most influence on the output.

It also provides an indication of the range of possible outputs. The main criticism of

4http://www.ramas.com/riskcalc.htm
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this method is that as the number of random quantities increases the complexity of

considering all possible scenarios becomes cumbersome and computationally inten-

sive. A good overview of techniques for sensitivity analysis is presented by Saltelli

et al. (2000). There are methods that vary correlation coefficients, e.g. Ma (2002),

but Ferson and Hajagos (2006) show that varying correlation coefficicents is not

sufficient to include all possible dependencies in the sensitivity analysis. Sensitivity

analysis for p-boxes has been explored by Ferson and Tucker (2006). They show

how p-boxes can be pinched to a precise distribution to see what effect this has on

the output.

2.14 Conclusion

This chapter has provided an insight into some of the methods that are currently

being used for risk assessment, as well as some important definitions and explana-

tions required for Chapters 3, 4 and 5. It also provided motivation for the methods

developed and implemented later in the thesis.



Chapter 3

Bayesian Probability Boxes

3.1 Introduction

In this chapter we introduce Bayesian probability boxes (p-boxes) which can be used

to express variability and uncertainty in risk assessment. As explained in Subsec-

tion 2.10.2, frequentist parametric p-boxes are useful as they can include different

types of uncertainty, but unfortunately the way that they are constructed ignores

dependence between parameters. Bayesian methods can easily deal with dependence

between parameters and therefore it is natural to look at a Bayesian way of forming

a p-box. The Bayesian p-box can also easily be displayed together with the modal

distribution. The modal distribution is the distribution with the mode of the pos-

terior distribution as its parameters. For example, for the Normal distribution with

non-informative priors for µ and σ, the posterior is a unimodal distribution. The

mode (µm, σm) is the peak of this unimodal distribution and therefore the modal

distribution is N(µm, σ2
m). Bayesian methods also have the advantages that they

can deal with censored data, be updated if more data are obtained and incorporate

expert opinion or other evidence through prior distributions.

The proposed Bayesian method takes a distribution-wise approach, as opposed

to the Aldenberg and Jaworska (2000) pointwise method that was explained in Sub-

section 2.7.7. In ecotoxicological risk assessment, when the risk manager is making

decisions on questions about a population, it is generally agreed that variability

and uncertainty need to be modelled separately to ensure the whole population is

42
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considered (Subsection 2.6.3). The Bayesian posterior predictive distribution does

not do this so we illustrate the Bayesian posterior predictive distribution in this

chapter, together with the Bayesian p-box, to show the difference between the two

methods. Bayesian methods all require distributions to be chosen and therefore it

is interesting to compare the results with nonparametric p-boxes which do not re-

quire a distribution to be chosen. One such nonparametric p-box is formed using

the Kolmogorov-Smirnov confidence limits (Subsection 2.10.1) and is illustrated as

a comparison to the other methods which assume a particular distribution.

In Section 3.2 we introduce the Bayesian p-box method, apply it to the basic

case of the Exponential distribution and consider robustness of the output to the

chosen prior distribution. Section 3.3 considers the more complicated case of the

Normal and Lognormal distributions while Section 3.5 looks at including robust-

ness with respect to the prior distribution(s) and how to deal with imprecise data

sets. In Section 3.6, five methods, namely the Bayesian p-box, the frequentist p-

box, Kolmogorov-Smirnov confidence limits, a Bayesian pointwise method and the

Bayesian posterior predictive distribution, will be illustrated and compared for two

different sample sizes. In Section 3.7 we look at combining Bayesian p-boxes in a

basic Exposure Model (Section 2.2) and investigate the effect of the frequently used

assumption of independence between random quantities by comparing it to a case

where no assumption is made about dependence. In Section 3.8 we discuss all the

methods previously mentioned and their usefulness in risk assessment.

Any credibility level can be chosen and evaluated, although throughout this

chapter the focus will be on the 95% credibility level. In ecotoxicological risk assess-

ment the percentile of interest is frequently the 5th percentile, whereas in human

exposure risk assessment the analysts tend to choose their own percentile (e.g. the

97.5th, 99th or 99.9th percentile). For illustrative purposes we will focus on the 5th

percentile for ecotoxicological risk assessment and look at several percentiles (50th,

90th and 99th) for human exposure risk assessment in this chapter.
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3.2 Bayesian p-box method

In this section the proposed Bayesian p-box will be introduced. Several of its impor-

tant properties will be explained and a procedure to compute the Bayesian p-box

is provided. Then we illustrate the Bayesian p-box with a basic example using the

Exponential distribution. In Section 3.3 the focus will be on the practically im-

portant Normal and Lognormal distributions. The method can also be used for

other distributions, both discrete and continuous. In principle the method could

be implemented for multivariate random quantities, but this may be difficult if the

parameter space involves multiple dimensions. Also, the output may be difficult

to represent in an understandable way. Hence, we restrict attention to univariate

random quantities.

3.2.1 Forming a Bayesian p-box

To form a Bayesian p-box we take X to be an observable random quantity. We then

assume a parametric model X|θ ∼ fθ, where f is a distribution with parameter(s)

θ (θ ∈ Θ, where Θ may be multi-dimensional) and take F (X|θ) to be the cdf of

X. We then need to choose a prior distribution for θ and combine it with the

likelihood function so by Bayes Theorem we form a posterior distribution p(θ|data).

For practical risk assessments, which involve communication between statisticians

and risk managers, it is often easiest to focus on the observable X. Instead of using

the Bayesian posterior predictive distribution, we instead consider bounds on the

distributions whose parameters fall in a particular region of interest. To achieve

such bounds, we select a subset, Θs(α), of Θ, such that 1−α ≤ P(θ ∈ Θs(α)| data),

with Θs(α) in some suitable sense ‘of minimal size’, and find optimal bounds for

{F (x|θ), θ ∈ Θs(α)}. For example, we could take α = 0.05 and choose Θs(α) to

be the highest posterior density region. This would mean that the Bayesian p-box

would then contain the distributions that have parameters that lie in the 95% hpd

region for θ given the data.
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3.2.2 Choosing Θs(α)

For the purposes of this chapter, the highest posterior density (hpd) interval or

region (Subsection 2.7.1) for the parameter(s) of the distribution is used as Θs(α).

If the parametric distribution is not symmetric and unimodal, then the hpd interval

displays more important features of the posterior distribution than a credible interval

(Chen et al., 2001). If the posterior density is continuous and unimodal then the

hpd interval or region is a compact set as it is closed and bounded. As shown in Box

and Tiao (1973), it may occur that the 100(1−α)% credible region is identical to the

100(1− α)% confidence region in frequentist statistics, although the interpretation

is different. This is, for example, the case for some specific non-informative prior

distributions if the same sufficient statistic is used in both classical and Bayesian

approaches (Turkkan and Pham-Gia, 1997). There has been some discussion as to

whether the hpd region is appropriate, as it is not invariant under reparameterisation

(Bernardo and Smith, 1994). Other regions, such as Bernardo’s lowest posterior loss

region (Bernardo, 2005), which is invariant under reparameterisation, could be used

instead. In fact any subset of the parameter space Θ that is closed and bounded and

has a specific posterior probability could be used to construct Bayesian p-boxes.

3.2.3 Example: Exponential Distribution

Suppose that components of a machine are stress-tested, their lifetimes are measured

in days and that these lifetimes follow an Exponential distribution with parameter

λ, where λ is the distribution mean. Assume that a sample, x1, x2, ..., xn, of n = 30

such lifetimes is available, with sample mean 16.72 days and standard deviation 17.21

days. Consider the case α = 0.05 and find Θs(0.05), here the 95% hpd interval for

λ. If λ ∈ [c1, c2], then Θs(0.05) is derived by calculating values of c1 and c2 such

that the integral of the posterior distribution between c1 and c2 is equal to (1− α)

and the value of the posterior probability density function is equal at c1 and c2.
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We define the prior probability density function to be:

p(λ|a, b) ∝ λ(a−1)exp (−λb) (3.1)

and multiply this by the likelihood function for the Exponential distribution to find

the corresponding posterior probability density function:

p(λ|x1, ...xn, a, b) ∝ λ(a+n)−1exp

(
−λ

(
b +

n∑
i=1

xi

))
(3.2)

Θs(0.05) for λ (c1 = 0.0392 and c2 = 0.0816) is illustrated in Figure 3.0.1 where

we use a non-informative Gamma prior distribution with shape parameter a = 0.001

and inverse scale parameter b = 1000. p(λ|x, a, b) represents the posterior probability

density given the shape and inverse scale parameters, a and b, and the data x.

Maximising and minimising the Exponential distribution over Θs(0.05) is equivalent

to plotting the Exponential distributions with λ equal to the endpoints of Θs(0.05)

due to the monotonicity of the Exponential cdf with respect to λ. This leads to the

Exponential Bayesian p-box shown in Figure 3.0.2.

Figure 3.1: Example for the Exponential distribution
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3.0.1 Posterior distribution of λ with
Θs(0.05) (shown by the arrow)
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3.0.2 95% Exponential Bayesian p-box
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The Exponential Bayesian p-box clearly displays uncertainty about the distribu-

tion parameter by the width of the bounds. Looking at specific percentiles shows

that the 90th percentile of the random component life is between 28.2 days and 58.7

days and that the probability that the component lasts longer than 25 days, given

λ is contained in Θs(0.05), is between 0.13 and 0.38.

3.2.4 Different credibility levels

As decision makers may not want to choose a value for α before the risk assessment

is carried out, it may be attractive to produce Bayesian p-boxes for different values

of α. From these they can consider the change in uncertainty at different values of

α. Figure 3.1 shows the nested Exponential Bayesian p-boxes for the example above

for three values of α. The 90th percentiles for each α are shown in Table 3.1.

Figure 3.1: Exponential Bayesian p-box for α = 0.5 (black), α = 0.05 (red) and
α = 0.01 (blue)
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Table 3.1: Upper and lower bounds on the 90th percentile for each value of α

90th Percentile
α Lower Upper
0.5 35.219 45.282
0.05 28.227 58.725
0.01 25.538 67.055

As expected the interval for the 90th percentile widens as the credibility level in-
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creases. Nested Bayesian p-boxes are useful to consider how much the uncertainty

increases as the credibility level increases.

3.2.5 Robustness to the prior distribution

A common criticism of Bayesian methods is that the prior distribution may influence

the posterior results of an analysis. We illustrated the use of a non-informative

prior distribution in Subsection 3.2.3. One can also consider using a class of prior

distributions to study robustness with respect to the prior distribution. To do this

for the Exponential case, we need to choose bounds for a and b. The posterior

distribution is a Gamma distribution with parameters a + n and b +
∑n

i=1 xi. Now

suppose a priori that it is believed that the expected value of the random quantity

of interest is approximately E. Then we could, for example, choose a class of prior

distributions by taking s small, a ∈ (1+ε, s+1), where ε = 1e−15 and b ∈
(

1
2Es

,∞
)
.

Then as λ has a Gamma distribution, 1
λ

has an Inverse-Gamma distribution, with

parameters a and θ = 1
b
, and thus θ ∈ (0, 2Es). The expected value of 1

λ
is θ

(a−1)
. So

when a = 1+ε, the expected value of 1
λ

is in the interval
(
0, 2Es

ε

)
and when a = 1+s,

the expected value of 1
λ

is in the interval (0, 2E) which both seem reasonable as 1
λ

is the mean of the Exponential distribution.

Let us consider two examples in which we use the same robustness criteria as

described above
(
a ∈ (1 + ε, s + 1) and b ∈

(
1

2Es
,∞
))

, and the same value of s, but

with two different sample sizes.

1. Choose s = 2, E = 30 and randomly generate a sample of size 10 from an

Exponential distribution with λ = 1
20

. This yields
∑n

i=1 xi = 273.11.

2. Choose s = 2, E = 30 and randomly generate a sample of size 100 from an

Exponential distribution with λ = 1
20

. This yields
∑n

i=1 xi = 2034.99.

We split a into 20 equally spaced values including the endpoints and b into 20

equally spaced values including the endpoints. Taking the envelope of the possible

distributions, by using the endpoints of Θs(0.05), we find the 95% robust Exponen-

tial Bayesian p-boxes for these two examples. The 95% robust Exponential Bayesian
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p-boxes are compared with 95% Exponential Bayesian p-boxes formed using a non-

informative gamma prior distribution with a = 0.001 and b = 1000 as before, in

Figures 3.2.1 and 3.2.2.

Figure 3.3: Comparison of Robust 95% Exponential Bayesian p-box (red) and 95%
Exponential Bayesian p-box (blue)
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3.2.1 Small sample: n = 10,∑n
i=1 xi = 273.11
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3.2.2 Larger sample: n = 100,∑n
i=1 xi = 2034.99

It is clear that the inferences from a smaller data set are more influenced by the

choice of prior distribution resulting in wider bounds. Additional data lead to a more

peaked likelihood function which has a stronger influence on the inferences leading to

narrower bounds. The Exponential Bayesian p-box, formed using a non-informative

prior distribution, is enclosed within the Exponential p-box using the class of prior

distributions in both cases. The endpoints of the hpd intervals, c1 and c2, for the

non-informative prior distribution are enclosed within the interval of c1r and c2r,

where c1r and c2r are the endpoints of the robust hpd interval, in both cases. As

the Exponential Bayesian p-box is formed using these endpoints, the robust cases

will enclose the non-informative Exponential Bayesian p-boxes for these examples.

Including robustness to the prior distribution describes a little more uncertainty

which is indicated by the width of the bounds. As the sample size increases, both

uncertainty about λ and the influence of the prior distribution decrease. Thus, there

is not a large difference between the width of the bounds using the robust class of

prior distributions or the non-informative conjugate prior distribution for n = 100.

For these data sets which were randomly generated we used 30 as an estimate of E.

In practice, this value would need to be chosen by an expert or based on information
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available about the random quantity prior to data collection.

In this section we have introduced the procedure to form a Bayesian p-box and

illustrated it for the Exponential distribution. We have shown the possible benefit

of producing Exponential p-boxes for different credibility levels and that the method

can include robustness to the prior distributions. In the next section we consider how

to form a Bayesian p-box for the more complicated case of the Normal distribution.

3.3 Normal and Lognormal distributions

In this section the derivation of a Bayesian p-box for the Normal and Lognormal

distributions is discussed. The Lognormal distribution is frequently used in risk as-

sessments, in particular for assessment of the magnitude of effects by estimating the

proportion of species for which exposure to a chemical exceeds some threshold level

(e.g. LD50 or NOEC). To describe the variation in these threshold levels between

species, a species sensitivity distribution (see Section 2.5) is often used. As this is

frequently assumed to be Lognormal (EFSA, 2005), the illustrative example shown

in Subsection 3.3.3 is for the Lognormal distribution.

3.3.1 Bayesian P-boxes for the Normal distribution

We assume that a random quantity X has a Normal distribution with parameters

µ and σ. Box and Tiao (1973) present the equation of the joint hpd region for

parameters µ and σ assuming locally uniform prior distributions for µ and ln(σ).

In this case Θs(α) is the hpd region containing the (µ, σ) pairs with 100(1 − α)%

posterior probability. We find the hpd region by evaluating the double integral:

∫
R

p(µ, σ|data) dµ dσ (3.3)

where the region R is given by: h(µ, σ) =−(n+1)ln(σ)− 1
2σ2 [(n−1)s2+n(µ−y)2] ≥ d,

where y is the sample mean, s is the sample standard deviation and d is a constant.

To do this, we integrate numerically over R at different values of d until we find

the region, Θs(α), that contains 100(1 − α)% probability. Then we find the (µ, σ)
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pairs from Θs(α) that optimise the Normal cdf, and use these to find bounds on

the distribution of the random quantity X. So we need to calculate the (µ, σ) pairs

that optimise the function g = Φ
(

x−µ
σ

)
, where Φ(·) is the standard Normal cdf. It

is clear that the Normal cdf is maximised (minimised) by maximising (minimising)(
x−µ

σ

)
, with fixed x ∈ R, µ ∈ R and σ > 0.

If X ∼ N(µ, σ2), then Θs(α) is a strictly convex set defined by g(µ, σ) ≥ d,

where d is a fixed constant, and it is closed and bounded. Therefore the gradient

of the boundary of the set, that we call the contour, is continuous and constantly

changing everywhere. The (µ, σ) pairs found by tracing the contour, where Θs(α) =

d, maximise and minimise the cdf of X for all x, justification is given in Subsection

3.3.2. We can then form the Bayesian p-box by plotting the value of the cdf at each

x given the values of each optimal (µ, σ) pair from the contour.

The parameters µ and σ are location and scale parameters respectively and

this result generalises to other location-scale distributions, such as the Student t-

distribution and the Cauchy distribution, as long as the derived region, Θs(α), is

closed and bounded. This result allows the use of an efficient algorithm for the

computations involved in the derivation of such Bayesian p-boxes. Suppose that

(µ1, σ1) maximises the cdf (over Θs(α), and hence this point is on its boundary) at

a particular value of x, say x1. To find the maximum of the cdf at a point close to

x1, we only need to search the values of (µ, σ) on the boundary of Θs(α) that are

close to (µ1, σ1). Alternatively to speed up computation we can split the contour

into several (µ, σ) pairs to give an approximate Bayesian p-box.

3.3.2 Justification

We first show that the values of µ and σ that maximise (minimise) f = x−µ
σ

are

on the contour. To maximise f , one needs to minimise σ. The smallest values of

σ possible in Θs(α) at any µ will fall on the contour. Similarly to minimise f , one

needs to maximise σ and the maximum σ values possible at any µ will fall on the

contour.

Consider the contour h(µ, σ) = d. An example of a possible contour and the

resulting Bayesian p-box is shown in Figures 3.3.1 and 3.3.2 to aid understanding.
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The blue half of the contour corresponds to the resulting blue maximum bound for

the Bayesian p-box and similarly the red half corresponds to the resulting minimum

bound. This is a closed strictly convex set and therefore the gradient of the contour

is different at all points, changes continuously and takes all directions.

Figure 3.3: Example of a possible contour and the resulting Bayesian p-box
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3.3.2 95% Normal Bayesian p-box with
modal distribution (black)

Standard optimisation theory states that the gradient of the function f must be

a negative multiple of the gradient of the contour where the contour optimises the

function e.g. Boas (1983). Consider optimising the function f = x−µ
σ

with respect

to the contour h(µ, σ) = d. Then ∇(f) = −λ∇h(µ, σ), where λ is a constant and

∇(f) =

 (µ−x)
σ2

−1
σ

 (3.4)

The first term of the vector is a continuous function of x. For x ∈ R, it is clear from

∇h(µ, σ) = ∇(f)
−λ

that:

x → −∞ : ∇h(µ, σ) →

 −∞
1

λσ

 (3.5)

x → µ : ∇h(µ, σ) →

 0

1
λσ

 (3.6)

x →∞ : ∇h(µ, σ) →

 ∞
1

λσ

 (3.7)
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so the gradient changes continuously with x. The gradient of the function h that

optimises f must follow the above pattern as x increases. Therefore it is clear

that the contour optimises f . To see which half of the contour is maximising f we

consider the contour h(µ, σ) ≤ d − ε, where ε is a small positive constant. This

contour will be larger as it contains more probability. Again we consider the edge

of the contour at h(µ, σ) = d− ε. As we move from the contour h(µ, σ) = d to the

contour h(µ, σ) = d − ε, we find that the values of µ increase for the upper half of

the contour and decrease at the lower half of the contour for given σ. This leads to

an increase in f = x−µ
σ

for the lower half of the contour and a decrease in f for the

upper half of the contour. Therefore the upper half of the contour is minimising f

and the lower half of the contour is maximising f .

3.3.3 Example: Lognormal distribution with small n

To illustrate the Bayesian p-box method, consider the No Observed Effect Concen-

tration (NOEC) of Cadmium (µg Cd/g) of seven soil organisms data (Table 3.2)

from Van Straalen and Denneman (1989), also used by Aldenberg and Jaworska

(2000).

Table 3.2: NOEC for toxicity of Cadmium (µg Cd/g) of soil organisms.

Species 1 2 3 4 5 6 7
NOEC values 0.97 3.33 3.63 13.50 13.80 18.70 154.00
log10 (NOEC) -0.013 0.522 0.560 1.130 1.140 1.272 2.188

Assuming that the data come from a Lognormal distribution, Log10(data) follows

a Normal distribution. Let us consider using the non-informative prior, p(µ, σ) = 1
σ
,

and take α = 0.05. Θs(0.05), the 95% hpd region, is found by numerical integration,

and is shown in Figure 3.4.1, where the mode of the posterior distribution is also

indicated. Maximising and minimising the Normal cdf over Θs(0.05) leads to the

95% Normal Bayesian p-box shown in Figure 3.4.2. The uncertainty about the

variability is indicated by the width of the bounds. The modal distribution, i.e. the

distribution with the mode of the posterior distribution as its parameters, is also

shown.
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Figure 3.4: Example of Θs(0.05) and the Normal Bayesian p-box for the
log10(NOEC) values given in Table 3.2
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3.4.1 Mode (X) and Θs(0.05)

-3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cadmium (Log
10

 (µg Cd / g))

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

 

 

3.4.2 95% Normal Bayesian p-box (red)
with modal distribution (blue) and arrows
indicating the 5th percentile (black)

In effects assessments, it is assumed that if at least 95% of the species are not

affected, an ecosystem is protected. Therefore, the 5th percentile of an SSD is of

interest as it is the concentration of a chemical that will affect 5% of the species.

Here the 95% bounds on the 5th percentile on the log10 scale are (-1.924, 0.663) µg

Cd/g, shown in black in Figure 3.4.2. Transformed back from the log10 scale the

95% bounds on the 5th percentile of the Bayesian p-box are (0.012, 4.602) µg Cd/g.

Therefore the concentration that will affect 5% of the species, given the (µ, σ) pairs

contained in Θs(0.05) and thus constrained by 95% probability, can be considered

to be between these bounds.

3.4 Validating Bayesian p-boxes

As (Log)Normal distributions are important in risk assessment we test the Bayesian

p-box for a Normal distribution with various means and standard deviations. We

begin with µ = 30 and σ = 3 and take samples of different sizes (n = 2, 10, 50 and

100 ). We then form the Bayesian 95% hpd region for this Normal distribution and

check if the (µ, σ) pair (30,3) fall in the hpd region. We repeat this process 100

times for each sample size and count how many times (30,3) falls in the Bayesian

hpd region. To see if there is any dependence on the µ and σ used we vary them one

at a time and repeat the process with new µ or σ values. For simplicity we test how



3.4. Validating Bayesian p-boxes 55

often the true µ and σ values fall in the hpd region, as then the true distribution

will fall in the 95% Bayesian p-box. The results from 100 simulations for various µ

and σ values are shown in Table 3.3.

Table 3.3: Results for 100 simulations

µ σ n Success out of 100

30

3

2 98
10 98
50 97
100 98

5

2 96
10 99
50 99
100 99

7

2 96
10 98
50 98
100 99

9

2 95
10 98
50 99
100 98

20 3

2 95
10 97
50 98
100 98

40 3

2 95
10 99
50 99
100 99

50 3

2 98
10 97
50 98
100 100
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It is clear that there is some sampling variation so some samples lead to hpd

regions where the parameters of the true distribution are not included. However

generally the Bayesian p-box includes the true distribution in most of the simu-

lations, even for n as small as 2 and therefore seems a reasonably robust method

to use. The method is not affected by the change of µ and σ as we would expect

because the method takes the sample mean and standard deviation into account.

For small samples the size of the hpd region increases, resulting in a wide Bayesian

p-box, which leads to the n = 2 case producing good results.

3.5 Generalisations

Two topics which are of practical interest are robustness with respect to the prior

distribution and imprecision in the data. In effects assessments, sample sizes may

be as small as 2, so any prior distribution can have a large influence on the posterior

distribution. Therefore it is useful to consider robustness with respect to the influ-

ence of the prior distribution. Robustness for the Normal distribution with respect

to the prior distribution(s) for µ and σ is considered in Subsections 3.5.1 and 3.5.3.

For a detailed introduction to robust Bayesian analysis we refer to Berger (1990).

In practice, data sets may be given as interval data, for example when an indication

of measurement uncertainty is given. A straightforward method for including such

imprecision in data in the analysis is presented in Subsection 3.5.5.

3.5.1 Robustness to the prior distribution for µ

To investigate robustness with respect to the prior distribution for µ, we consider

a class of Normal prior distributions for µ given values of σ. We will call this the

interval class of prior distributions. The resulting Bayesian p-box will be called the

‘robust Normal Bayesian p-box’. Keeping the non-informative prior distribution for

σ, p(σ) = 1
σ
, a Normal class of prior distributions for µ|σ is chosen:

{
p(µ, σ) : p(µ, σ) ∼ N

(
a,

σ2

n

)
; a ∈ [c, v]

}
(3.8)



3.5. Generalisations 57

and the prior interval for the mean, a, is chosen to be between constants c and v.

Calculating the posterior distribution, and repeating the previous steps, as in Box

and Tiao (1973) and Subsection 2.7.2, leads to the equation of a density contour:

−(n + 2)ln(σ)− 1

2σ2

(
(n− 1)s2 +

n

2
(x− a)2 + 2n

(
µ−

(
a + x

2

))2
)

= d (3.9)

To find Θs(0.05), integrate the posterior distribution over different regions to

find the region enclosing 95% probability. To perform the integration, values for c

and v must be chosen. Here c and v are the prior limits on the mean of µ that

should be chosen by an expert or based on available evidence.

3.5.2 Example: A robust Normal Bayesian p-box

We have a small data set (n = 3) sampled from a Normal distribution with mean

100 and standard deviation 15. The sample statistics are x = 96.83 and s = 8.58

and we take the interval a ∈ [66, 116]. We split this interval by taking 20 equally

spaced values, ai, i = 1, ..., 20, including the endpoints for illustrative purposes and

this produces the regions Θs(ai)
(0.05). Figure 3.5.1 shows these regions and the

variation in their shape as the range of σ changes at different values of a. As the

interval for a is longer below x there will be larger contours at lower µ values than

there will be at higher µ values. This can clearly be seen in Figure 3.5.1. This is

because, as the prior value that we specify for the mean moves further away from

the sample mean, the values for µ in the posterior will be lower. Therefore σ has to

increase for the sample to be able to come from a distribution with such a low value

for µ. The larger σ values will contribute mostly to the lower tail of the maximum

(left) bound, but also slightly to the upper tail of the minimum (right) bound of

the robust Normal Bayesian p-box. If the interval had been longer above x, then

the larger contours that we see at lower µ values would have instead been at higher

µ values. These larger σ values would mostly contribute to the upper tail of the

minimum (right) bound but also slightly to the lower tail of the maximum (left)

bound of the robust Normal Bayesian p-box.
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We also look at a larger sample (n = 50) from a Normal distribution with mean

100 and standard deviation 15. The sample statistics are x = 96.48 and s = 13.54

and we take the interval a ∈ [66, 116]. Figure 3.5.2 shows the regions Θs(ai)
(0.05) for

this data set where the interval a is again split by taking 20 equally spaced values

including the endpoints.

Figure 3.5: Examples of Θs(ai)
(0.05) for both data sets
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3.5.1 Example of Θs(ai)
(0.05) for n = 3, x =

96.83 and s = 8.58
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3.5.2 Example of Θs(ai)
(0.05) for n = 50,

x = 96.48 and s = 13.54

To approximate the robust Normal Bayesian p-box for both data sets, we can

take many values of a (20 equally spaced values including the endpoints in this

example), maximise and minimise over the 100(1 − α)% contours by taking 100

(µ, σ) pairs from the boundary of each contour, and plot the envelope of all these

distributions. Figure 3.6.1 shows the 95% robust Normal Bayesian p-box and the

95% Normal Bayesian p-box, using a non-informative prior, p(µ, σ) = 1
σ
, for the

n = 3 example. Figure 3.6.2 shows the 95% robust Normal Bayesian p-box and the

95% Normal Bayesian p-box for the n = 50 example.
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Figure 3.6: Robust Normal Bayesian p-boxes
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3.6.1 Robust 95% Normal Bayesian p-box
for n = 3, x = 96.83 and s = 8.58 (blue)
with 95% Normal Bayesian p-box (red) and
modal distribution (dashed)
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3.6.2 Robust 95% Normal Bayesian p-box
for n = 50, x = 96.48 and s = 13.54 (blue)
with 95% Normal Bayesian p-box (red) and
modal distribution (dashed)

We can see here that the larger data set leads to more certainty about the

parameters and therefore a narrower p-box. It is helpful that the graphical display

of any type of p-box allows an intuitive assessment of the uncertainty based on

the width of the bounds. In Figures 3.7.1 and 3.7.2, we show the contour for each

data set using the same non-informative prior as we used previously, p(µ, σ) = 1
σ
,

alongside the contours for the robust 95% Normal Bayesian p-boxes.

Figure 3.7: Θs(ai)
(0.05) for the robust cases and using a non-informative prior
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3.7.1 For n = 3, x = 96.83 and s = 8.58, ro-
bust case (black) and non-informative case
(red)
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3.7.2 For n = 50, x = 96.48 and s = 13.54,
robust case (black) and non-informative
case (red)
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These regions show that the 95% Bayesian p-box should be contained within

both robust 95% Normal Bayesian p-boxes. We can see this is true in Figures 3.6.1

and 3.6.2. Also, Figure 3.6.1 shows that for the n = 3 case, the larger contours at

lower µ values lead to the extra width at the bottom of the maximum (left) bound

and the top of the minimum (right) bound of the robust 95% Normal Bayesian p-

box. The narrower range of σ values for larger n leads to the narrower limits on the

robust 95% Normal Bayesian p-box in Figure 3.6.2.

3.5.3 Robustness to the prior distribution for µ and σ

To study robustness with respect to the prior distribution for µ and σ together, we

choose a set of prior distributions for both parameters. We will call the result the

‘robust (µ, σ) Normal Bayesian p-box’. Consider an interval on σ and a class of

Normal prior distributions on µ given values of σ. So the joint prior distribution is

as follows: {
p(µ, σ) ∼ N

(
a,

σ2
x

n

)
: a ∈ {µl, µu}, σx ∈ {σl, σu}

}
(3.10)

where µl, µu, σl and σu are the chosen prior limits for µ and σ respectively. Calcu-

lating the posterior distribution, and repeating the steps as in Box and Tiao (1973)

and Subsection 2.7.2 for this new posterior distribution, leads to density contour:

−ln(σx)− nln(σ)− n

2σ2
x

(µ− a)2 − 1

2σ2

(
(n− 1)s2 + n (x− µ)2) = d

To find Θs(α), integrate over the posterior distribution to find the region enclos-

ing 100(1 − α)% probability. Values for µl, µu, σl and σu must be chosen by an

expert based on available evidence.

For the numerical integration it is necessary to calculate the normalising constant

k. Unfortunately this can only be derived numerically so the following results are

again approximations. The lack of an exact normalising constant causes problems

with numerical integration so the standard Matlab function, contour, is used to

obtain numerical approximations to the contours. Contour allows the user to specify

a grid of values for two random quantities (here µ and σ) and plot corresponding
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contours at different heights (here at different heights of the posterior distribution).

3.5.4 Example: A robust (µ, σ) Normal Bayesian p-box

We consider a data set of size 10 (n = 10), randomly sampled from a Normal

distribution with mean 100 and standard deviation 15. The sample statistics are

x = 98.40 and s = 9.51. Now consider the intervals from µl = 94 to µu = 102, and

from σl = 8 to σu = 11. We need to find all the contours for each prior combination

of µ and σ.

An example is shown in Figure 3.8.1, where the prior interval σx is split into four

equal parts and the prior interval a is split into three equal parts, both including

the endpoints, so the contours can be seen more clearly. We denote the different

combinations of σx and a by ri, i = 1, ..., 12, as there are 12 combinations of a and

σx. Figure 3.8.2 shows the resulting Θs(ri)
(0.05) where the prior interval for σ is

split into five equal parts and the prior interval for µ is split into ten equal parts

(For this case, i = 1, ..., 50).

Figure 3.8: Examples of Θs(ri)
(0.05) for n=10, x = 98.40 and s = 9.51
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3.8.1 µl = 94, µu = 102, σl = 8, σu = 11
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3.8.2 µl = 94, µu = 102, σl = 8, σu = 11
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We see that the range for σ is wider for the contours where a is close to the

mean of the data than for the contours where a moves away from the mean. For

larger values of a the range for σ will increase again. To see this, consider the 95%

highest posterior regions for σx = 8, with a = 98.5, 99.5, 100.5, 101.5 and 104, shown

in Figure 3.9.

Figure 3.9: 95% hpd regions for σx = 8 and a = 98.5 (blue), 99.5 (green), 100.5
(red), 101.5 (yellow) and 104 (black)
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Figure 3.9 shows that the lowest contour (where a = 98.5) has the second largest

range of σ values. This is because there is agreement between the prior value for

µ (i.e. a) and the data mean (x) which leads to the posterior values for µ being

close to the mean value of the data. Therefore there is low probability at higher and

lower values of µ as both the likelihood function and the prior distribution suggest

that µ should be around the mean. For the other contours the value of a leads to a

conflict between the prior value of µ and the mean of the data. The conflict leads

to more µ values having higher posterior probabilities and therefore being included

in the hpd region. This leads to a posterior distribution that is not symmetrical

about the mean. As a increases, the hpd region becomes less and less symmetrical

about the mean, leading to narrower ranges of σ. However, eventually the range of

σ starts to increase again. Figure 3.9 shows the highest contour (where a = 104)

has the largest range of σ values. This is because the mean of the data and the

prior value a assigned for µ are far apart and therefore the posterior distribution
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is a flatter distribution with a large variance to compensate for this difference. For

example, with the prior value of a = 104 for µ, the data could only have come from

the distribution with µ = a if σ is large.

Figure 3.10 shows the robust 95% (µ, σ) Normal Bayesian p-box resulting from

the regions shown in Figure 3.8.2.

Figure 3.10: Robust 95% (µ, σ) Normal Bayesian p-box for n = 10, x = 98.40 and
s = 9.51 (blue), 95% Normal Bayesian p-box (red) and the modal distribution for
the non robust case (grey dashed)
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The robust (µ, σ) Normal Bayesian p-box is contained within the Normal Bayesian

p-box produced with a non-informative prior distribution, (p(µ, σ) = 1
σ
). The

non-informative prior distribution allows a large range of different µ and σ val-

ues, whereas the set of prior distributions used for robustness leads to the exclusion

of some values and thus the range of µ and σ values in Θs(0.05) is narrower. There-

fore the distributions that are included in the robust Normal Bayesian p-box have

a narrower range than those found using a non-informative prior distribution. This

robust Normal Bayesian p-box is approximated because the integration constant

must be evaluated numerically.

3.5.5 Imprecise data

There are many practical situations where interval data may arise, some exam-

ples are given by Ferson et al. (2007). These include cases where engineers and
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other scientists report the uncertainty associated with calibration of their measur-

ing equipment with an interval, gross ignorance where we have no data about a

random quantity so we assign theoretical limits, and when numbers are rounded to

significant digits. Here we consider the case where data have been provided with an

indication of the measurement uncertainty surrounding the values.

Suppose that a data set, x1, x2, ..., xn, has a particular measurement uncertainty

stated, {−ε, +δ}, for ε, δ > 0. This means that the actual value corresponding to a

reported measurement xi is only known to be in the interval [xi − ε, xi + δ] and all

values have the same measurement error. To find the ‘lowest’ Normal distribution

(i.e. shifted furthest to the left) that could describe the data, we can take all the

values xi − ε, and to find the highest Normal distribution that could describe the

data we would take all the values xi + δ. This follows Manski (2003), where it is

stated that if y is observed to lie in [y−, y+], then the distribution P (y+) is a feasible

value of P (y) and stochastically dominates all other feasible values of P (y). This

means that the cdf of P (y+) is less than or equal to the cdf of P (y) at any value

y. This is the case as P (y+) has the same shape as P (y) but it is moved further to

the right. Similarly the distribution P (y−) is stochastically dominated by all other

feasible values of P (y), as the cdf of P (y) is less than or equal to the cdf of P (y−)

because the cdf of P (y−) is the cdf of P (y) shifted to the left.

3.5.6 Example: Normal Bayesian p-boxes for imprecise data

A random sample of size n = 40 is taken from a Normal distribution with mean

100 and standard deviation 15. The sample statistics are x = 102.31 and s = 13.90.

Consider very substantial data imprecision specified by δ = ε = 10. The procedure

presented in Subsection 3.3.1 can be used to form a contour using numerical inte-

gration for each extreme case of values (i.e. taking all values xi − ε or xi + δ) and

the original data set. These are presented in Figure 3.11.1. We adjust the values

by either adding δ to all the values or subtracting ε from all the values so that

the sample standard deviation, s, remains the same. Therefore the contours are all

the same shape and only the location of the data set is adjusted by ε or δ. So it

is only necessary to calculate the contour for the original data set and maximise
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and minimise over this contour to find lower and upper bounds. Then translate the

lower bound by −ε and the upper bound by δ along the x-axis to form the Normal

Bayesian p-box including known measurement uncertainty. The resulting Normal

Bayesian p-box is shown in Figure 3.11.2 alongside the Normal Bayesian p-box that

would have been obtained if data imprecision was ignored.

Figure 3.11: Examples for imprecise data
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3.11.1 Θs(0.05) regions for δ = 10 (dashed
blue), ε = 10 (blue) and δ = ε = 0 (red)
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3.11.2 95% Normal Bayesian p-box includ-
ing measurement uncertainty (blue) with
95% Normal Bayesian p-box without mea-
surement uncertainty (red)

The interval uncertainty may be caused by, for example, known measurement

(in)accuracy or rounding of data. If this information is available or can be assessed,

then it is easy to incorporate in the analysis. For more complicated cases of data

imprecision, for example where the measurement uncertainty is not known exactly,

a different approach may be required.

The methods in Subsections 3.5.1 or 3.5.3 could be combined in an analysis with

the methods in this section to include both robustness and measurement uncertainty.

3.6 Comparison of different methods

This section compares a parametric Normal frequentist p-box, KS confidence lim-

its, the pointwise Bayesian approach, the Bayesian posterior predictive distribution

(all explained in Chapter 2), and the Normal Bayesian p-box approach. Here we

construct the frequentist parametric p-box for the Normal distribution using 95%
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frequentist confidence intervals for µ and σ (Aughenbaugh and Paredis, 2006).

3.6.1 Example: Comparing methods for small n

For small n, consider a typical data set for avian risk assessment for pesticides. In

the European Council Directive 91/414/EEC, it is stated that the acute oral toxicity

of an active substance must be determined for either a quail species or the mallard

duck. There are typically two species available and the same two are generally

used. Suppose that for a certain pesticide, toxicity tests were conducted on these

species resulting in median lethal doses (LD50 in mg/kg bw) of 400 (quail) and

2000 (mallard). It is assumed that these two data points come from a Lognormal

distribution. The bounds from each method at the 5th percentile are shown in Table

3.4. Figures 3.12.1 and 3.12.2 present the results of the different methods with 95%

confidence or credibility levels. In Figure 3.12.2, the modal distribution is omitted so

that the median can be clearly seen. The Bayesian posterior predictive distribution

gives a 5th percentile of 1.971 mg/kg bw on the log10 scale. In the current legislation

for birds, European Commission (2002b), the toxicity-exposure ratio (TER) is found

by taking the lowest data point and dividing by an exposure value. This is then

compared with a threshold level of 10. So when the TER > 10, the chemical is

considered safe. Rearranging the equation shows us that the chemical is considered

to be safe if exposure is less than 40 mg/kg bw. On the log10 scale this equates to

1.6 mg/kg bw. This suggests that the current approach is not conservative when

compared to the results for the probabilistic methods shown in Table 3.4, because it

is not below their lower limits. However it is more conservative than the posterior

predictive distribution on the log10 scale (1.971 mg/kg bw). However the approaches

shown in Table 3.4 all envelope the current method which indicates that a safe level

could be much lower than implied by the current approach.
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Table 3.4: Comparison of bounds on 5th percentile in log10 (mg/kg bw)

Lower Upper
95% parametric Normal frequentist p-box -27.43 7.03
95% Normal Bayesian p-box approach -14.99 3.95
95% KS confidence limits - ∞ 3.3010
95% pointwise Bayesian approach -23.03 2.82

Figure 3.12: Examples for a small sample size
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3.12.1 95% parametric Normal frequen-
tist p-box (red), 95% Normal Bayesian
p-box (blue), modal disribution (black
dashed), Bayesian posterior predictive
distribution (red dotted)
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3.12.2 95% Normal Bayesian p-box
(blue), 95% KS confidence limits
(black dashed), 95% pointwise Bayesian
method (green), median distribution
(green dotted) and data (black dots)

The values in Table 3.4 appear to be similar because they are given on a log10

scale, but there are actually large differences between the methods. The Normal

frequentist p-box method gives wider bounds than the other methods at high and

low percentiles. This may be due to the fact that the subspace of Θ in the Normal

frequentist p-box method is a rectangle between the smallest and largest µ and σ

pairs, whereas in the Normal Bayesian p-box method it is a strictly convex set,

here oval-shaped, where the dependence of µ and σ is taken into account. This

indicates that ignoring the dependence between parameters leads to wider bounds

at the higher and lower percentiles than when dependence is taken into account. If

narrower confidence intervals for µ and σ had been chosen, so the rectangular sub-

space of Θ was enclosed in the Bayesian oval, the Normal frequentist p-box would

fall within the Normal Bayesian p-box. At the 50th percentile, it is clear that the

Normal frequentist p-box is narrower than the other methods because of the way

it is constructed, ignoring dependence between µ and σ. If the frequentist Normal
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p-box was constructed using, for example, a joint confidence region for µ and σ, as

described in Burmaster and Thompson (1998), it may provide bounds closer to the

Bayesian p-box bounds as the joint confidence region is designed to take dependen-

cies between µ and σ into account. However both confidence regions described in

Burmaster and Thompson (1998) use approximations. One uses a χ2 approximation

which may not be appropriate for small n, the other uses a Taylor series approxi-

mation and it is not clear what effect these approximations will have on the output.

The KS confidence limits are based on no assumptions about distribution shape and

are very wide to include the large sampling uncertainty due to the small sample size.

The lower limit is −∞, although there may be practical reasons to bound this at a

particular value.

The lower and upper bounds according to the Bayesian pointwise method are

lower, at the 5th percentile, than those based on the Normal Bayesian p-box. This

is because in the former method the uncertainty is estimated about the percentile,

irrespective of the rest of the distribution, and a scaled non-central t-distribution

is used to calculate the bounds. The Normal Bayesian p-box takes the whole dis-

tribution into account when finding the bounds as it takes the (µ, σ) pairs from

the 100(1 − α)% hpd region, whereas the pointwise method finds the α
2

and (1−α)
2

-

percentiles of the scaled non-central t-distribution at each percentile.

The 5th percentile of the Bayesian posterior predictive distribution is a predic-

tion for a random individual and produces a single line rather than upper and lower

bounds. The Bayesian posterior predictive distribution would be appropriate when

a random species is of interest, or it can be used for checking the underlying as-

sumptions of the model (Lee, 2004). This can be done by simulating samples from

the Bayesian posterior predictive distribution and comparing these samples with the

observed data set. If there are large differences between them this may indicate that

the chosen model is not appropriate (Gelman et al., 1995).

Clearly which method should be used depends on whether the specific percentile

or the whole distribution is of interest. In practice, it will often be useful to present

methods together to get a better picture of the uncertainty and variability involved.
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However, the results and the differences between the methods would need to be

clearly communicated to risk managers to avoid confusion.

3.6.2 Example: Comparing methods for larger n

We consider a larger data set (n = 50) sampled from a Normal distribution with

mean 200 and standard deviation 20. The sample statistics are x = 194.71 and

s = 18.75. For this n, an approximate Normal Bayesian p-box may be formed by

finding Θs(α) using a χ2 approximation, and maximising and minimising over this.

The results from all the methods (assuming α = 0.05) are shown in Figures 3.13.1

and 3.13.2.

Figure 3.13: Examples for n = 50
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3.13.1 95% Normal frequentist p-box
(red), 95% approximate (χ2) Normal
Bayesian p-box (blue dashed), Bayesian
posterior predictive distribution (dotted
red) and data (black dots)
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3.13.2 95% Normal Bayesian p-box
(blue), 95% KS confidence limits
(black dashed), 95% Bayesian pointwise
method (green dashed), median distri-
bution (green dotted) and data (black
dots)

The Normal frequentist p-box is slightly wider than the Bayesian methods at

lower and higher percentiles and narrower at the median, although there is not a large

difference. The χ2 approximation results are close to the Normal Bayesian p-box. As

n increases to infinity the bounds will converge to the true distribution (assuming

the true distribution was Normal). The Bayesian pointwise method bounds are

now enclosed within the Normal Bayesian p-box. These narrower pointwise bounds

are due to the shape of the scaled non-central t-distribution with n − 1 degrees

of freedom. This becomes more peaked and less skewed as n increases and so the

percentiles enclosing 95% become narrower. KS confidence limits are particularly
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useful when there is no reason to assume any specific distribution, as they provide

limits on the empirical distribution function. The Bayesian posterior predictive

distribution indicates a prediction for a random individual and is contained within

all the other p-boxes shown here. To illustrate the uncertainties involved it is again

useful to represent the results from several methods. If a decision is to be made

about a population, then methods that form bounds on variability should be used.

If a decision is about a random individual from a population then predictive methods

should be implemented.

The computation of frequentist parametric p-boxes is not affected by large n, as

it only requires intervals for the input parameters. A large n does not cause prob-

lems with computation of KS confidence limits because it is a simple calculation

based on n and α. The Bayesian posterior predictive distribution is not affected by

large n as it uses the sufficient sample statistics. The Bayesian pointwise method

becomes slower as n increases and as the number of percentiles evaluated increases.

However, even for n = 1000, finding the bounds on 1000 percentiles using the point-

wise Bayesian method only takes around 45 seconds on a computer with a 1.6Ghz

Intel Pentium processor with 1 Gb of RAM. For large samples (say n > 300) the

time taken to calculate the Normal Bayesian p-box using numerical integration can

become prohibitive and the normalising constant becomes large, which complicates

the calculations. In such cases, Θs(α) can be easily formed using a χ2 approxi-

mation, as shown by Box and Tiao (1973), and this can then be used to form an

approximate Normal Bayesian p-box.

3.7 Dependence

The use of Bayesian p-boxes for more complex models with multiple random quan-

tities is not straightforward. In principle the Bayesian p-box could be used for any

random quantity or model, but practically it may be difficult to implement. To cal-

culate Bayesian p-boxes for a more complex model, for example the simple Exposure

Model (Section 2.2), requires the calculation of a multi-dimensional posterior distri-

bution and derivation of the corresponding Θs(α). If the posterior distribution has
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more than three dimensions, we would need to find a mode and integrate outwards

equally in all directions to find the 100(1− α)% hpd space.

A useful tool in probability bounds analysis is the possible combination of differ-

ent p-boxes using Fréchet bounds, which are computed using a method by Williamson

and Downs (1990). This method enables the analyst to combine bounds, such as

the pointwise bounds, Bayesian p-boxes, frequentist parametric p-boxes and KS

confidence limits when nothing is assumed about dependence between the random

quantities. As sometimes little is known about the dependence between random

quantities, it is useful to visualise these bounds and compare them to the bounds

produced under the assumption of independence, which is often used by default. In

many risk assessments the assumption of independence is used, for example by Fan

et al. (2005), Chow et al. (2005) and Havelaar et al. (2000), because of a lack of

methods that can deal with unknown dependence. In the following example we il-

lustrate the Williamson and Downs method by combining Bayesian p-boxes without

making any assumption about dependence. This method may be a way forward for

applying Bayesian p-boxes in more complicated models. However, this will provide

no information on the modal distribution and only provides a range of values for the

probability contained within the final Bayesian p-box, as explained and illustrated

in the example below.

3.7.1 Example: Combining random quantities

This example compares the Bayesian p-box formed for the Exposure Model assuming

independence between the random quantities, with the Bayesian p-box formed using

the Williamson and Downs method (1990). We consider the exposure of young

children between 1.5 and 4 years old to benzene in soft drinks with simulated data

sets. We take a sample of size 100 from a Normal distribution with mean 20 kg

and standard deviation 2 kg for their bodyweight and with mean 1 kg/day and

standard deviation 0.2 kg/day for their intake. A sample of size 100 is taken from

a Lognormal distribution with mean 4.48 µg/kg and standard deviation 5.87 µg/kg

for concentration. The sufficient sample statistics for bodyweight are: x = 20.16 kg,

s = 2.01 kg; intake: x = 0.49 kg/day, s = 0.10 kg/day; and Log10(concentration):
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x = 0.42 µg/kg, s = 0.40 µg/kg.

The methods described previously are used to calculate the Normal Bayesian p-

boxes for each random quantity. Here we calculate 98.3% Normal Bayesian p-boxes

so that when we assume independence the final probability within the Bayesian

p-box will be 0.9833 ≈ 0.95. Then these Bayesian p-boxes are combined both by

assuming independence (which we call the BI p-box) and by using Fréchet bounds

in the method by Williamson and Downs (which we call the BF p-box). The results

are shown in Figures 3.14.1 and 3.14.2. Figure 3.14.2 is on a log10 scale to show the

differences between the methods more clearly.

Figure 3.14: 95% BI p-box (red) and between 94.91 and 98.3% BF p-box (blue)
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3.14.1 Linear Scale
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3.14.2 Log10 Scale

The probability within the BF p-box is between 94.91% and 98.3%. These

values are calculated using Fréchet bounds on the probability. The lower and upper

bounds for P (A1 & A2 & A3) (where & indicates the conjunction of events) are [max

(0, a1 + a2 + a3− 2), min(a1, a2, a3)] for three events as explained in Subsection

2.11.2, where a1, a2, a3 are the probabilities for the events. In this example the

probabilities are the credible levels of the random quantities (e.g. 0.95 for 95%).

The 10th, 50th and 90th upper and lower percentiles for both Bayesian p-boxes are

given in Table 3.5.
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Table 3.5: Upper and lower percentiles for both Bayesian p-boxes (on the linear
scale)

50th 90th 99th
Output Percentile Percentile Percentile

Lower Upper Lower Upper Lower Upper
95% BI p-box 0.0861 0.1874 0.2812 0.7282 0.6623 2.5334

94.91% - 98.3% BF p-box 0.0380 0.3872 0.1050 1.6470 0.1651 6.4228

It is clear that assuming independence makes a large difference to the results,

although part of the difference is due to the BF p-box potentially enclosing more

probability. The bounds for the BF p-box will always be at least as wide as those

for the BI p-box, because independence is one of the dependencies that is included

in the BF p-box. Decision makers and risk managers may find it useful to consider

both these Bayesian p-boxes so they can see the effect of assuming independence

on the inferences. Unfortunately, a modal distribution cannot be found easily when

the Bayesian p-boxes have been combined using the Williamson and Downs method.

To find the modal distribution, the multi-dimensional posterior probability density

function would have to be calculated. The parameter values which combine to

provide the highest posterior probability density value would be the mode and the

modal distribution would then be the distribution formed with these parameter

values.

3.8 Conclusion

There is no best method for the kind of risk assessment discussed in this chapter, it

clearly depends on the specific problem considered by the analyst. If a risk manager

is interested in the population as a whole, and thus in the entire distribution, it

is useful to consider the Bayesian p-box as introduced in this chapter. Nested

Bayesian p-boxes can give an analyst or risk manager a clear indication of the

changes at different credibility levels. However, if the interest is only in a single

percentile, e.g. the 90th percentile exposure, then the pointwise Bayesian method is

more appropriate than the Bayesian p-box. This is because the Bayesian pointwise

method finds bounds on the uncertainty about percentiles themselves, whereas the
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Bayesian p-box takes the parameter values from the 100(1 − α)% hpd region and

then produces bounds based on the distributions with these parameters.

There are many uncertainties that need to be accounted for in risk analyses

including choice of distribution, parameter uncertainty and assumptions on depen-

dence between random quantities. Bayesian p-boxes can deal with the uncertainty

of distribution shape by forming separate p-boxes for each possible input distribu-

tion. The envelope of all the Bayesian p-boxes can then be taken. The Normal

Bayesian p-box includes parameter dependence and parameter uncertainty in the

bounds. Robustness can, in principle, be included, but computations may be cum-

bersome for many distributions. Also the modal distribution can be displayed, as

illustrated in examples in this chapter. To account for uncertainty about the depen-

dence between random quantities, the Williamson and Downs method, as mentioned

in Section 3.7, can be used on any type of p-box to compare the effect of dependence

assumptions. The Bayesian p-box method is versatile in that it can use any strictly

convex bounded region of the posterior parameter space to form a Bayesian p-box,

using the procedures described in this chapter. A disadvantage of Bayesian methods

is that a distributional assumption has to be made.

The KS confidence limits bound the empirical distribution function and make no

assumption about distribution shape. Using these limits or other nonparametric p-

boxes (Subsection 2.10.1) would be useful in situations where an analyst prefers not

to assume a particular distribution. However for small sample sizes these usually lead

to wide bounds. The Normal frequentist p-box neglects parameter dependence, and

therefore it does not seem reasonable to use these bounds except when alternatives

cannot be used because no data are available. A disadvantage of both the Normal

frequentist p-box and the KS confidence limits is that they give no indication of how

likely any of the distributions within the bounds are.

The Bayesian p-boxes introduced in this chapter provide a means of character-

ising variability and uncertainty in risk assessment, while avoiding simplistic and

often invalid assumptions of independence between parameters. Bayesian p-boxes

can contribute to addressing the need for information about the degree of variabil-

ity and uncertainty in risk estimates (Codex, 2007; Madelin, 2004). This allows risk
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managers to take account of the range of possible outcomes in decision-making. In

particular, this is useful for support of risk managers in judging when the degree

of uncertainty is sufficient to justify precautionary action (European Commission,

2000).



Chapter 4

Nonparametric predictive

assessment of exposure risk

4.1 Introduction

Nonparametric Predictive Inference (NPI) is a method that provides lower and up-

per probabilities for the predicted value(s) of one or more future observation(s) of

random quantities. NPI is introduced with references to applications of NPI in

Section 2.9. In this chapter we present NPI lower and upper cdfs for the simple

Exposure Model that was introduced in Section 2.2. This is the first use of NPI for

this type of risk assessment. Currently many of the methods used in exposure risk

assessment use parametric probability distributions. Here we consider the applica-

tion of NPI to assess the exposure of a random individual to a chemical without

making any distributional assumptions.

In Section 4.2 we explain how to calculate NPI lower and upper cdfs for random

quantities and briefly consider NPI for censored data sets. We explore calculating

exposure values for a random individual using the simple Exposure Model for a case

study in Section 4.3. Section 4.4 explores how strongly and weakly correlated data

affect the NPI lower and upper cdfs by using simulations. We discuss difficulties in

computation in Section 4.5 and the effect of different sample sizes in Section 4.6.

76



4.2. Nonparametric Predictive Inference 77

We show how to include known measurement uncertainty in an analysis in Section

4.7. Section 4.8 compares NPI with the Bayesian posterior predictive distribution

and in Section 4.9 we propose an ad hoc method for robust NPI.

4.2 Nonparametric Predictive Inference

As discussed in Section 2.9, NPI is based on the assumption, A(n), proposed by Hill

(1968) for making predictions when there is very vague a priori knowledge about the

form of the underlying distribution of a random quantity. The NPI framework is

particularly useful because it provides a probability that the predicted value of the

next observation of a random quantity will fall in various intervals. NPI also has

the advantage that it does not require any further assumptions to be added. NPI

includes uncertainty by using interval probability and does not use any information

other than that provided by the data. Therefore it gives the best possible bounds

without making any assumptions other than A(n) for each random quantity.

In risk assessments for food safety, risk managers could be interested in the

distribution for a random individual’s exposure to a chemical or the exposure dis-

tribution of a population to a chemical. As introduced in Section 2.2, a simple way

to calculate exposure is by the Exposure Model:

Exposure =
Intake × Concentration

Bodyweight

NPI provides predictive probabilities for an individual. Although we do not

consider it further in this thesis, NPI could be used if individuals would like to

predict their own exposure. This can be done by taking their own intakes of a

food type, their own bodyweight and a data set of concentrations for a particular

chemical in the food type. The NPI lower and upper probabilities based on their own

data can then be formed following the procedure presented in Subsection 4.2.2. The

probability in the intervals between the calculated exposure values for one person

will then be [(nc+1)(ni+1)(nbw+1)]−1, where nc is the size of the concentration data

set, ni is the size of the intake data set and nbw is the size of the bodyweight data

set (which is 1), assuming there are no ties in any of the data sets and no ties in the
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exposure values that are calculated. Combining these lower and upper probabilities

leads to NPI lower and upper cdfs for the individual’s exposure. This could easily be

extended to take concentrations of a chemical in multiple food types into account.

Next we look at an example of calculating NPI for one random quantity and then

an example for calculating NPI lower and upper cdfs for Exposure.

4.2.1 Example: NPI for a single random quantity

To calculate the tightest lower and upper bounds on the cumulative distribution

function (cdf) of a random quantity corresponding to the assumption A(n), we form

lower and upper cdfs (F and F respectively) for the probability that the next value

will fall in the intervals formed by the observed values. As a brief example, suppose

we have an ordered data set {2, 2, 4, 5, 6} for positive random quantities Xi, i = 1, ..5.

Following A(5), the lower and upper cdfs can be calculated as explained in Subsection

2.9.2 where the set B is (−∞, x]. where x ∈ (0,∞). The M function for X6 is:

MX6(0, 2) = 1/6 MX6(4, 5) = 1/6
MX6 (2) = 1/6 MX6(5, 6) = 1/6
MX6(2, 4) = 1/6 MX6(6,∞) = 1/6

The lower and upper cdfs for X6 can be plotted as shown in Figure 4.1. The

final value of the lower cdf for X6, FX6
(x), is 5

6
, for x > x5.

Figure 4.1: NPI lower and upper cdfs
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As n tends to ∞, the NPI lower and upper cdfs converge to the empirical distri-

bution function of the data. The cdf of the empirical distribution function, Fe, will

always lie in [FXn+1
(x), FXn+1(x)] for all x, where n is the number of observations.

4.2.2 Example: NPI for the Exposure Model

Now we look at calculating NPI lower and upper cdfs for the Exposure Model that

was described in Section 2.2. Assume we have ordered observations x1, x2, for the

random quantities X1 and X2 respectively. Then nx = 2 is the total number of

observations and we have intervals (0, x1), (x1, x2), (x2,∞). Assuming A(2), the

probability that the next observation falls in any of these intervals is 1
nx+1

= 1
3
.

Assume we also have ordered observations y1, y2, y3 for random quantities Y1, Y2,

and Y3 respectively and ny = 3 is the total number of observations. This leads to

intervals (0, y1), (y1, y2), (y2, y3), (y3,∞) and assuming A(3), the probability that the

next observation falls in any of these intervals is 1
ny+1

= 1
4
. Taking the product

of the intervals for the random quantities X3 and Y4, leads to 12 intervals each

with probability 1
12

, assuming there are no ties, for the random quantity that we

call XYnew. We combine the intervals by multiplying the minimum values of each

interval for X3 with the minimum values of each interval for Y4 and the maximum

values of each interval for X3 with the maximum values of each interval for Y4. For

example to multiply (x1, x2) with (y1, y2), we multiply x1 with y1 and x2 with y2

to form the interval (x1y1, x2y2). Notice that this is the widest the interval can be,

as combining the other endpoints, e.g. y2 with x1 will always produce values that

fall in this interval due to their ordering. Now assume we have ordered observations

z1, z2 for random quantities Z1 and Z2 respectively. Assuming A(2), the probability

that the next observation falls in any of the intervals (0, z1), (z1, z2), (z2,∞) is 1
3
.

Combining the random quantities X3, Y4 and Z3 in the Exposure Model leads to

36 intervals each with probability 1
36

assuming there are no ties. The M function

for the predicted value of the next observation, XY
Z new

, is shown below, where expj

represents the jth ordered value that forms the intervals for XY
Z new

, and j = 1, ..., 34.
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MXY
Z new

(0, exp1) = 1/36

MXY
Z new

(expj, expj+1) = 1/36

MXY
Z new

(exp35, ∞) = 1/36

The NPI lower and upper cdfs are formed as explained in Subsection 2.9.2.

4.2.3 NPI for left-censored data

The distribution of probability mass for a data set with left-censored values (ex-

plained in Section 2.4) can also be represented using M functions. It is often the

case with concentration data that there is a limit of detection (LOD) below which

concentration of chemicals cannot be measured. This leads to left-censored data

where some values are reported as < LOD. The censoring will be between 0 and the

LOD because concentration cannot be negative.

Example: NPI lower and upper cdfs for left-censored data

Assume that the LOD is 1 and we have an ordered data set {x1, x2, x3, x4} for

concentration and x1 is a censored value that is between 0 and 1. The uncertainty

about the value of x1 can be represented by overlapping intervals in the M function,

which takes into account that the censored value may be 0, or any value between

0 and 1. So the partial description of probability mass for a new observation X5,

based on A(4), can be represented as below:

MX5(0 , 1) = 1/5 MX5(x3, x4) = 1/5
MX5(0, x2) = 1/5 MX5(x4, ∞) = 1/5
MX5(x2, x3) = 1/5

The NPI lower and upper cdfs calculated from this M function will describe the

tightest possible bounds given the information we have available and A(4). Figure

4.2 shows the NPI lower and upper cdfs for this example.
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Figure 4.2: NPI lower and upper cdfs for X5

0 2 4 6
0

0.2

0.4

0.6

0.8

1

X

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

 

 

NPI upper cdf
NPI lower cdf

There is a problem that if, for example, the censored value happened to be 0.2,

then the intervals (0, 0.2) and (0.2, x2) should each have probability mass 1
5

rather

than the probability masses assigned to the intervals in the previous M function.

However, without knowing anything more than the censored value is less than 1,

the tightest bounds given A(4) and the censoring are represented by the M function

given previously. The bounds will enclose the possible lower and upper cdfs that

would correspond to all possible values of x1.

We are interested in the exposure of individuals to a particular chemical. Al-

though it is informative to see how much uncertainty in the exposure is caused by

the censored concentration values, often the risk associated with exposure is based

on upper tail exposures. This is because higher exposures to chemicals are generally

more harmful than low exposures. Since the left-censored concentration values only

contribute to the lower tail of the exposure distribution, they are generally consid-

ered to be less important in risk assessments. However if the LOD is large, or the

safe exposure level is very low, the censoring may contribute substantially making

it useful to be able to form such lower and upper cdfs for a random individual.
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4.3 Case Study: Benzene Exposure

In this section we show how to calculate NPI lower and upper cdfs for the Exposure

Model where we have data for the exposure of young children to benzene in soft

drinks. We have data for each of the three non-negative random quantities, concen-

tration, intake and bodyweight. A description of the data sets that we will use for

the analysis is given in Subsection 4.3.1. We calculate the NPI lower and upper cdfs

for exposure for a random individual, for two different cases and then we compare

them. First we consider the case where we calculate NPI lower and upper cdfs for

exposure for a random individual, for the three random quantities separately. Then,

for the second case, we combine each individual’s bodyweight with their average

intake and treat this as one random quantity which we call IR. We then calculate

the NPI lower and upper cdfs for exposure for a random individual, using the two

random quantities, concentration and IR.

4.3.1 The data

Concentration data for benzene in soft drinks were obtained from the Food Stan-

dards Agency Survey from March 20061. Out of 150 samples, 109 were below the

Limit Of Detection (LOD) of 1 µg/kg. Assuming A(150), the probability of the next

observation of benzene concentration falling in the interval (0, 1) is 122
151

. Usually the

probability of X151 falling in the interval (0, 1) would be 109
151

but here the lowest

measured datum that is not censored is equal to the LOD. Therefore there is a

probability of 110
151

that X151 falls in the interval (0, 1). The concentration data is

given in Table 4.1.

1http://www.food.gov.uk/science/surveillance/fsisbranch2006/fsis0606
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Table 4.1: Concentration data

Data value Frequency Data value Frequency
< 1 109 7 4
1 13 8 1
2 13 9 1
3 3 10 1
4 3 23 1
5 1

Intake and bodyweight data were obtained from the UK Data Archive Study No.

3481. National Diet, Nutrition and Dental Survey of Children Aged 1.5 - 4.5 years

(1992 - 1993)2. It is a 4 day survey of 1717 children giving information about their

weight, food and drink intake and other covariates such as age, height, region and

social class. Only individuals with no missing values (i.e. individuals with intake

values for every day of the survey and a recorded bodyweight) were used in the

analysis. We excluded 23 individuals, whose bodyweights were not recorded, leaving

us with data for 1694 individuals. Omitting these individuals from the analysis may

lead to bias, particularly if they all had large or small bodyweights. Also, if they

were heavy consumers of soft drinks then their exposure may be higher than the

exposure of the general population. However their average intakes of drink were

between 0.025 kg/day and 0.418 kg/day compared with the minimum of 0 kg/day

and maximum of 1.239 kg/day for all the other individuals, so it is unlikely that

they would lead to higher exposures than individuals that are included unless they

have very small bodyweights.

As an illustration of the use of NPI in risk assessment we include non-consumers

in the analysis and consider the average intake over the 4 days of the survey. We can

only make inferences about the random quantities that we have data for. Therefore

the conclusions reached can only be predictions for the average exposure for a ran-

dom individual on the particular four days of the survey. They cannot provide any

information about the exposure of an individual for the rest of the year.

As we have bodyweight and average intake values for each individual it is possible

to treat bodyweight and average intake as separate random quantities and generate

2http://www.esds.ac.uk/findingdata/snDescription.asp?sn=3481&key=coding
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NPI lower and upper cdfs based on this assumption. This is presented in the next

section. However, it is generally believed that bodyweight and average intake are

dependent on each other. Therefore we also consider using IR as a random quantity.

This loses some information as we no longer separate the random quantities, average

intake and bodyweight, but it does naturally include dependencies between these

random quantities. The differences caused by using IR are discussed in Subsection

4.3.2. We use the average intake over the 4 days of the survey throughout this

chapter so for ease of presentation we will henceforth refer to this as ‘intake’.

4.3.2 NPI lower and upper cdfs

In this example we derive NPI lower and upper cdfs for exposure for a random

individual using the data sets that were described in the previous section. We

compare the results of treating all three random quantities separately, which we

will call the ‘independent case’, and using the IR, which we will call the ‘dependent

case’. It is interesting to look at both cases, although using IR has the advantage

that it takes dependencies between intake and bodyweight into account. For the

situation where all the random quantities are assumed to be independent, we first

calculate the NPI lower and upper cdfs for the exposure as described in Subsection

4.2.2. In the second situation we calculate the IR and then calculate the NPI lower

and upper cdfs on the product of concentration and IR.

To calculate the NPI lower and upper cdfs for exposure for a random individual,

we first add a minimum and a maximum to each data set. For concentration and

intake, zero and ∞ are appropriate. However for bodyweight we use 1e-15 and ∞

as we cannot divide by zero.

For the independent case, we have ties at 135 bodyweight values and 1194 intake

values, both from an original sample size of 1694. The tied values from the original

data set and their frequency of occurrence are stored and the correct probability is

assigned to the tied values themselves or to the intervals if the value is not tied.

Working with the tied values speeds up computation and avoids problems with

computer memory (computational issues are discussed in Section 4.5). First we

look at a scatterplot of bodyweight and intake to see if there appears to be any



4.3. Case Study: Benzene Exposure 85

correlation between them. The scatterplot is shown in Figure 4.3.

Figure 4.3: Scatterplot of Intake versus Bodyweight
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The scatterplot does not show any obvious correlation between bodyweight and

intake. To check the strength of correlation we consider Spearman’s rank correlation

coefficient which ranges between -1 and 1, where -1 indicates a very strong negative

correlation and 1 indicates a very strong positive correlation. Around zero indicates

very weak correlation. Spearman’s rank correlation coefficient is -0.0071, indicating

a weak negative correlation between bodyweight and intake. The weak correlation

suggests that there is no strong dependence between the random quantities.

Figure 4.4.1 shows the NPI lower and upper cdfs for exposure for a random

individual for both cases. Part of the upper tail is displayed in more detail in Figure

4.4.2 to show the differences between the two cases. It is clear that the dependent

case resembles a step function more closely than the independent case. This is due

to the smaller number of exposure values generated in the dependent case which

leads to fewer steps with larger jumps at many values. The independent case has

many more exposure values so it appears to be much smoother, but it is still a step

function, with small jumps at several values.
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Figure 4.4: NPI lower and upper cdfs for a random individual
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4.4.1 NPI lower and upper cdfs for the
independent case (blue line) and the de-
pendent case (red line) on a linear scale
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4.4.2 A close up of part of the NPI lower
and upper cdfs for the independent case
(blue line) and the dependent case (red
line)

There is not much difference between the results from the independent and de-

pendent cases. There are small differences at some exposure values and neither set of

NPI lower and upper cdfs is enclosed within the other. One observable difference is

that the final value of the lower cdf for independence (0.9922) is lower than the final

value of the lower cdf for the dependent case (0.9928). The difference in the final

value of the lower cdfs might be informative for an individual and may be useful for

risk managers to see how much dependence is influencing the results. The difference

is due to the larger number of data values combined in the independent case where

bodyweight and intake are combined separately. In the dependent case intake is

divided by bodyweight and then the resulting values combined with concentration

values leading to fewer exposure values. Therefore in the M function for exposure

for a random individual, Mexp, there is a larger probability mass in M
(3)
exp(expN ,∞)

(where M
(i)
exp(expN ,∞) represents the M function value for the interval between the

highest exposure value and∞ for exposure for a random individual, calculated using

i random quantities) than in M
(2)
exp(expN ,∞).
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For the case where we use IR the final value of the lower cdf is given by

1− (nc + 1 + nIR)

(nc + 1)(nIR + 1)
= 0.9928 (4.1)

as M
(2)
exp(expN ,∞) = (nc+1+nIR)

(nc+1)(nIR+1)
, where nc is the concentration sample size (here

150) and nIR is the IR sample size (here 1694). Similarly in the independent case

M
(3)
exp(expN ,∞) = ((nc+1+nint)nbw+(nc+1)(nint+1))

(nc+1)(nint+1)(nbw+1)
so the final value of the lower cdf in

this case is

(
1− ((nc + 1 + nint)nbw + (nc + 1)(nint + 1))

(nc + 1)(nint + 1)(nbw + 1)

)
= 0.9922 (4.2)

where nbw is the bodyweight sample size (here 1694) and nint is the intake sample

size (here 1694) and as before nc is the concentration sample size (here 150).

4.4 Exploring dependence for NPI by simulation

We keep X (in µg / kg) as a fixed sample from a Lognormal distribution with

mean, µx = 1.5 and standard deviation, σx = 2.8. We consider the effect of varying

the correlation between Y (in kg /day), which we assume to have a Lognormal

distribution with mean, µy = 1.27 and standard deviation, σy = 1.03 and Z (in kg),

which we assume to have a Normal distribution with mean, µz = 30, and standard

deviation, σz = 3. We consider 1000 simulations for two values of n (50 and 100) and

we vary ρ between -1 and 1. The exposure percentiles are estimated by taking very

large samples (1,000,000) from the relevant distributions and combining them as in

the simple Exposure Model. Then we take the 10th, 50th and 90th percentiles for

comparison purposes and call them the true exposure percentiles. We compare the

10th, 50th and 90th percentiles from the independent and dependent NPI methods

with the true exposure percentiles. We count how many times the true exposure

percentiles fall in the intervals generated by the dependent and independent NPI.
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We also consider whether the NPI methods over- or underestimate the true exposure

percentile.

4.4.1 Varying n

In this section we consider two different values of n and then compare how well NPI

predicts for 1000 samples for each of these n. The results for n = 50 are shown in

Table 4.2. The results for n = 100 are shown in Table 4.3.

Table 4.2: Results from 1000 simulations when n = 50

ρ Method
Percentile

10th 50th 90th

1 Dependent
Success 719 351 350

Underestimates 233 256 1
Overestimates 48 393 649

0.5 Dependent
Success 651 348 360

Underestimates 273 246 9
Overestimates 76 406 631

0 Dependent
Success 654 365 380

Underestimates 278 218 8
Overestimates 68 417 612

-0.5 Dependent
Success 655 375 404

Underestimates 287 220 8
Overestimates 58 405 588

-1 Dependent
Success 582 308 396

Underestimates 336 258 26
Overestimates 82 434 578

1 Independent
Success 478 571 172

Underestimates 522 138 0
Overestimates 0 291 828

0.5 Independent
Success 617 560 278

Underestimates 383 151 0
Overestimates 0 289 722

0 Independent
Success 759 549 422

Underestimates 240 144 0
Overestimates 1 307 578

-0.5 Independent
Success 871 567 592

Underestimates 126 144 0
Overestimates 3 289 408

-1 Independent
Success 857 461 679

Underestimates 130 195 6
Overestimates 13 344 315
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Table 4.3: Results from 1000 simulations when n = 100

ρ Method
Percentile

10th 50th 90th

1 Dependent
Success 687 351 269

Underestimates 206 221 4
Overestimates 107 428 727

0.5 Dependent
Success 673 337 280

Underestimates 225 217 6
Overestimates 102 446 714

0 Dependent
Success 653 352 284

Underestimates 244 189 4
Overestimates 103 459 712

-0.5 Dependent
Success 629 340 283

Underestimates 271 208 6
Overestimates 100 452 711

-1 Dependent
Success 546 273 329

Underestimates 339 241 28
Overestimates 115 486 643

1 Independent
Success 348 498 49

Underestimates 652 126 0
Overestimates 0 376 951

0.5 Independent
Success 626 489 156

Underestimates 372 129 0
Overestimates 2 382 844

0 Independent
Success 777 488 310

Underestimates 212 120 1
Overestimates 11 392 689

-0.5 Independent
Success 865 487 541

Underestimates 97 146 3
Overestimates 38 367 456

-1 Independent
Success 784 394 653

Underestimates 98 187 30
Overestimates 118 419 317

Generally the 10th percentile is captured best by both methods regardless of

n. The general trend for the dependent case is that as ρ decreases from 1 to -1,

the dependent method captures the 10th percentile less often. The trend is less

clear in the independent case as the 10th percentile is captured more often as ρ

decreases from 1 to 0 but increases for ρ = −0.5 and decreases again for ρ = −1.

As n increases the percentage of times that the 10th percentile is captured, by both

methods, decreases slightly. This is probably due to the narrowing of the intervals
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in the NPI lower and upper cdfs because of the larger data samples used. Both

methods appear to underestimate the 10th percentile more than they overestimate

it, for both n, except for the independent case where ρ = −1 and n = 100. Here the

overestimates are slightly higher than the underestimates. This is probably due to

the gradient of the exposure distribution when ρ is negative as discussed later.

The 50th percentile is captured between 27.3 and 37.5% of the time for the

dependent method and between 39.4 and 57.1% of the time for the independent

method. There is the same general trend as with the 10th percentile, that as n

increases the percentage of times that the 50th percentile is captured decreases

slightly. There is a general trend in the independent case that as ρ decreases from 1

to -1, the 50th percentile is captured fewer times, although again ρ = −0.5 performs

better than ρ = −1. For the dependent case the results are similar for different

values of ρ although ρ = −1 leads to the lowest percentage of times that the 50th

percentile is captured. Again this is probably due to the gradient of the exposure

distribution at different values of ρ. Generally the 50th percentile is overestimated

more than it is underestimated.

The 90th percentile is captured between 26.9 and 40.4% of the time for the

dependent case whereas it is captured between 4.9 and 67.9% of the time by the

independent case. For the dependent case there is a general trend that the 90th

percentile is captured more often as ρ decreases from 1 to -1, regardless of n. However

for n = 50 there is a decrease from 40.4% for ρ = −0.5 to 39.6% for ρ = −1.

This decrease does not occur when n = 100 so it is probably due to sampling

variation. Both the dependent and independent methods generally overestimate the

90th percentile, particularly the independent case which does not underestimate

the 90th percentile for most of the results in this example. The cases where the

independent method does underestimate the 90th percentile are generally at negative

rank correlations. This is explained by the gradient of the exposure distribution for

negative values of ρ as discussed below.

When ρ = 1, the gradient of the exposure distribution at low percentiles is lower

than the gradient of the exposure distribution when ρ = −1. At higher percentiles

this is reversed and the gradient of the exposure distribution when ρ = 1 is higher
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than the gradient when ρ = −1. This means that the exposure distribution when

ρ = −1 is much flatter and spread out than the exposure distribution for ρ = 1. The

exposure distributions for each value of ρ are shown in Figure 4.5.1 on a log scale.

Figure 4.5.2 shows a close up of the lower half of the distributions. The independent

NPI tends to underestimate the 10th percentile and overestimate the 90th percentile.

This is because it allows every combination of values for X, Y and Z ignoring any

dependency between them. Therefore the smallest values are divided by the largest

values and the largest values are divided by the smallest values regardless of the

specified rank correlation. This leads to a flat distribution where the values are

spread out.

In the dependent case this does not happen because, for example, if ρ = 1, then

the smallest value of Y will be divided by the smallest value of Z and the largest

value of Y will be divided by the largest value of Z. Similarly for ρ = −1, the

smallest value of Y will be divided by the largest value of Z etc. Therefore there

are fewer values in the dependent case and there are less extreme values compared

to the independent case. The independent case appears to perform better on the

negative correlation than the positive correlation. This is probably because the lower

predictions for the 10th percentile and higher predictions for the 90th percentile

mean the NPI upper and lower cdfs do not increase steeply. Therefore the cdf more

closely resembles that of the cdf when ρ = −1 than the cdf when ρ = 1.

The dependent case appears to be an improvement on the independent case for

positive correlations, but not for the zero rank correlation. As the dependent case

is taking the rank correlation into account, we would expect the dependent case to

be better than the independent case for correlated data but not for uncorrelated

data (i.e. when ρ = 0). However we would also expect the dependent case to

perform better for the negative correlations which it does not appear to do. The

dependent case considers fewer values as it only uses the data for X and Y
Z
, whereas

the independent case uses all the data for X, Y and Z separately. Therefore the

dependent case not performing as well as the independent case may be due to the

independent case having cdfs that more closely resemble the cdf of the case with

negative correlation. The dependent case has less values with higher probability and
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grows more steeply, which is closer to the positive correlation case.

Figure 4.5: Exposure distributions with various values for ρ
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4.5.1 Exposure distribution with vary-
ing ρ
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4.5.2 Close-up of exposure distribution
with varying ρ

4.4.2 Varying µz and σz

In this section we only consider samples of size 50 and we take ρ = 1 and ρ = −1.

We vary σz first while keeping µz fixed and then we consider the case where we fix

σz and vary µz.

Varying σz

We begin by keeping µz fixed at 30, while taking σz to be 5 and 7. The results for

ρ = 1 are shown in Table 4.4 and the results for ρ = −1 are shown in Table 4.5. We

re-use the results from Table 4.2 above where σz = 3.
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Table 4.4: Results from 1000 simulations with σz = 3, 5 and 7 and ρ = 1

σz Method
Percentile

10th 50th 90th

3 Dependent
Success 719 351 350

Underestimates 233 256 1
Overestimates 48 393 649

5 Dependent
Success 787 389 342

Underestimates 180 237 0
Overestimates 33 374 658

7 Dependent
Success 546 397 228

Underestimates 450 280 1
Overestimates 4 323 771

3 Independent
Success 478 571 172

Underestimates 522 138 0
Overestimates 0 291 828

5 Independent
Success 232 630 41

Underestimates 768 83 0
Overestimates 0 287 959

7 Independent
Success 95 618 20

Underestimates 905 128 0
Overestimates 0 254 980

For ρ = 1 we can see that increasing σz from 5 to 7 leads to lower success rates

for the 10th and 90th percentiles for the dependent case. The 50th percentile for

both cases was fairly consistent because the 50th percentile does not depend on σz

as much as the tails of the distribution do. The independent case shows a very clear

decrease in success rates for the 10th and 90th percentiles as σz varies from 3 to 7.

Also the 10th percentile is always underestimated and the 90th percentile is always

overestimated (in this example). This is expected because as we saw earlier the NPI

independent case combines every possible combination of all the data values. As

σz increases, the spread of exposure values increases leading to flatter NPI lower

and upper cdfs. At the same time, as σz increases, the true exposure distribution

becomes a steeper distribution. Therefore we would expect that the independent

case performs better for smaller σz. The dependent case performs better than the

independent case. This is probably because it takes the rank correlation into account

so the NPI lower and upper cdfs do not become as flat as in the independent case.
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Table 4.5: Results from 1000 simulations with σz = 3,5 and 7 and ρ = −1

σz Method
Percentile

10th 50th 90th

3 Dependent
Success 582 308 396

Underestimates 336 258 26
Overestimates 82 434 578

5 Dependent
Success 566 276 367

Underestimates 319 252 47
Overestimates 115 472 586

7 Dependent
Success 600 303 550

Underestimates 241 297 143
Overestimates 159 400 307

3 Independent
Success 857 461 679

Underestimates 130 195 6
Overestimates 13 344 315

5 Independent
Success 879 419 747

Underestimates 75 191 20
Overestimates 46 390 233

7 Independent
Success 886 445 827

Underestimates 40 226 101
Overestimates 74 329 72

For ρ = −1, we see the reverse situation from ρ = 1, where the success rates for

the 10th and 90th percentiles improve as σz increases, although the difference is not

as large as it was for the independent case for ρ = 1. The independent case improves

slightly as σz increases. This is again because the independent case produces a

flatter distribution due to the larger spread of exposure values for increased σz. As

σz increases, the true exposure distribution becomes flatter. Therefore we would

expect that the independent case performs better for larger σz.

Varying µz

Here we keep n = 50, ρ = 1 and ρ = −1, we fix σz to be 3 and take µz to be 20 and

40. The results are shown in Table 4.6 for ρ = 1 and in Table 4.7 for ρ = −1. We

re-use the results from Table 4.2 where µz = 30 and σz = 3.
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Table 4.6: Results from 1000 simulations with µz = 20, 30 and 40 and ρ = 1

µz Method
Percentile

10th 50th 90th

20 Dependent
Success 745 367 338

Underestimates 228 248 4
Overestimates 27 385 658

30 Dependent
Success 719 351 350

Underestimates 233 256 1
Overestimates 48 393 649

40 Dependent
Success 666 341 360

Underestimates 295 231 6
Overestimates 39 428 634

20 Independent
Success 255 608 75

Underestimates 745 102 0
Overestimates 0 290 925

30 Independent
Success 478 571 172

Underestimates 522 138 0
Overestimates 0 291 828

40 Independent
Success 529 545 246

Underestimates 471 143 0
Overestimates 0 312 754

Table 4.7: Results from 1000 simulations with µz = 20, 30 and 40 and ρ = −1

µz Method
Percentile

10th 50th 90th

20 Dependent
Success 559 298 396

Underestimates 341 276 39
Overestimates 100 426 565

30 Dependent
Success 582 308 396

Underestimates 336 258 26
Overestimates 82 434 578

40 Dependent
Success 581 293 375

Underestimates 328 263 23
Overestimates 91 444 602

20 Independent
Success 891 434 753

Underestimates 80 212 19
Overestimates 29 354 228

30 Independent
Success 857 461 679

Underestimates 130 195 6
Overestimates 13 344 315

40 Independent
Success 838 468 615

Underestimates 156 180 2
Overestimates 6 352 383
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We would not expect that increasing µz would have a large influence on the

results because increasing µz only affects the location of the exposure distribution.

This is particularly true for the dependent case because there is little variance in

the results as µ increases for both values of ρ. It is also the case for the independent

case when ρ = −1, where there are only small differences in the number of successes

for each percentile at different values of µz. The results for the independent case

are better for ρ = −1 than for ρ = 1, whereas for the dependent case the results

are better for ρ = 1. This was expected given the results discussed previously.

For ρ = 1, the success rate of the 10th and 90th percentiles for the independent

case improves as µz increases. This is probably due to the NPI lower and upper

cdfs becoming steeper and therefore closer to the true exposure distribution as µz

increases.

4.4.3 Discussion

In this example, i.e. for a division, we have seen that the dependent case appears to

perform better for positive rank correlations, whereas the independent case appears

to perform better for negative correlations and correlations equal to zero. Varying

σz and varying µz also affected the results in the ways described above. We have

counted how many intervals overestimated or underestimated the true percentiles

but not given an indication of how much they over- or underestimate by. Generally,

the independent case underestimated the 10th percentile, or overestimated the 90th

percentile by more than the dependent case. This is because the independent case

does not account for the specified correlation so it produces flatter distributions.

We would not expect predictive methods to produce exact predictions based

on samples such as those used in these examples. If we used different predictive

methods, e.g. the Bayesian posterior predictive distribution, the results would be

dependent on distributional assumptions and how well the sample represents the

distribution that it has been sampled from. As seen in Chapter 5, both NPI and the

Bayesian posterior predictive distribution can produce good predictions and poor

predictions depending on the samples and the distributions that are sampled from.
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Here we used 1,000 simulations to try and allow for sampling variation. Sampling

variation will strongly affect the NPI results for small samples because it only uses

the samples and an assumption of A(n) for the analysis. For larger samples there

will be less effect from sampling variation (as illustrated in Chapter 5), but the

NPI intervals become narrower. Therefore the NPI lower and upper cdfs for smaller

samples may perform better (as we saw in our example) because the intervals are

wider and include more uncertainty about the exposure percentiles so it is more

likely that they will enclose the true percentiles.

4.5 Computational issues

In this section we briefly discuss some computational problems that arise when

modelling NPI with large data sets. The large number of values in the intake and

bodyweight data sets described in Subsection 4.3.1 led to problems with computer

memory as we needed to store all the possible combinations of all the values of all

three data sets. As the data sets were nc = 150, nint = 1694 and nbw = 1694 in

length (and adding a minimum or maximum depending on which cdf we consider)

this leads to (nc + 1)(nint + 1)(nbw + 1) = 433, 826, 775 values for each cdf. These

need to be stored along with the cumulative probabilities for each interval so that

we can plot the NPI lower and upper cdfs. One way in which we solved this problem

was by looking for repeated values in the data sets. Fortunately there were only 135

tied bodyweight values which made it possible to calculate NPI lower and upper

cdfs for exposure for a random individual in the way explained below.

When there are repeated values in the data sets we can speed up the calculation

by counting the number of tied values and then only using one in the calculation.

This means that instead of having (nc + 1)(nint + 1)(nbw + 1) values to consider for

each cdf we only have to calculate (Tc + 1)(Tint + 1)(Tbw + 1) where Tc, Tint and

Tbw are the number of tied values in the data sets for concentration, intake and

bodyweight respectively. Eliminating repeated values can be done at each stage so

the calculation is only done with the minimum possible number of values.
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The probabilities for each interval are calculated based on the number of repeated

values that occur in the data sets.

If it is the case that even after checking for repeated values, the data sets are still

too large, it is still possible to calculate NPI lower and upper cdfs. It can be done

by calculating all the values and counting how many are less than various threshold

values. This eliminates problems with storing many values but it only becomes

accurate by using a large number of threshold values. Several threshold values are

needed because the smaller the interval between the threshold values, the closer to

the actual lower and upper cdfs the results will be. However, as we would only use

this method when there are very large data sets, it gives a good approximation for

lower numbers of threshold values. Using many threshold values makes the method

slow, but when the data sets are so large that there is no other method available, it

gives a useful approximation. A relatively quick approximation can be made using

the histc function in Matlab, which counts the number of values in each interval

between threshold values. However it is only fast for smaller numbers of threshold

values (e.g. for 1000 threshold values for the data sets in the case study (Section

4.3), it took approximately 3.5 minutes on a computer with a 1.6Ghz Intel Pentium

processor with 1 Gb of RAM).

4.6 The effect of different sample sizes

In this section we look at how taking different sample sizes affects the NPI lower and

upper cdfs. For simplicity we consider a case without censoring in the concentration

data set and look at the effect of sample size on the NPI lower and upper cdfs for

exposure for a random individual, again using the Exposure Model. For comparison

we keep the size of the concentration data set at nc = 100 and sample different

size data sets for intake and bodyweight. The concentration data set is sampled

from a Lognormal distribution with mean 9.02 µg/kg and standard deviation 66.07

µg/kg. We sample intake from a Lognormal distribution with mean 1.13 kg/day and

standard deviation 0.60 kg/day and sample bodyweight from a Normal distribution

with mean 30 kg and standard deviation 3 kg. Again these distributions are chosen
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so the samples resemble the data sets that we have for young children. We consider

samples of size 10, 30, 50 and 100. The results are shown on the linear scale in Figure

4.6.1 and on the log scale in Figure 4.6.2.

Figure 4.6: NPI lower and upper cdfs using different sample sizes
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4.6.1 Linear scale
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4.6.2 Log10 scale

Figures 4.6.1 and 4.6.2 show that, as the sample size increases, the uncertainty

reduces so the NPI lower and upper cdfs get narrower. This is to be expected because

including more observations in NPI leads to less uncertainty about variability and

therefore narrower bounds. The general shape remains the same for the values of

n shown here. The NPI lower and upper cdfs for the smaller values of n do not

entirely enclose the NPI lower and upper cdfs for other sample sizes. This is due to

variation between samples. We briefly investigate the effect of sampling variation

for a sample of size 10 and a sample of size 100 below. For each sample size we take

5 different samples and plot the NPI lower and upper cdfs on a log10 scale in Figures

4.7.1 and 4.7.2 respectively.
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Figure 4.7: NPI lower and upper cdfs for 5 different samples from each sample size
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4.7.1 n = 10
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4.7.2 n = 100

As we expected Figures 4.7.1 and 4.7.2 show that there is more sampling variation

when we consider a sample of size 10 than there is for a sample of size 100. This

can be seen as the distance between the NPI lower and upper cdfs for the sample

size of 10 is larger than the distance between the NPI lower and upper cdfs for the

sample size of 100.

4.7 Imprecise data

In practice, data sets may be given as interval data, such as when an indication

of measurement uncertainty is given as discussed in Subsection 3.5.5. An example

of how to calculate NPI lower and upper cdfs with measurement uncertainty is

presented here.

Suppose that the maximum measurement error of some apparatus used to mea-

sure the concentration of benzene in soft drinks is known. There may of course also

be human error but we ignore that here. Assume that the maximum measurement

error is δ = 0.3. Then we can form NPI lower and upper cdfs on the concentration

data (the benzene data used in Subsection 4.3.1) by considering the values yi = xi+δ

and zi = xi− δ. Let x(1), x(2), ..., x(n) be the order statistics of data x1, x2, ..., xn and

let Xi be the corresponding pre-data random quantities so the data consist of the

realized values Xi = xi, i = 1, ..., n. Let Yi and Zi be observable random quanti-

ties with observations yi and zi respectively. The cdf for the next random quantity

Yn+1, is the NPI lower cdf because we find the NPI lower cdf by taking the envelope
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of the M functions for Xn+1, Yn+1 and Zn+1. The M function for Yn+1 describes

probability mass at higher concentration values than either of the M functions for

Xn+1 and Zn+1. Therefore the NPI lower cdf for Yn+1 becomes the NPI lower cdf for

Xn+1 including measurement uncertainty. Similarly the upper cdf for Zn+1 forms

the NPI upper cdf as the M function for Zn+1 describes probability mass at lower

concentrations than the M functions for Xn+1 and Yn+1.

The maximum value that the censored values can take is 1, so we take the

censored point including measurement uncertainty to be 1 + δ. One could argue

that we should take the limit to be 1, as if it is above 1 then we assume that the

concentration is high enough to be detected. However if the apparatus can measure

inaccurately up to ±δ, then it is possible that some values recorded as 1 are actually

lower than the limit of detection, and some values recorded as < 1 are actually higher

than 1 so we take 1 + δ to be the maximum value that censored values can take.

The NPI lower and upper cdfs including fixed measurement uncertainty (δ = 0.3)

for the concentration data (see Subsection 4.3.1) are shown with the NPI lower and

upper cdfs for the original concentration data set in Figure 4.8.

Figure 4.8: NPI lower and upper cdfs with fixed measurement uncertainty (red)
and for the original data set (blue)
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Including the measurement uncertainty leads to NPI lower and upper cdfs that

increase at different values of concentration. We can see from Figure 4.8 that the

measurement uncertainty leads to more uncertainty around the original data values,
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but for the values that are not within ±δ of an observed data value the lower and

upper probabilities remain the same.

If information on measurement uncertainty is provided with data as a constant,

it is easy to incorporate into the NPI lower and upper cdfs as shown here. We can

combine such NPI lower and upper cdfs that incorporate measurement uncertainty

with other NPI lower and upper cdfs for other random quantities. This is illustrated

next with the original data sets (see Subsection 4.3.1) for bodyweight, intake and

concentration. We form two sets of NPI lower and upper cdfs for exposure for a

random individual, one set with no measurement uncertainty and one set with fixed

measurement uncertainty (δ = 0.3) for the concentration data set. These NPI lower

and upper cdfs are shown in Figure 4.9.

Figure 4.9: NPI lower and upper cdfs with fixed measurement uncertainty (red)
and no measurement uncertainty (blue)
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As shown in Figure 4.9, the NPI lower and upper cdfs including measurement

uncertainty enclose the NPI lower and upper cdfs for the original data set. The

difference in the width of NPI lower and upper cdfs is simply due to the size of δ.

4.8 Comparison to Bayesian methods

NPI focuses on predicting a future observation for a random quantitiy or a com-

bination of random quantities. We therefore begin by comparing it to a Bayesian
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posterior predictive distribution, where a prediction is obtained for a random indi-

vidual. To calculate the Bayesian posterior predictive distribution, it is necessary

to choose a prior distribution and a likelihood function. Independence is assumed

between random quantities in many analyses because it is difficult to choose a joint

distribution that describes the (unknown) dependence accurately. We calculate the

Bayesian posterior predictive distributions for the random quantities concentration

and IR, where we assume that both random quantities have a Lognormal distribu-

tion. Then we take 10,000 random samples from their Bayesian posterior predictive

distributions and calculate the product. We calculate the NPI lower and upper cdfs

on the product of concentration and IR. The results from both methods are shown

in Figures 4.10.1 and 4.10.2.

Figure 4.10: Comparison of the Bayesian posterior predictive distribution (black
dots) and NPI lower and upper cdfs (red lines)
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4.10.1 Linear scale
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4.10.2 Log10 scale

The results of the Bayesian posterior predictive distributions are above the NPI

lower and upper cdfs at around 0.1 µg/kg bw/day, leading to a less conservative in-

dication of exposure than the NPI cdfs. It is less conservative in the sense that the

Bayesian bounds indicate that, for example, the 99th percentile exposure is lower

than indicated by NPI. The differences between the NPI and Bayesian results are

due to the distributional assumptions made for the Bayesian posterior predictive

distribution. The Bayesian method makes the assumptions that the IR and the

concentration data are Lognormally distributed. The censored values in the concen-

tration data set were dealt with using data augmentation (see Section 2.7.6) for the

Bayesian posterior predictive distribution.



4.8. Comparison to Bayesian methods 104

Figures 4.10.1 and 4.10.2 show that distributional assumptions have an effect on

the final exposure distribution, and may lead to overestimates or underestimates of

exposure for different percentiles, depending on the distributional assumption used.

NPI is nonparametric and therefore does not share this problem of the influence of

a distributional assumption. This is useful, particularly as there are many problems

with fitting distributions to data sets, e.g. if the data set is small almost any dis-

tribution will fit, and if the data set is large, often no standard distributions such

as Normal or Lognormal distributions will fit. NPI performs best on medium to

large data sets. For small data sets there is often little information available which

leads to large uncertainty, as indicated by the width between the lower and upper

cdfs. The NPI lower and upper cdfs are very far apart at zero and low exposure

values, due to the censoring included in the concentration and the presence of non-

consumers who have an intake of zero. At larger exposure values the bounds get

closer together again as the censored values only contribute to the lower tail. It is

not surprising that the NPI lower and upper cdfs and the Bayesian posterior pre-

dictive methods differ as they are quite extreme cases; one assumes a specific, fully

specified distribution and the other only assumes A(n).

We briefly consider the situation where we assume independence between all

three random quantities. For the Bayesian method we assume Lognormal distri-

butions for bodyweight, intake and concentration and combine them by randomly

sampling 10,000 values for each random quantity from their Bayesian posterior pre-

dictive distribution. We then combine the values as in the Exposure Model to

produce predictions for exposure. We find NPI lower and upper cdfs as previously

described. The results for these methods are shown in Figures 4.11.1 and 4.11.2.
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Figure 4.11: Comparison of the Bayesian posterior predictive distribution (black
dots) and NPI lower and upper cdfs (blue lines)
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4.11.1 Linear scale
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4.11.2 Log10 scale

The NPI lower and upper cdfs for the three separate random quantities are

smoother than the NPI lower and upper cdfs for the product of concentration and

IR because of the larger number of exposure values calculated. The small changes

in the Bayesian predictions are due to the new assumptions about the distributions

of the input random quantities which lead to the Bayesian predictions now lying

between the NPI lower and upper cdfs. There is still the large difference that we

saw before in the NPI lower and upper cdfs near zero due to the censored values

and non-consumers in the analysis.

4.9 Robust NPI

In this section we consider an ad hoc method for which the theoretical foundation

requires further investigation. We call this method robust NPI and illustrate an

example here. We will explore the use of the method as part of a robust model in

Chapter 5.

4.9.1 Example: Robust NPI lower and upper cdfs

In a Bayesian analysis we include robustness by considering different parameter

values for distributions. As we have no parameters for NPI, one option we have is to

assign the probability 1
n+1

to the intervals as before, but spread the 1
n+1

probability

over the intervals on either side of every interval. This is an ad hoc method which
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seems attractive to make NPI more robust to problems such as sampling variation.

We illustrate robust NPI with an example for random quantity Xn+1 where we

have observations xi = 1, 2, 3, 4, 5. The M function for X6 with robustness is:

MX6(0, x2) = 1
6

MX6(0, x3) = 1
6

MX6(x1, x4) = 1
6

MX6(x2, x5) = 1
6

MX6(x3, ∞) = 1
6

MX6(x4, ∞) = 1
6

The NPI lower and upper cdfs for X6 with robustness are shown in Figure 4.12

with the NPI lower and upper cdfs for X6 without robustness for comparison.

Figure 4.12: NPI lower and upper cdfs for X6 with robustness (red) and without
robustness (blue)
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Notice that the upper cdf including robustness is the same upper cdf as without

robustness but the probability that was at xj is now at xj−1. Similarly the lower cdf

including robustness is the same lower cdf as without robustness but the probability

that was at xj is now at xj+1.

If we use the robust NPI approach for two positive random quantities Xnx+1

and Yny+1, the intervals in the M function for XY(nx+1)(ny+1) will be similar to the
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M function for a standard NPI analysis except the intervals will be wider. For

example, the interval that would be (xy1, xy2) in standard NPI will now be (0, xy3)

and the interval that was (xy2, xy3) will now be (xy1, xy4) etc, where xyk is the kth

ordered value for XY . Similarly for three random quantities, as we have in the

Exposure Model, the intervals will be wider when using robust NPI than when we

use standard NPI. To incorporate more robustness for any of the random quantities

we could assign 1
n+1

probability over two intervals either side of every interval etc.

This may be appropriate for small sample sizes.

Any theoretical properties for the robust method used for NPI need investigation

but it seems a sensible approach to indicate the uncertainty about the predicted value

of the next observation. As n increases, these robust NPI lower and upper cdfs will

converge to the empirical distribution, as the NPI lower and upper cdfs do. However

the convergence will be slower. Also we can see that robust NPI makes sense when

we have one observation as it produces the output that the next observation has a

probability between 0 and 1 of falling in the interval (−∞,∞). This statement is

true given our current state of information and is more cautious about predictions

than the NPI method.

4.10 Conclusion

In this chapter we have shown how NPI can be implemented for an exposure risk

assessment including censored data. An example with real data sets has been pre-

sented and we have explored the effect of correlations on the NPI bounds. We briefly

discussed how to solve the computational challenges with implementing NPI either

by only using one of each tied value in the sample or by using a threshold approach.

We looked at the effect of different sample sizes and saw that larger sample sizes

lead to less uncertainty about the next observation and therefore the NPI lower and

upper cdfs are closer together. Fixed measurement uncertainty can be included in

the NPI lower and upper cdfs.

We compared the results from an NPI analysis with the Bayesian posterior pre-

dictive distribution, where it compares favourably due to the fact that no assumption
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is needed about the distribution and that NPI includes interval uncertainty due to

the assumption A(n). We saw that the assumptions necessary in the Bayesian frame-

work led to differing results, whereas the NPI results were similar for both two and

three random quantities in the exposure model. The main difference was the final

probability of the NPI lower cdf due to the sample sizes, as discussed in Subsection

4.3.2. We introduced an ad hoc method where we included robustness for NPI. This

helps to make NPI more robust to sampling variation and may be useful for small

sample sizes because it introduces more uncertainty about the predicted value of the

next observation. So in this chapter we have shown that NPI can be applied in the

field of exposure risk assessment even when there is censored data. It is also useful

when we want to avoid making distributional assumptions and has the potential to

be made robust for smaller sample sizes.



Chapter 5

Combining NPI and Bayesian

methods

5.1 Introduction

In this chapter we present a hybrid method that can be used to combine nonpara-

metric predictive inference (NPI) with Bayesian methods. This hybrid method,

which we will call the NPI-Bayes hybrid method, will be useful in practice when

we want to combine random quantities for which we make different assumptions

based on the level of information available. If we do not have enough information to

justify the assumption of a particular distribution, we can implement NPI for that

random quantity and combine it with other random quantities for which we have

enough evidence available to make distributional assumptions. As the majority of

methods used in probabilistic risk assessments require distributional assumptions,

it is interesting to compare nonparametric methods such as NPI with distributional

methods, such as the Bayesian posterior predictive distribution. The NPI-Bayes

hybrid method allows us to combine and compare these methods.

In Section 5.2 we explain how the NPI-Bayes hybrid method works and illustrate

it with an example. We implement the NPI-Bayes hybrid method for the simple

Exposure Model (Section 2.2) with different assumptions made about each random

quantity in the model in Section 5.3. We consider the case where all the random

quantities are modelled by NPI and another case where all the random quantities

109
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are modelled by Bayesian posterior predictive distributions. We also consider all the

other possible combinations (e.g. one random quantity represented by NPI and two

by Bayesian posterior predictive distributions, etc.) using the NPI-Bayes hybrid

method. For the simple Exposure Model we use simulated data sets to describe

the exposure of young children to benzene from soft drinks. We then compare the

results for all the different combinations of NPI and the Bayesian posterior pre-

dictive distribution for the random quantities using the NPI-Bayes hybrid method.

Throughout this chapter we assume (Log)Normality for the random quantities that

are described using the Bayesian posterior predictive distribution. However it would

be possible to implement the NPI-Bayes hybrid method when assuming other distri-

butions by sampling from the corresponding posterior predictive distributions. We

also consider how sampling variation and sample size affect the results by simulating

multiple samples, of two different sizes, for each random quantity in the Exposure

Model and comparing the results.

In Section 5.4 we show how the NPI-Bayes hybrid method can be adapted to

include robustness to the prior distribution for the random quantities for which

we use a Bayesian posterior predictive distribution. For these random quantities,

robustness to the prior distribution is implemented for two different classes of prior

distributions and compared with the Bayesian method when we use a non-infomative

prior distribution. Next we provide an algorithm for incorporating robustness in

the NPI-Bayes hybrid method. In Section 5.5 we present two examples including

robustness for the Exposure Model, one where robust Bayesian methods are used

for all the random quantities and one where robust NPI is used for all the random

quantities. Then all the different possible combinations are compared by looking

at their 10th, 50th and 90th percentiles. In Section 5.6 we show that NPI can be

combined with two-dimensional Monte Carlo simulation (2D MCS) using an example

with the Exposure Model.
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5.2 The NPI-Bayes hybrid method

In this section we explain the NPI-Bayes hybrid method for combining NPI and a

Bayesian posterior predictive distribution. Assume that we have nx observations xi,

where i = 1, ..., nx, for random quantities Xi and that these observations come from

a Normal distribution. We also have ny observations yj, j = 1, ..., ny, for positive

random quantities, Yj. As we have no further information about the Yj we choose to

use NPI for Yny+1. To apply the NPI-Bayes hybrid method we assume independence

between the Xi and Yj.

The Bayesian posterior predictive distribution for the Xi with a non-informative

prior, p(µ, σ2) = 1
σ2 , is a scaled Student t-distribution with (nx − 1) degrees of

freedom, location parameter x and scale parameter

√(
1 + ( 1

nx
)sx

)
, where x is the

sample mean, sx is the sample standard deviation and nx is the number of ob-

servations of X (Gelman et al., 1995). We invert the cdf at np percentiles of the

Student t-distribution between 0 and 1 and assign each value probability pi = 1
np

.

By inverting the cdf we capture the range of values for the Xi.

We want to find bounds on the prediction for the next observation, XYnew. To

do this we use the following algorithm.

1. Take np values, which we denote vi, i = 1, ..., np, by inverting the Student

t-distribution with nx − 1 degrees of freedom, location parameter x and scale

parameter

√(
1 + ( 1

nx
)sx

)
at np percentiles.

2. Take the set of ordered observed values for Yj, j = 1, ..., ny, and add ∞ so

we have ny + 1 values, call this set L (this leads to the values that form the

intervals for the lower cdf for xynew).

3. Take the set of ordered observed values for Yj and add 0 so we have ny + 1

values, call this set U (this will lead to the values that form the intervals for

the upper cdf for xynew).

4. Find all the intervals between the ordered values (viyj)k for FXYnew
(xy) by

multiplying the values vi from the Student t-distribution, with the set L, where

k = 1, ..., np(ny + 1), i = 1, ..., np and j = 1, ..., ny.
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5. Similarly find all the intervals between the ordered values (viyj)k for FXYnew(xy)

by multiplying the values vi with the set U, with i, j and k as before.

6. The probability on the intervals between each viyj value is 1
np(ny+1)

7. Plot FXYnew
(xy) and FXYnew(xy)

The combinations of (viyj) for the lower and upper cdfs will be the same, apart

from the infinities generated for the lower cdf and the zeroes generated for the upper

cdf. Therefore it is only necessary to combine the values from the scaled Student

t-distribution with the observed values for Yj once. We can describe the resulting

probabilities using an M function. We order all the values viyj and call them b and

use the index r to denote their place in the ordering.

MXYnew(0, b1) = 1/np(ny + 1)

MXYnew(br, br+1) = 1/np(ny + 1)

MXYnew(b(np(ny+1)−1), ∞) = 1/np(ny + 1)

for r = 1, ..., (np(ny + 1)− 2).

We now illustrate the NPI-Bayes hybrid method using an example where we use

the NPI approach for one random quantity and use the Bayesian posterior predictive

distribution for the other random quantity.

Take Y > 0 and assume that we have observations [1,2,3] for the Yj, j = 1, ..., 3.

We assume A(3) for Y4 and therefore the M function is as follows:

MY4(0, 1) = 1/4

MY4(1, 2) = 1/4

MY4(2, 3) = 1/4

MY4(3, ∞) = 1/4

Generally we would only recommend using NPI for medium to large samples, but

for illustrative purposes we use it for small n here. We take a sample of 20 values,

xi, i = 1, ..., 20 for the Xi from a Normal distribution with mean 5 and standard
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deviation 0.2. The sample mean, x = 5.00 and the sample standard deviation, sx =

0.17. Then we invert the cdf of the Student t-distribution at 5000 percentiles. We

can see that the probability for each interval will be 1
4(5000)

as each of the 5000 vi

values for the Xi have probability 1
np

which is 1
5000

and each Y4 value has probability

1
4

of falling in each of the intervals shown in the M function. We then proceed as

with a NPI analysis to find the lower and upper cdfs. An example is shown in Figure

5.1.

Figure 5.1: Example of NPI-Bayes hybrid method
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The influence of the Yj is very clear in the four different parts of the lower and

upper cdfs obtained. This is because of the small sample size that was used in this

example. The final value of the lower cdf will be 3
4

because the probability that

the random quantity falls in an interval between the largest finite value for XYnew

and ∞ will be 1
ny+1

. If we instead had 50 observations, and thus Yj, j = 1, ..., 50,

(sampled from a Normal distribution with mean 2 and standard deviation 0.2) and

we again use NPI for the Yj and model the Xi as before, we would get results as

shown in Figure 5.2. The final value of the lower cdf will now be 50
51

.



5.3. Predicting exposure using the NPI-Bayes hybrid method 114

Figure 5.2: Combining NPI and Bayesian posterior predictive distribution for a
larger sample size for Y
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So we have shown that the NPI-Bayes hybrid method allows us to combine NPI

and the Bayesian posterior predictive distribution for different random quantities.

Our example is for the Normal distribution and can be used when an analyst assumes

a Normal or Lognormal distribution. However the Bayesian posterior predictive

distribution for any distribution could be combined with NPI in a similar way if it is

possible to sample from the Bayesian posterior predictive distribution. In the next

section we show how we can apply the NPI-Bayes hybrid method to the Exposure

Model.

5.3 Predicting exposure using the NPI-Bayes hy-

brid method

We consider the simple Exposure Model described in Section 2.2:

Exposure =
X × Y

Z
(5.1)

where X is concentration, Y is intake and Z is bodyweight. We begin by simulating
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a sample from a (Log)Normal distribution for each random quantity. We look

at how well NPI and the Bayesian posterior predictive distribution describe the

(Log)Normal distributions that we have taken the samples from. Then we calculate

exposure by combining NPI for some random quantities and the Bayesian posterior

predictive distribution for other random quantities. We compare the results for each

of these combinations. We will use the following notation for the different possible

combinations: NX indicates that the NPI approach was used for the random quan-

tities Xi and BX that the Bayesian posterior predictive distribution was used for

the random quantities Xi. Similarly we use NY, BY, NZ and BZ.

5.3.1 Data sets

To illustrate the NPI-Bayes hybrid method for calculating exposure, we need to

have a sample for each random quantity in the model. In this example we choose

distributions for each random quantity so that the data sets resemble those from

Section 4.3 which described young children’s exposure to benzene in soft drinks.

We simulate 20 concentration (x) values from a Lognormal distribution with mean

1.4993 µg/kg and standard deviation 1.6749 µg/kg, 20 intake (y) values from a

Lognormal distribution with mean 1.2776 kg/day and standard deviation 1.0159

kg/day and 20 bodyweight (z) values from a Normal distribution with mean 30 kg

and standard deviation 3 kg. The ordered samples are:

X 0.1703 0.1828 0.3059 0.4278 0.4439 0.4994 0.5459 0.6037,

0.6118 0.8656 0.8700 0.9074 1.175 1.471 1.472 1.569,

2.346 2.663 4.036 12.12

Y 0.2758 0.3199 0.4195 0.4397 0.4815 0.5377 0.6922 0.6997,

0.7477 0.7675 0.8732 0.9954 1.130 1.174 1.348 1.403,

1.629 1.632 1.653 2.769

Z 25.86 25.93 26.58 26.65 26.93 28.61 28.83 28.98,

29.37 30.95 31.11 31.51 32.12 32.18 33.11 33.57,

34.66 35.59 35.87 36.34

Figures 5.3.1, 5.3.2 and 5.3.3 show the NPI lower and upper cdfs, the cdf of the
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Bayesian posterior predictive distribution given the assumption of (Log)Normality,

the cdf of the distribution that each data set was sampled from and the empirical cdf

for each random quantity. We display the distributions from which the data were

sampled so we can see how closely the results from the different methods resemble

these distributions. However, in a real-life risk assessment it is unlikely that we

would know which distributions the data were sampled from and the data probably

would not have come from a random sampling process.

Figure 5.3: NPI lower and upper cdfs (blue lines), Bayesian posterior predictive
distribution (red line), empirical cdf of the data (green) and distribution that the
data were sampled from (black line) for each random quantity

0 5 10
0

0.2

0.4

0.6

0.8

1

Concentration (µg / kg)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

5.3.1 Concentration (X)
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5.3.2 Intake (Y )
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5.3.3 Bodyweight (Z)

Figure 5.3.1 shows that for this sample of concentration values, the Bayesian

posterior predictive cdf overestimates the concentration at high percentiles (above

about the 80th percentile) but it is very close to the cdf of the distribution that the

data were sampled from at lower percentiles. The NPI lower and upper cdfs are

generally close to the cdf of the distribution that the data were sampled from except

at very high percentiles. Figure 5.3.2 shows that the Bayesian posterior predictive
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cdf underestimates intake for most percentiles of the cdf of the distribution that the

data were sampled from. The NPI lower and upper cdfs are close to or enclose the

cdf of the distribution from which the data were sampled for most percentiles. The

large intervals in the upper tail of the NPI lower and upper cdfs for concentration

and intake, are due to fewer data points being sampled from the tails than from

the middle of the distributions that the data were sampled from. Figure 5.3.3

shows that the Bayesian posterior predictive cdf overestimates the bodyweight for

low percentiles and is close to the upper tail of the cdf of the distribution from

which the data were sampled. The NPI lower and upper cdfs enclose the cdf of the

distribution from which the data were sampled in the lower and upper tails and

predicts values that are higher for the middle percentiles. Generally we tend to

be more interested in the lower tail because people with smaller bodyweights are

potentially more at risk from exposure to a chemical.

The Bayesian posterior predictive distribution is determined by the mean and

standard deviation of the sample and by the shape of the Student t-distribution

imposed on it because of the Normality assumption. NPI also depends on the values

in the sample but does not make distributional assumptions and the NPI lower and

upper cdfs will always enclose the empirical cdf of the data. Therefore different

samples lead to different results so we explore the effect of sampling variation in

Subsection 5.3.3.

5.3.2 Calculating exposure

We consider all different combinations of random quantities, using the NPI approach

for some random quantities and the Bayesian posterior predictive distribution for

the other random quantities, in the Exposure Model. For ease of presentation,

we display the results of each combination by the 10th, 50th, and 90th percentiles.

These percentiles are either intervals, if they use the NPI approach for some random

quantities, or point values if they only use the Bayesian posterior predictive distri-

bution for all the random quantities. We represent these by plotting the intervals for

each percentile in Figure 5.4 as horizontal lines. We combine the distributions that

the data were sampled from assuming independence between the random quantities
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and call this the approximate exposure distribution. We show the percentiles of the

approximate exposure distribution as vertical grey lines, so it is clear which inter-

vals include the percentiles of the approximate exposure distribution. Although it

cannot be seen in Figure 5.4, the lower bound for the 10th percentile for the case

(NX, NY, NZ) extends down to 0, and the upper bound for the 90th percentile for

(NX,NY,NZ) extends to ∞.

Figure 5.4: Percentiles for Exposure for combinations of Bayes and NPI
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As can be seen from Figure 5.4, the 10th and 50th percentiles of the approximate

exposure distribution do not lie within the corresponding lower and upper cdfs of any

of the cases. However the 90th percentile of the approximate exposure distribution

lies within the lower and upper cdfs of all the cases except (BX, BY, BZ). The lower

and upper cdfs on the 10th and 50th percentiles are all lower than the percentiles of

the approximate exposure distribution. This is due to the combination of the higher

and lower predictions for each random quantity (See Figures 5.3.1, 5.3.2 and 5.3.3).

The higher predictions for bodyweight for middle and low percentiles and the lower

predictions for intake would lead to lower exposure values in general. However when

combined with the higher predictions for upper percentiles for concentration, the

values for the upper percentiles of exposure are larger. This explains why the 90th

percentile of the approximate exposure distribution lies within the lower and upper
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cdfs of all the cases except (BX, BY, BZ).

The combinations where the NPI approach is used for more random quantities

lead to the widest intervals. Therefore if we were uncertain about the distribution

that the data were sampled from, we would recommend combining all the random

quantities using NPI because we are more likely to capture the percentiles of the

approximate exposure distribution.

5.3.3 Sampling variation

In this section we explore sampling variation by comparing the differences in results

for each of the eight cases, (NX, NY, NZ), (NX, NY, BZ), etc., when we use different

samples for each random quantity in the model.

We simulate 10 samples of size 20 from the Lognormal distributions that we

assigned for concentration and intake and 10 samples of size 20 from the Normal

distribution that we assumed for bodyweight (see Subsection 5.3.1). We combine

these samples to produce 10 different lower and upper cdfs for the 10th, 50th and

90th percentiles of exposure for each of the eight different combinations of random

quantities (NX, NY, NZ), etc. We then compare how the 10th, 50th and 90th

percentiles differ for each case and compare the results between cases. We plot the

results with the percentiles of the approximate exposure distribution (vertical grey

lines) for comparison. The 10th, 50th and 90th percentiles obtained by using the

NPI-Bayes hybrid method for each of the 10 different sets of samples are shown in

Figures 5.5.1 - 5.5.6 and Figures 5.6.1 - 5.6.2. We denote each set of three samples

by Sample 1 to 10 for simplicity in the Figures.
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Figure 5.5: Percentiles for different samples for each combination
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Figure 5.6: Percentiles for different samples for each combination
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We can see from Figures 5.5.1 - 5.5.6 and Figures 5.6.1 - 5.6.2 that the intervals

for all the percentiles become narrower as we use the NPI approach for fewer ran-

dom quantities. The intervals for the 50th percentile tend to be narrower than the

intervals for the 10th and 90th percentiles. This is due to the lack of data describing

the tails of the distribution, so there is more uncertainty about the higher and lower

percentiles than about the 50th percentile. For the (NX, NY, NZ) case the lower

limit of the 10th percentile for all the samples is 0, and the upper limit for the 90th

percentile for all the samples is ∞. The intervals for this case overlap for different

samples. Therefore using the NPI approach for random quantities is more robust to

sampling variation than the Bayesian method which only produces point estimates

which underestimate or overestimate the percentiles. However, even using the NPI

approach for all the random quantities in the Exposure Model does not lead to the

percentiles of the approximate exposure distribution lying within the lower and up-

per cdfs. This may be due to the small sample size that we used. In the next section

we look at the difference when we use a larger sample size.

5.3.4 Larger sample sizes

In this section we explore the effect of sample size on the percentiles for exposure and

again compare the difference in results for each of the eight cases (NX, NY, NZ), etc.

As before we simulate 10 samples from the Lognormal distributions that we assigned

for concentration and intake and 10 samples from the Normal distribution that we
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assumed for bodyweight. However, here we take samples of size 100. We combine

these samples for each of the eight different combinations of random quantities to

produce 10 different lower and upper cdfs for the 10th, 50th and 90th percentiles

of exposure. We plot the results with the percentiles of the approximate exposure

distribution (vertical grey lines) for comparison. The 10th, 50th and 90th percentiles

obtained by using the NPI-Bayes hybrid method for each of the 10 different sets of

samples are shown in Figures 5.7.1 - 5.7.4 and Figures 5.8.1 - 5.8.4. We compare

these results with those given in Figures 5.5.1 - 5.5.6 and Figures 5.6.1 - 5.6.2 for

samples of size 20.

Figure 5.7: Percentiles for different samples of size 100
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Figure 5.8: Percentiles for different samples of size 100
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The main difference in results between the application with a small sample size

and with a larger sample size is that the intervals for the percentiles are much

narrower. These narrower intervals for NPI are due to the larger sample size which

provides more information about the distribution. Generally the percentiles of the

approximate exposure distribution lie in more intervals, particularly for the (NX,

NY, NZ) case and the cases where the NPI approach is used for two of the random

quantities. The intervals for the 50th percentile still tend to be narrower than those

at the 10th and 90th percentile, although the difference in width is smaller than it

was for the small sample size. The Bayesian posterior predictive distribution does

not capture uncertainty about the estimates for the percentiles and thus can lead

to incorrect results. NPI captures more uncertainty than the Bayesian method due

to NPI’s inclusion of interval uncertainty.

As the sample size increases, the performance of NPI will improve because it

only uses information from the data and distributional assumptions for the data are

not needed. This makes NPI particularly useful if the distribution is unknown or

the data do not follow a standard parametric distribution (e.g. Normal, Lognormal,

etc.). The estimates given by the Bayesian posterior predictive distribution may not

improve as n increases if an incorrect distributional assumption is made. However if

the assumed distribution is the correct distribution, then as n → ∞, the Bayesian

estimates will be closer to the distribution that the data were sampled from. As

we have seen, even with a sample size of 100 there is variation in the results and

the percentiles for the approximate exposure distribution do not always lie within

the lower and upper bounds. Therefore if we are interested in the tails and the

uncertainty about the tails, predictive methods may not be the most appropriate

choice. One solution to include more uncertainty about the tails in the analysis is to

include robustness. In the next section we discuss how to include robustness to the

prior distribution when we use a Bayesian approach for a random quantity and how

to include robustness in the NPI-Bayes hybrid method for the Exposure Model.
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5.4 Robustness

5.4.1 Robustness for the Normal distribution

In this section we explain how our proposed hybrid method can be combined with

robustness when we use the Bayesian approach for random quantities. We begin

by explaining two different classes of prior distributions, a class of interval prior

distributions for µ that we used in Subsection 3.5.1 and a class of Normal-Gamma

prior distributions. We then explain the algorithm used to include robustness in the

NPI-Bayes hybrid method for the Exposure Model.

Robustness to the prior for µ

To include robustness to the prior for µ, we consider the class of Normal prior

distributions on µ|σ used in Subsection 3.5.1. The corresponding Bayesian posterior

predictive distribution is a Student t-distribution with n − 1 degrees of freedom,

location parameter
(

a+x
2

)
and scale parameter

√
(2n+1)

�
(n−1)s2+

n(x−a)2

2

�

2n(n−1)
, where x is

the sample mean, n is the sample size and s is the sample standard deviation. When

we use this class of prior distributions, we will call the resulting bounds the ‘robust

interval posterior predictive box’.

Robustness to prior distribution for (µ, σ)

Another possible class of prior distributions can be obtained by using a conjugate

Normal-Gamma prior. If we assume this prior distribution

p(µ, σ) ∝ 1

σ2

a

exp

[
− c

2σ2
(µ−m)2 − b

σ2

]
, −∞ < µ < ∞, σ2 > 0

the Bayesian posterior predictive distribution for the Xi given this conjugate prior

distribution can be shown by basic exercise to be a Student t-distribution with 2a∗−3

degrees of freedom, location parameter m∗ and scale parameter
√

2b∗(1+c∗)
(c∗(2a∗−3))

, where

a∗ = a + n
2
, b∗ = b + s2(n−1)

2
+ (nd)

2(n+c)
(x−m)2, c∗ = c + n, m∗ = cm+nx

c+n
. When we use

this class of Normal-Gamma prior distributions, we will call the resulting bounds

the ‘robust Normal-Gamma posterior predictive box’.
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We now illustrate the algorithm for including robustness in the NPI-Bayes hybrid

method. It is most easily represented with a diagram. In this algorithm we assume

that we want to include robustness for every random quantity. If this is not the case,

an approach combining this algorithm and the algorithm for the original NPI-Bayes

hybrid method can be used instead.

5.4.2 Diagram showing how to include robustness for the

Exposure Model

Choose robust NPI or Bayesian method for each of the three random quantities, X, Y and Z

Robust NPI Robust Bayesian method

Choose class of prior distributions

Interval ClassNormal-Gamma Class

Use robust NPI as 
explained in Section 

4.9

Choose interval for m and 
split interval into k values

Choose interval for µ and 
split interval into j values

Find the parameters for 
the k scaled student-t 
distributions and invert 

each cdf at np
percentiles. Call these 
xpik, ypik or zpik for i = 

1,…, np

Find the parameters for 
the j scaled student-t 

distributions and invert 
each cdf at np

percentiles. Call these 
xpij, ypij or zpij for i = 

1,…, np

Count how many random quantities are modelled using robust NPI and call this number r

Combine all three 
random quantities , X, 
Y and Z using robust 
NPI as explained in 

Section 4.9

If r = 0 If r = 1 If r = 2 If r = 3

Take the envelope of the cdfs for the sets of exposure values to form the robust posterior predictive box

Combine all the 
values xpig, ypig

and zpig, i = 
1,…,np. This 

produces np values 
for exposure. 
Repeat this 

process for all 
combinations of j

or k for each 
random quantity. 

Combine two sets of values 
(e.g. ypig and zpig) as in the 
Exposure Model to produce 

np values. For X we use 
robust NPI and multiply the 
intervals with the np values. 

The intervals have 
probability 1/np(nx+1). 

Repeat this process for all 
combinations of j or k for Y

and Z

Combine e.g. X and 
Y as in Section 4.9. 

Combine the 
resulting NPI 

intervals with the 
zpig so each interval 
has a probability of 
1/np(nx+1)(ny+1).  

Repeat this process 
for all combinations 

of j or k for Z

where g represents j if the interval 
class was chosen and k if the Normal 

Gamma class was chosen.
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5.5 Examples: NPI-Bayes robust hybrid method

In this section we look at the results of incorporating robustness into the hybrid

method for the Exposure Model. We compare the results for assuming each of

the previously described classes of prior distributions for the case (BX, BY, BZ)

with each other and with the results when we assume a non-robust, non-informative

prior, p(µ, σ) = 1
σ

for all three random quantities. We then show the results for

the (NX, NY, NZ) case where we use robust NPI for all the random quantities.

We compare this with the case where we use NPI without robustness for all three

random quantities. These examples allow us to illustrate the proposed NPI-Bayes

robust hybrid method for the two most extreme cases. We illustrate the approximate

exposure distribution to show how close the combinations are to the percentiles of

the approximate exposure distribution. In the model, we can combine robust and

non-robust random quantities, but for illustration of the method here we concentrate

on the case where we include robustness for all the random quantities. We show the

percentiles for all the other possible combinations of random quantities including

robustness for each random quantity. We use r to denote that we are including

robustness, e.g. BXr indicates that we are using robust Bayesian methods for random

quantity X.

5.5.1 Case (BXr, BYr, BZr)

We consider the case where bodyweight, the log of concentration and the log of

intake are modelled by the robust Bayesian posterior predictive distribution with

the assumption of Normality. We again use the data sets introduced in Subsection

5.3.1. We compare the results from assuming a non-informative prior for all three

random quantities, assuming an interval class of prior distributions for all three

random quantities and assuming a class of Normal-Gamma prior distributions for

all three random quantities. Combinations of different classes of prior distributions

could be considered if desired.

Let µbw, µint and µconc be the intervals for the mean of the prior distribution

for bodyweight, intake and concentration respectively for the interval class of prior
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distributions. Also, let mbw, mint and mconc be the intervals for the mean of the prior

distribution for bodyweight, intake and concentration respectively for the Normal-

Gamma class of prior distributions. Take µbw and mbw to be 10 equally spaced values

between 25 kg and 35 kg, µint and mint to be 10 equally spaced values between

0.5 kg/day and 1.2 kg/day and µconc and mconc to be 10 equally spaced values

between 0.3 µg/kg and 3 µg/kg. For the Normal-Gamma prior we use parameters

a = c = 10, b = 0.01 for all the random quantities. Figure 5.9 shows the results

for the non-informative prior, the two different classes of prior distribution and the

approximate exposure distribution for comparison.

Figure 5.9: Non-informative posterior predictive distribution (black line), robust
interval posterior predictive box (red line), robust Normal-Gamma posterior predic-
tive box (blue line) and approximate exposure distribution (green line)
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In Figure 5.9 we see that the robust Normal-Gamma posterior predictive box

follows the shape of the approximate exposure distribution for lower percentiles

and encloses the approximate exposure distribution. The robust interval poste-

rior predictive box nearly encloses the approximate exposure distribution, although

it slightly underestimates the lower percentiles of exposure. The non-informative

posterior predictive distribution is only a single line here and underestimates the

approximate exposure distribution for most percentiles until it reaches very high per-

centiles. This is probably due to the shape constraints of the Student t-distributions

used to form the non-informative posterior predictive distribution and the lack of

uncertainty included by the prior distribution.
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5.5.2 Case (NXr, NYr, NZr)

In this section we use robust NPI for all three random quantities. We combine them

as described in Section 4.9 to find the robust NPI lower and upper cdfs for exposure.

The results are shown in Figure 5.10 with the approximate exposure distribution for

comparison. An advantage of NPI is that we do not need to assume any distributions

or choose any prior distributions or values for the prior distributions for the random

quantities.

Figure 5.10: Robust NPI lower and upper cdfs for exposure (blue lines), NPI lower
and upper cdfs without robustness (red lines) and approximate exposure distribution
(green line)
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The original NPI lower and upper cdfs did not enclose the approximate exposure

distribution while the robust NPI lower and upper cdfs do enclose the approximate

exposure distribution. Therefore we can see that adding robustness to the analysis

results in bounds containing the distribution that we are trying to predict. We

compare the 10th, 50th and 90th percentiles of this case and (BX, BY, BZ) with all

the other cases in the next subsection.

5.5.3 Comparing all the cases

In this section we consider all the cases (NX, NY, NZ) etc. including robustness

for each random quantity. For illustration we use the Normal-Gamma class of prior

distributions when we use Bayesian methods for the random quantities, as it per-
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formed well in the (BX, BY, BZ) case. We take mbw, mint and mconc as before. The

10th, 50th and 90th percentiles are shown in Table 5.1.

Table 5.1: Percentiles for all cases including robustness

Case

10th 50th 90th

Percentile Percentile Percentile

Lower Upper Lower Upper Lower Upper

(NXr, NYr, NZr) 0 0.0087 0.0130 0.0435 0.0655 ∞

(BXr, NYr, NZr) 0 0.0112 0.0121 0.0537 0.0548 ∞

(NXr, BYr, NZr) 0 0.0095 0.0137 0.0377 0.0595 ∞

(NXr, NYr, BZr) 0 0.0089 0.0147 0.0384 0.0655 ∞

(NXr, BYr, BZr) 0.0016 0.0095 0.0151 0.0344 0.0603 0.7663

(BXr, NYr, BZr) 0.0009 0.0115 0.0136 0.0497 0.0570 0.7610

(BXr, BYr, NZr) 0.0009 0.0118 0.0121 0.0490 0.0527 0.6789

(BXr, BYr, BZr) 0.0036 0.0118 0.0139 0.0446 0.0515 0.1760

The 10th, 50th and 90th percentiles for the approximate exposure distribution

are 0.0077, 0.0335 and 0.1455 µg/kg bw/day respectively. We can see that the 10th,

50th and 90th percentiles of the approximate exposure distribution all lie in the

lower and upper bounds for the 10th, 50th and 90th percentiles for all the cases.

Therefore adding robustness to all the random quantities leads to results that again

enclose the 10th, 50th and 90th percentiles of the approximate exposure distribution.

In this section we have seen that it is possible to include robustness when we

use Bayesian methods for random quantities and when we use NPI for random

quantities. We have compared the different cases of combining the random quantities

with the different robust methods. Including robustness is useful as it resulted in all

the cases enclosing the 10th, 50th and 90th percentiles of the approximate exposure

distribution. For the Bayesian case different classes of prior distributions could

be chosen to reflect prior beliefs about the random quantities. For the NPI case

different levels of robustness could be incorporated. For small samples, we could

perhaps assign the probability 1
n+1

to two intervals on either side of every interval.
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This would include more robustness to represent the increased uncertainty about

the distribution that the data were sampled from for a small sample.

5.6 Combining NPI with Bayesian 2D MCS

We have illustrated combining NPI with the Bayesian posterior predictive distribu-

tion in this chapter. However it may be the case that we want to combine a predictive

method with a Bayesian 2D method (one that separates variability and uncertainty).

We illustrate a NPI-2D Bayes hybrid method with the Exposure Model. Suppose we

want to calculate exposure based on predictions of the bodyweight of a young child.

Usually to combine a Bayesian posterior predictive distribution with a Bayesian

2D MCS, we would sample from the Bayesian posterior predictive distribution for

bodyweight in the outer loop of a 2D MCS. We would then combine the predicted

value with the values calculated in the inner loop of the 2D MCS.

Here we do not want to choose a distribution for bodyweight so we predict the

bodyweights using NPI. We again use the data sets provided in Subsection 5.3.1. We

use a Bayesian 2D MCS for concentration and intake assuming that both random

quantities are Lognormally distributed. We combine concentration and intake in a

2D MCS with 1000 inner loops and 1000 outer loops to include uncertainty about

the distribution parameters. Then we find NPI lower and upper cdfs for the product

of intake and concentration including parameter uncertainty by using the values that

form the envelope of the 2D MCS output. These NPI lower and upper cdfs can then

be combined with the NPI lower and upper cdfs for bodyweight as done previously

in Section 4.3 to find bounds on exposure. The resulting lower and upper NPI cdfs

are shown in Figure 5.11.
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Figure 5.11: NPI lower and upper cdfs for exposure
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So here we have combined the NPI predictions for the next bodyweight obser-

vation with the 2D MCS results to include parameter uncertainty for concentration

and intake.

5.7 Conclusions

In this chapter we have shown that we can combine NPI and the Bayesian posterior

predictive distribution by using the NPI-Bayes hybrid method and the NPI-Bayes

robust hybrid method. We have also shown that it is possible to combine NPI with

2D Bayesian methods such as 2D MCS. The NPI-Bayes hybrid method is useful

where there are different levels of information available for random quantities. NPI

can be used for random quantities for which we do not have enough information

available to assume a distribution and the Bayesian posterior predictive distribution

or 2D Bayesian MCS can be used for random quantities about which we have more

information. It is common in practice that this situation, where we have lots of in-

formation about some random quantities and less information about other random

quantities, will occur. For example, there is often little information about concen-

tration of chemicals in different food types but lots of information available about

the bodyweights of the population.

We saw in Subsection 5.3.4 that even when using samples with 100 values, the
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percentiles of the approximate exposure distribution did not lie in the intervals for all

the cases for all the samples. We would expect that as the sample size, n, increases,

the lower and upper cdfs would converge to the approximate exposure distribution.

Therefore as some of the combinations failed to fully represent the percentiles of

the approximate exposure distribution for n = 100, we added robustness to each

random quantity to improve the hybrid method.

To incorporate robustness we created a new robust hybrid method that can com-

bine random quantities using either robust NPI or the Bayesian posterior predictive

distribution with robustness. We considered two different classes of prior distribu-

tions for the Bayesian posterior predictive distribution, and our method could easily

be adapted to include other possible classes of prior distributions. The Bayesian

part of the NPI-Bayes robust hybrid method could be applied to any distribution

(e.g. Weibull or Exponential distribution), as long as we can sample from the poste-

rior predictive distribution. We can also represent different levels of robustness for

NPI. Including robustness allows us to account for more uncertainty and led to both

cases (NXr, NYr, NZr) and (BXr, BYr, BZr) enclosing the approximate exposure

distribution. Also, all the cases where robustness was included for all the random

quantities produced intervals containing the 10th, 50th and 90th percentiles of the

approximate exposure distribution. This was not the case without robustness. This

indicates that when using predictive methods on smaller samples, the NPI-Bayes ro-

bust hybrid method can represent the uncertainty about the approximate exposure

distribution.

In practice, the NPI-Bayes robust hybrid method allows us to take account of

the information available about random quantities such as intake whilst including

robustness for random quantities such as concentration. It also allows us the option

of not having to assume a distribution for all the random quantities in the model.

We can use a mixture of the NPI-Bayes hybrid method and robust hybrid method to

implement robustness for some random quantities and not for others. If the sample

sizes are large then the hybrid method will provide results close to the approximate

exposure distribution when the random quantities are combined. However if the

sample sizes are small the robust hybrid method will provide better results than
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the hybrid method because it is more likely to contain the approximate exposure

distribution in the resulting bounds.

The results from all three of these methods require more investigation as it is

not clear how the resulting bounds should be interpreted. The NPI-Bayes hybrid

method, the NPI-Bayes robust hybrid method and the NPI-2D Bayes hybrid method

introduced in this chapter are useful tools to combine random quantities in practice.

The choice of which method to use and which combination to use will depend on

many factors, such as sample size, whether there is enough information to make

distributional assumptions and whether there are experts available to choose classes

of prior distributions.



Chapter 6

Conclusions and Future Research

This chapter provides a short summary of the main results presented in this thesis,

and discusses important challenges for future research.

6.1 Conclusions

In this thesis we have introduced new methods that add to the choice of methods

available for risk assessment. The appropriate method to use will depend on factors

such as whether the decision is about a population or an individual, how many data

are available and if there is enough information about the random quantities for the

analyst to assume a particular distribution. It also depends on whether the whole

distribution or a percentile for a population is of interest. If the decision maker

would like to estimate the risk based on the whole distribution, Bayesian p-boxes

could be implemented. If the question is about a random individual NPI could be

appropriate, as NPI only assumes A(n) and includes interval uncertainty. If there

are some random quantities in a model about which we do not want to make a

distributional assumption and others that we are prepared to assume distributions

for, then the NPI-Bayes or robust NPI-Bayes hybrid method could be used.

In Chapter 3, we have seen that nested Bayesian p-boxes can give an analyst or

risk manager a clear indication of the changes at different credibility levels. Bayesian

p-boxes should be used instead of frequentist p-boxes when working with distribu-

tions with more than one parameter, particularly for small sample sizes. This is be-

135
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cause the frequentist p-boxes ignore dependence between parameters and therefore

do not lead to the tightest possible bounds given the information available. Bayesian

p-boxes can be formed using any subset of the posterior parameter space, as long as

it is closed and bounded. We have shown that the Bayesian p-box method can take

fixed measurement uncertainty and robustness to the prior distribution into account.

We focused on including robustness to the prior distribution for the practically im-

portant cases of the Normal and Lognormal distributions. We have explained how

Bayesian p-boxes can be combined under the assumption of independence or under

no assumptions about dependence using the Williamson and Downs method. It may

be useful to risk managers to see both outputs so they can see how much reduction

in uncertainty there is under the assumption of independence. Bayesian p-boxes can

include distribution uncertainty and model uncertainty by forming Bayesian p-boxes

separately for each distribution or model and then taking the envelope of the results.

Displaying the results from different distributions or models may provide more in-

sight into the risk distribution and provide a clearer picture for the risk manager.

When a risk manager has to make a decision about a population, this method can

be used to illustrate bounds on the distribution of the population.

In Chapter 4, we have shown that NPI provides an alternative method for pre-

dicting the exposure of a random individual to a chemical. For a medium or large

data set, NPI provides a better representation of the exposure than methods such

as the Bayesian posterior predictive distributions due to the inclusion of interval

uncertainty and the lack of distributional assumptions. NPI can be used where we

have left-censored data and known measurement uncertainty and will produce the

tightest possible lower and upper cdfs given this information. We explored the ef-

fect of strong and weak correlations in an example and it seemed that neither of

them strongly influenced the NPI analysis. We also suggested an ad hoc method

to include more uncertainty in the NPI analysis which we called ‘robust NPI’. This

method seems to work well and may provide a way to use NPI for small samples

but requires further investigation.

In Chapter 5, we introduced a NPI-Bayes hybrid method that allows us to com-

bine random quantities where some random quantities are modelled with NPI and
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others are modelled with Bayesian methods. We have shown that NPI can be com-

bined with both one-dimensional methods, such as the Bayesian posterior predictive

distribution and two-dimensional methods such as 2D Monte Carlo Simulation. We

showed how robustness could be incorporated in the hybrid method for both NPI

and the Bayesian posterior predictive distribution methods. Including robustness to

the prior distribution can partially reduce the effect of distributional assumptions, as

including the additional uncertainty increases the chance that the true distribution

will fall within the bounds. However, robustness may also reduce the uncertainty

if narrower ranges are selected for the priors. Further research is required into the

interpretation of the output bounds. NPI is a frequentist method, that is also con-

sistent with the Bayesian framework and it is unclear how to interpret the bounds

when mixing a frequentist and a Bayesian method together.

All methods that we have presented and explored in this thesis help to model the

uncertainties involved more transparently than they currently are in the determin-

istic risk assessments. We have focused on Bayesian methods because they have the

advantage that parameter dependence can be incorporated and the results can be

updated with future observations. NPI has been investigated due to the advantage

of not having to assume a distribution and because it includes interval uncertainty.

As both NPI and Bayesian methods have advantages we then combined them in

a NPI-Bayes hybrid method. Further research is required into extensions of these

methods. We briefly describe possible future research topics in Section 6.2.

6.2 Topics for future research

In this section we discuss possible areas of future research which build on the work

presented in this thesis. All these areas would add to the expansion of quantifying

uncertainty in risk assessments.

6.2.1 Uncertainty about correlations

It is possible to combine various types of bounds, e.g. Bayesian p-boxes, by using the

method presented by Williamson and Downs (1990). We have also briefly introduced
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copulas which are a method of combining random quantities with a fixed correlation.

However when we do not know much about the dependence but we do know that

the random quantities are, for example, definitely not negatively correlated, the

Williamson and Downs method will not be able to exclude this particular correlation.

Further research is needed into excluding known dependencies from the resulting

bounds. If the result of combining two random quantities with a specific correlation

falls completely within the bounds formed using the Williamson and Downs method,

excluding the specific correlation may not have any effect on the outer bounds. If

we knew that there was a range of possible correlations, it may be possible to

combine the bounds assuming various correlations in the interval. If these behave in

a linear way (i.e. the lowest correlation leads to the lowest possible bound and as the

correlation increases the upper bounds increase) then it may be possible to draw a

p-box around the results. Further research into eliciting and modelling dependencies

between random quantities is necessary to make the risk assessments more realistic.

6.2.2 Bayesian p-boxes for other distributions

In this thesis we have presented Bayesian p-boxes for the Exponential and Normal

distributions. Bayesian p-boxes could be formed for other distributions, as long as

we can calculate the highest posterior density or similar region from the posterior

distribution. The region needs to be closed and bounded so we can minimise and

maximise the corresponding cdf over the region to form the lower and upper bounds

on the random quantity. If we had a multi-modal distribution, we could have various

closed and bounded regions. It would in theory be possible to minimise and maximise

the cdf of the distribution over these regions separately and then form multiple p-

boxes to represent the different regions. When these p-boxes are considered all

together they should represent the 100(1 − α)% probability that, for example, the

distribution for a random quantity X falls in the p-boxes. However, if we can only

sample from the posterior distribution, it may not be possible to calculate a highest

posterior density or any other region with a certain credible level. The justification

for the minimum and maximum bounds being formed by the (µ, σ) pairs on the

contour applies to location-scale distributions. However if distributions have more
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than two parameters, it will become more complicated to calculate regions and to

present the results in a meaningful way. It would be interesting and also important

for risk assessment to develop Bayesian p-boxes for other distributions.

6.2.3 More realistic models

Throughout this thesis we have used the simple Exposure Model to illustrate our

methods. It would be beneficial to consider developing the methods for more com-

plicated exposure models or for models in other fields. We have already discussed

developing Bayesian p-boxes for other distributions, but there is also research needed

on combining the Bayesian p-boxes for different random quantities in a model. It

would be useful to research how we could find the hpd region, or a similar region,

from the posterior distribution for several combined random quantities as this would

then allow us to find, for example, 95% bounds on the whole model. NPI could be

used for more complicated models, although more research needs to be done on

how to do this in the most computationally efficient way. As models become more

complicated and include more random quantities it can potentially make it difficult

to store all the possible values on a computer. It would also be useful to look at

combining random quantities with different dependencies which is currently not pos-

sible in the NPI framework. The NPI-Bayes hybrid methods could be used for more

complicated models, although this too will be limited by the computation required

for the random quantities that NPI is used for in the model.
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Appendix

A Distributions used in this thesis

Normal distribution

X has a Normal distribution with mean µ and variance σ2, denoted X ∼ N(µ, σ2),

if it has density

p(X) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(−∞ < x < ∞)

As the distribution is symmetric and unimodal, the median and mode are both equal

to the mean. If µ = 0 and σ = 1, X is said to have a Standard Normal distribution.

µ can be referred to as the location parameter and σ can be referred to as the scale

parameter.

Lognormal distribution

X has a Lognormal distribution if it has density

p(X) =
1

xσ
√

2π
exp

(
−(log(x)− µ)2

2σ2

)

where µ and σ are the mean and standard deviation of the Normal distribution for

log(X).

Student t distribution

X has a Student t distribution on ν degrees of freedom, denoted X ∼ tµ, if it has

density

p(X) =
Γ(ν+1

2
)

√
πνΓ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

The non-central t distribution is a generalisation of Student’s t distribution with a

non-centrality parameter that measures the normalised distance between the true

population mean and the population mean, µ, that we have assumed.
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Gamma distribution

X has a two parameter Gamma distribution with parameters a and b, denoted

X ∼ G(a, b), if it has density

p(X) =
1

baΓ(a)
xa−1exp

(
−x

b

)

This is a conjugate prior distribution for the Exponential distribution in Bayesian

statistics.

χ2 distribution

X has a χ2 distribution on ν degrees of freedom, denoted X ∼ χ2
ν , if it has density

p(X) =
1

2
ν
2 Γ
(

ν
2

)x ν−2
2 exp

(
−x

2

)

This is a special case of the Gamma distribution with a = ν
2

and b = 2.

Exponential Distribution

X has an Exponential distibution with parameter λ if it has the density

p(X) = λexp (−λx)
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