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Abstract

This thesis presents Nonparametric Predictive Inference (NPI) for several multiple

comparisons problems. We introduce NPI for comparison of multiple groups of data

including right-censored observations. Different right-censoring schemes discussed

are early termination of an experiment, progressive censoring and competing risks.

Several selection events of interest are considered including selecting the best group,

the subset of best groups, and the subset including the best group. The proposed

methods use lower and upper probabilities for some events of interest formulated

in terms of the next future observation per group. For each of these problems the

required assumptions are Hill’s assumption A(n) and the generalized assumption

rc-A(n) for right-censored data.

Attention is also given to the situation where only a part of the data range is

considered relevant for the inference, where in addition the numbers of observations

to the left and to the right of this range are known. Throughout this thesis, our

methods are illustrated and discussed via examples with data from the literature.
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Chapter 1

Introduction

1.1 Overview

This thesis presents Nonparametric Predictive Inference (NPI) for several compar-

isons problems. Mainly, we introduce NPI for multiple comparisons in situations

with right-censored observations. Such data typically occur in reliability or survival

analysis, due to several reasons. For example, when interest is in a specific failure

mode for a technical unit, it may fail due to a different failure cause. If multiple

failure modes are of interest, and failure will be due to only a single failure mode,

then this situation is known as ’competing risks’, where an observed failure time is

actually a right-censoring time with regard to all failure modes that did not cause

the failure. Another reason for right-censoring may be removal of units from a life-

time experiment, normally to save time or reduce costs, but this also occurs if, at

some point, one wishes to study in more detail units which have not yet failed in

an experiment. If right-censoring is due to an experiment being terminated before

all units have failed, comparison of different groups of units based on such data is

known as ’precedence testing’. If non-failing units are removed from the experiment

at several possible stages it is known as ’progressive censoring’.

In this thesis, we develop NPI for multiple comparisons for precedence testing,

progressive censoring, and competing risks. It should be emphasized that, through-

out the thesis, unspecified reasons for right-censoring are assumed to be based on

processes that are independent of the residual lifetimes of the censored units. We

1



1.2. Assumption A(n) and imprecise probability 2

also present NPI for situations where the information available consists of precise

measurements of real-valued data only within a specific range, with in addition the

numbers of observations to the left and to the right of this range are known.

Section 1.2 provides a brief overview of some basic aspects of imprecise probabil-

ity and the underlying assumption behind NPI, Hill’s assumption A(n). In Section

1.3 we review briefly the main idea of NPI and discuss some applications which

we will refer to later in the thesis. This includes the generalisation of the A(n) as-

sumption needed to accommodate lifetime data, the so-called assumption rc-A(n).

Finally, the outline of this thesis is given in Section 1.4.

1.2 Assumption A(n) and imprecise probability

In this section we briefly overview some basic aspects of imprecise probability and

the underlying assumption behind NPI, Hill’s assumption A(n) [40]. To introduce

A(n) we first need to introduce some notation. Suppose that X1, . . . , Xn, Xn+1 are

real-valued absolutely continuous and exchangeable random quantities. Let the

ordered observed values of X1, X2, . . . , Xn be denoted by x1 < x2 < . . . < xn, and

let x0 = −∞ and xn+1 = ∞ for ease of notation. We assume that no ties occur,

the results can be generalised to allow ties [42], see also Subsection 1.3.5. Based

on n observations, the assumption A(n) is that the probability that the next future

observation Xn+1 falls in the open interval Ij = (xj, xj+1) is 1/(n + 1), for each

j = 0, 1, . . . , n [40].

A(n) does not assume anything else, and can be considered to be a post-data

assumption related to exchangeability [31]. Hill [41] discusses A(n) in detail. A(n)

is not sufficient to derive precise probabilities for many events of interest, but it

provides bounds for probabilities via the ‘fundamental theorem of probability’ [31],

which are lower and upper probabilities in interval probability theory [76, 79].

Lower and upper probabilities generalise classical probabilities, and a lower (up-

per) probability for event A, denoted by P (A) (P (A)), can be interpreted in several

ways [21]: as supremum buying (infimum selling) price for a gamble on the event

A, or as the maximum lower (minimum upper) bound for the probability of A that
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follows from the assumptions made. Informally, P (A) (P (A)) can be considered to

reflect the evidence in favour of (against) event A.

Interval probabilities, also know as imprecise probabilities, have been suggested

in various areas of statistics. Recently increasing attention has been given to this

topic area resulting in a series of conferences and a project website (The Society

for Imprecise Probability: Theories and Applications - www.sipta.org). Walley [76,

77] extended the traditional subjective probability theory via buying and selling

prices for gambles, whereas Weichselberger [78, 79] generalised Kolmogorov’s axioms

without imposing an interpretation.

Below we briefly present some elements of theory of interval probability as rele-

vant to A(n)-based inference. According to Weichselberger [78, 79], an axiomization

of interval probability can be achieved by supplementing Kolmogorov’s axioms as

follows:

For a measurable space (Ω,A), a set function p(.) on A satisfying Kolmogorov’s

axioms is called a classical probability. Let K(Ω,A) be the set of all classical prob-

abilities on (Ω,A). A function [P (.);P (.)] on A is called an F-probability with

structure M, if

i) P : A → {[P ;P ]|0 ≤ P ≤ P ≤ 1} and A 7→ [P (A);P (A)],

ii) M := {p(.) ∈ K(Ω,A)| P (A) ≤ p(A) ≤ P (A), ∀A ∈ A} 6= ∅,

iii) For all A ∈ A, inf
p(.)∈M

p(A) = P (A) and sup
p(.)∈M

p(A) = P (A).

For every F -probability, P (A) and P (A) are conjugated, i.e. P (A) = 1 − P (Ac),

where Ac is the complement of A.

1.3 Nonparametric Predictive Inference (NPI)

Inferences based on A(n) are predictive and nonparametric, and can be considered

suitable if there is hardly any knowledge about the random quantity of interest,

other than the n observations, or if one does not want to use such information,

e.g. to study effects of additional assumptions underlying other statistical methods.

Nonparametric Predictive Inference (NPI) is a statistical method based on Hill’s
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assumption A(n) [40], which gives direct probabilities for a future observable random

quantity, given observed values of related random quantities [1, 21]. NPI has been

developed in recent years, mainly by Frank Coolen and Pauline Coolen-Schrijner and

their collaborators and students, for different applications in statistics, reliability and

operational research.

In NPI uncertainty is quantified by lower and upper probabilities for events of in-

terest. Augustin and Coolen [1] introduced predictive lower and upper probabilities

based on A(n) as follows:

Let B be the Borel σ-field over R. For any element B ∈ B, lower probability

P (.) and upper probability P (.) for the event Xn+1 ∈ B, based on the intervals

Ij = (xj, xj+1) (j = 0, 1, . . . , n) created by n real-valued non-tied observations, and

the assumption A(n), are

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ⊆ B}|

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ∩ B 6= ∅}|

where |A| is the cardinality of a set A, i.e. the number of elements contained in A.

In other words, the lower probability P (Xn+1 ∈ B) is achieved by taking only prob-

ability mass into account that is necessarily within B, which is only the case for the

probability mass 1
n+1

per interval Ij if this interval is completely contained within B.

The upper probability P (Xn+1 ∈ B) is achieved by taking all the probability mass

into account that could possibly be within B, which is the case for the probability

mass 1
n+1

, per interval Ij, if the intersection of Ij and B is non-empty.

Augustin and Coolen [1] showed that these bounds fit nicely into the framework

of interval probability [78, 79]. They proved that, without adding any further as-

sumptions, these A(n)-based lower and upper probabilities are F -probability with

structure

M := {p(.) ∈ K(R,B)| p(Xn+1 ∈ Ij) =
1

n+ 1
, ∀j = 0, 1, . . . , n}.

By the nature of A(n), NPI is a frequentist statistical methodology [1, 40, 41],

which however can be interpreted in a way similar to Bayesian statistics [21, 42].

An important advantage over more established frequentist methods is that NPI does



1.3. Nonparametric Predictive Inference (NPI) 5

not depend on counterfactuals, that is data which were not actually observed but

could have been observed. For example, these are important in hypothesis testing,

which has led to a large literature on frequentist methods for related problems con-

sidering slightly varying experimental procedures. In NPI, as in Bayesian statistics,

the inferences only involve the actual data observed, although a warning is needed

about the fact that, quite obviously, to apply NPI one must be happy with the

exchangeability assumption on the data and future observation(s), which may be

non-trivial depending on the experimental set-up.

1.3.1 NPI for multiple comparisons

For complete data, Coolen [19] introduced NPI for comparing two independent

groups, say X and Y . In classical statistics these tend to be referred to as ’popula-

tions’. Throughout this thesis, we avoid the term ‘populations’ in NPI as we only

consider one future observation and do not make use of any population distribution,

even no assumptions about existence of such a distribution or about a meaningful

population are made. Suppose that X1, . . . , Xnx
, Xnx+1 and Y1, . . . , Yny

, Yny+1 are

real-valued absolutely continuous and exchangeable random quantities from X and

Y , respectively. Let their ordered observed values be x1 < x2 < . . . < xnx
and

y1 < y2 < . . . < yny
, and let x0 = y0 = −∞ and xnx+1 = yny+1 = ∞. Again we

assume that no ties occur, the results can be generalised to allow ties [42].

Such comparisons focus on the next future observation from each group. The

NPI lower and upper probabilities for the event that a future observation, Xnx+1, of

group X is less than a future observation, Yny+1, of group Y (i.e. Xnx+1 < Yny+1),

based on nx and ny observations of group X and Y , and the assumptions A(nx) for

Xnx+1 and A(ny) for Yny+1, are

P (Xnx+1 < Yny+1) =
1

(nx + 1)(ny + 1)

ny
∑

j=1

nx
∑

i=1

1{xi < yj} (1.1)

P (Xnx+1 < Yny+1) =
1

(nx + 1)(ny + 1)

{

ny
∑

j=1

nx
∑

i=1

1{xi < yj}+ nx + ny + 1

}

(1.2)

where 1{E} is an indicator function which is equal to 1 if event E occurs and 0 else.

For these lower and upper probabilities the conjugacy property holds, that is for an



1.3. Nonparametric Predictive Inference (NPI) 6

event E and its complementary event Ec, P (E) = 1− P (Ec).

Throughout we assume that information on units from one group does not hold

any information about units from the other group, so Xnx+1 and Yny+1 are indepen-

dent and data from group X contain no information on Yny+1 and vice versa. We

call this ‘complete independence’ of the groups.

Coolen and van der Laan [25] extended this to compare k ≥ 2 groups with

different events of interest including selection of the best group, the subset of best

groups, and the subset that includes the best group.

Suppose we have k ≥ 2 groups and nj + 1 random quantities from group j,

denoted by Xj,ij where ij = 1, 2, . . . , nj , nj + 1, j = 1, 2, . . . , k, and let for each

group j (j = 1, 2, . . . , k) xj,1 < xj,2 < . . . < xj,nj
be the ordered observed values and

xj,0 = −∞ and xj,nj+1 = ∞. The inference depends on Hill’s assumption A(nj) [40]

for each group j, as described before.

Coolen and van der Laan [25] presented the following NPI lower and upper prob-

abilities for the event that a specific Xl,nl+1 is the maximum for all next observations

Xj,nj+1, j = 1, . . . , k.

P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

=
1

k
∏

j=1

(nj + 1)









nl
∑

il=1

k
∏

j=1

j 6=l

nj
∑

ij=1

1{xj,ij < xl,il}









P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

=
1

k
∏

j=1

(nj + 1)









nl
∑

il=1

k
∏

j=1

j 6=l



1 +

nj
∑

ij=1

1{xj,ij< xl,il}













+
1

nl + 1

They also considered selection of a subset of groups such that all the groups in

this subset are ’better’ than all not selected groups, that is the next observation

of each group in the subset is greater than the next observation of all groups not

in the subset. Let S = {l1, l2, ..., lm} be a subset of m groups (1 ≤ m ≤ k − 1)

from k independent groups and let NS be the complement set of S containing the

remaining k −m groups. Then the NPI lower and upper probabilities for the event

that the next observation of each group in S is greater than the next observation of
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each group in NS, i.e. min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1, are [25]

P

(

min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

=
1

k
∏

j=1

(nj + 1)

nl
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





nj
∑

ij=1

1{xj,ij < min
l∈S

{xl,il}}





P

(

min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

=
1

k
∏

j=1

(nj + 1)

nl+1
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS



1+

nj
∑

ij=1

1{xj,ij< min
l∈S

{xl,il}}





where the notation

bl
∑∑∑∑∑∑

il=a

l∈S

is used for the m sums

bl1
∑

il1=a

...

blm
∑

ilm=a

.

Using the same definitions of subsets S and NS, we can also be interested in

selecting the subset S that contains the best group. Then the NPI lower and upper

probabilities for the event that the next observation from (at least) one of the se-

lected groups in S is greater than the next observation from each group in NS, i.e.

max
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1, are [25]

P

(

max
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

=
1

k
∏

j=1

(nj + 1)

nl
∑∑∑∑∑∑

il=0

l∈S

∏

j∈NS





nj
∑

ij=1

1{xj,ij < max
l∈S

{xl,il}}





P

(

max
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

=
1

k
∏

j=1

(nj + 1)

nl+1
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS



1+

nj
∑

ij=1

1{xj,ij<max
l∈S

{xl,il}}





1.3.2 NPI for right-censored data

In reliability and survival analysis, data on event times, often called lifetime, are

often affected by right-censoring, where for a specific unit or individual it is only

known that the event has not yet taken place at a specific time. An observation

for a unit or an individual is said to be right-censored at c when its lifetime is only

known to be greater than c [48].

The assumption A(n) requires fully observed data, and cannot deal directly with

right-censored data. Coolen and Yan [27] presented a generalisation of A(n), called

right-censoring A(n) or rc-A(n), which is suitable for right-censored data. In compar-

ison to A(n), rc-A(n) uses the extra assumption that, at the moment of censoring,



1.3. Nonparametric Predictive Inference (NPI) 8

the residual lifetime of a right-censored unit is exchangeable with the residual life-

times of all other units that have not yet failed or been censored. Further details

of rc-A(n) are given in [27]. To formulate the required form of rc-A(n), we need no-

tation for probability mass assigned to intervals without further restrictions on the

spread within the intervals. Such a partial specification of a probability distribution

is called an M -function [27] which is given by the following definition.

Definition 1.1. A partial specification of a probability distribution for a real-valued

random quantity X can be provided via probability masses assigned to intervals,

without any further restriction on the spread of the probability mass within each

interval. A probability mass assigned, in such a way, to an interval (a, b) is denoted

by MX(a, b), and referred to as M -function value for X on (a, b).

Clearly, each M -function value should be in [0,1] and all M -function values for

X on all intervals should sum up to one. The concept of M -function is similar to

that of Shafer’s ‘basic probability assignment’ [72].

Let X1, . . . , Xn, Xn+1 be positive, continuous and exchangeable random quan-

tities representing lifetimes. Suppose that there are n observations of group X

consisting of u event times, x1 < x2 < . . . < xu, and υ(= n − u) right-censored

observations, c1 < c2 < . . . < cυ. Let x0 = 0 and xu+1 = ∞. Suppose further

that there are si right-censored observations in the interval (xi, xi+1), denoted by

ci1 < ci2 < . . . < cisi , so
∑u

i=0 si = υ. The assumption rc-A(n) partially specifies

the NPI-based probability distribution for Xn+1 by the following M -function values,

where the random quantity Xn+1 represents the failure time of one future unit [27].

Definition 1.2. Right-censoring A(n) (rc-A(n)) partially specifies the probability

distribution for the next observation Xn+1 by the following M -function values,

MX
i = MXn+1(xi, xi+1) =

1

n+ 1

∏

{r:cr<xi}

ñcr + 1

ñcr

, (1.3)

MX
i,i∗ = MXn+1(c

i
i∗ , xi+1) =

1

(n+ 1)ñci
i∗

∏

{r:cr<ci
i∗
}

ñcr + 1

ñcr

, (1.4)

where i = 0, 1, . . . , u and i∗ = 1, 2, . . . , si.
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These M -function values can also be written as (for i = 0, 1, . . . , u and i∗ =

0, 1, . . . , si)

MXn+1(t
i
i∗ , xi+1) =

1

n+ 1
(ñti

i∗
)δ

i
i∗
−1

∏

{r:cr<ti
i∗
}

ñcr + 1

ñcr

(1.5)

where

δii∗ =







1 if i∗ = 0 i.e. ti0 = xi (failure time or time 0)

0 if i∗ = 1, . . . , si i.e. tii∗ = cii∗ (censoring time)

and ñcr and ñti
i∗
are the numbers of units in the risk sets (still functioning or alive and

uncensored) just prior to time cr and tii∗ , respectively. For consistency of notation,

the further definition ñ0 = n + 1 is used throughout. Only intervals of this form

have positive M -function values, and these sum up to one over all these intervals.

Summing up all M -function values assigned to such intervals with the same xi+1 as

right end point gives the probability

Pi = P (Xn+1 ∈ (xi, xi+1)) =
1

n+ 1

∏

{r:cr<xi+1}

ñcr + 1

ñcr

(1.6)

where xi and xi+1 are two sequential failure times (and x0 = 0, xu+1 = ∞). It

should be noted that, throughout this thesis, the product taken over an empty set is

defined to be equal to one. To get more insight in rc-A(n), we provide an illustrative

example in Appendix A.

Below two useful equalities are given which will be used later in the thesis, these

were presented and proven in [27, p. 51].

Lemma 1.1. The following two equalities hold, for all i = 0, 1, . . . , u,

(a)

si
∑

i∗=2

1

ñci
i∗
ñci

i∗−1

=
1

ñcisi

− 1

ñci1

for si ≥ 2

(b) 1 +

si
∑

i∗=1

1

ñci
i∗

∏

{r:xi<cr<ci
i∗
}

ñcr + 1

ñcr

=
∏

{r:xi<cr<xi+1}

ñcr + 1

ñcr

for si ≥ 1.
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1.3.3 NPI for survival function

A commonly used method for summarizing lifetime data is the survival function,

S(t), which specifies the probability that the time to event is greater than t. In a

sample of size n, suppose that there are q (q ≤ n) distinct event times x1 < x2 <

· · · < xq. Let hi be the number of events that occur at time xi, and ñxi
the number

of units in the risk set just prior to time xi. The product-limit estimator of the

survival function, first proposed by Kaplan and Meier (KM) [44], is

Ŝ(t) =
∏

i:xi≤t

(

ñxi
− hi

ñxi

)

(1.7)

The product-limit estimator is also the nonparametric maximum likelihood estima-

tor of S(t). In the case where there is no censoring, the product-limit estimator

is identical to the empirical survival function, which is obtained by calculating the

proportion of units that have not yet experienced the event by time t.

The NPI lower and upper survival functions based on the rc-A(n) assumption for

right-censored data can be considered as predictive alternatives to the Kaplan-Meier

estimator [44], see [27] for detailed discussion and examples.

Below we present new formulae for the NPI lower and upper survival functions,

SXn+1
(t) and SXn+1(t), respectively, as first introduced by Coolen et al. [23]. These

formulae are the simplest closed-form expressions for these lower and upper survival

functions presented in the literature thus far, and as such are likely to be useful in

many applications of NPI in reliability and survival analysis. In this thesis, they are

explicitly used in Chapter 6 and they also presented by Maturi et al. [59].

Before introducing the new simple formulae of the NPI lower and upper survival

functions, the following lemma is needed, for which some further notation is intro-

duced. Let ta, a = 1, . . . , n, be n different ordered observations, each either a failure

time (δa = 1) or a right-censoring time (δa = 0), and define δ0 = 1 corresponding to

the definitions t0 = 0 and ñt0 = ñ0 = n+ 1.

Lemma 1.2. For all ta, a = 0, 1, . . . , n,

(ñta)
δa−1 +

n
∑

i=a+1

(ñti)
δi−1

∏

{r:ta≤cr<ti}

ñcr + 1

ñcr

= ñta (1.8)
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Proof. The lemma is proven by induction. First, for ta = tn equation (1.8) is easily

verified both if tn is a failure time or a censoring time. Next, for m = 0, 1, . . . , n−2,

let a = n−m and suppose that equation (1.8) holds for ta = tn−m,

(ñtn−m
)δn−m−1 +

n
∑

i=n−m+1

(ñti)
δi−1

∏

{r:tn−m≤cr<ti}

ñcr + 1

ñcr

= ñtn−m
(1.9)

This implies that equation (1.8) also holds for ta−1 = tn−m−1 = tn−(m+1), which is

shown now. The equality that needs to be proven is

(ñtn−m−1)
δn−m−1−1 +

n
∑

i=n−m

(ñti)
δi−1

∏

{r:tn−m−1≤cr<ti}

ñcr + 1

ñcr

= ñtn−m−1 (1.10)

The left hand side of (1.10) can be written as

(

1

ñtn−m−1

)1−δn−m−1

+

(

ñtn−m−1+1

ñtn−m−1

)1−δn−m−1



(ñtn−m
)δn−m−1+

n
∑

i=n−m+1

(ñti)
δi−1

∏

{r:tn−m≤cr<ti}

ñcr+1

ñcr





=

(

1

ñtn−m−1

)1−δn−m−1

+

(

ñtn−m−1 + 1

ñtn−m−1

)1−δn−m−1

ñtn−m

=

(

1

ñtn−m−1

)1−δn−m−1

+

(

ñtn−m−1 + 1

ñtn−m−1

)1−δn−m−1

(ñtn−m−1 − 1)

=

(

1

ñtn−m−1

)1−δn−m−1 {

1 +
(

ñtn−m−1 + 1
)1−δn−m−1 (ñtn−m−1 − 1)

}

where the first equality follows from (1.9). Both if tn−m−1 is a failure time (δn−m−1 =

1) or a censoring time (δn−m−1 = 0), it follows straightforwardly that this expression

is equal to ñtn−m−1 . Hence, by this induction argument equation (1.8) is proven to

hold for all a = 1, . . . , n. Finally, for a = 0, so t0 = 0 for which δ0 = 1 and

ñt0 = ñ0 = n+ 1 were defined, equation (1.8) follows directly by

(ñ0)
δ0−1 +

n
∑

i=1

(ñti)
δi−1

∏

{r:t0≤cr<ti}

ñcr + 1

ñcr

= 1 + (ñt1)
δ1−1 +

n
∑

i=2

(ñti)
δi−1

∏

{r:t1≤cr<ti}

ñcr + 1

ñcr

= 1 + ñt1 = 1 + n = ñt0

The simple closed-form expressions for the NPI lower and upper survival func-

tions are given by Theorem 1.3. In addition to notation introduced above, let

tisi+1 = ti+1
0 = xi+1 for i = 0, 1, . . . , u− 1.
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Theorem 1.3. The NPI lower survival function [23] can be expressed as follows,

for t ∈ [tia, t
i
a+1) with i = 0, 1, . . . , u and a = 0, 1, . . . , si,

SXn+1
(t) =

1

n+ 1
ñtia

∏

{r:cr<tia}

ñcr + 1

ñcr

(1.11)

and the corresponding NPI upper survival function [23] can be written as follows,

for t ∈ [xi, xi+1) with i = 0, 1, . . . , u,

SXn+1(t) =
1

n+ 1
ñxi

∏

{r:cr<xi}

ñcr + 1

ñcr

(1.12)

Proof. For t ∈ [tia, t
i
a+1), the lower survival function, as given in [23], is equal to

SXn+1
(t) = SXn+1

(tia) = MXn+1(t
i
a, xi+1) +

∑∑∑∑∑∑

C(i,i∗,tia)

MXn+1(t
i
i∗ , xi+1)

=
1

n+ 1







(ñtia
)δ

i
a−1

∏

{r:cr<tia}

ñcr + 1

ñcr

+
∑∑∑∑∑∑

C(i,i∗,tia)

(ñti
i∗
)δ

i
i∗
−1

∏

{r:cr<ti
i∗
}

ñcr + 1

ñcr







=
1

n+ 1

∏

{r:cr<tia}

ñcr + 1

ñcr







(ñtia
)δ

i
a−1 +

∑∑∑∑∑∑

C(i,i∗,tia)

(ñti
i∗
)δ

i
i∗
−1

∏

{r:tia≤cr<ti
i∗
}

ñcr + 1

ñcr







=
1

n+ 1

∏

{r:cr<tia}

ñcr + 1

ñcr

ñtia

where
∑∑∑∑∑∑

C(i,i∗,tia)

denotes the sums over all i from 0 to u and over all i∗ from 0 to si

such that tii∗ > tia. Again, tia can be a failure time (δia = 1) or a censoring time

(δia = 0). The final equality follows from Lemma 1.2.

Lemma 1.2 is also used to prove formula (1.12) for the NPI upper survival func-

tion [23], which, for t ∈ [xi, xi+1), is equal to

SXn+1(t) = MXn+1(xi, xi+1) +
∑∑∑∑∑∑

C(i,i∗,xi)

MXn+1(t
i
i∗ , xi+1)

=
1

n+ 1

∏

{r:cr<xi}

ñcr + 1

ñcr







1 +
∑∑∑∑∑∑

C(i,i∗,xi)

(ñti
i∗
)δ

i
i∗
−1

∏

{r:xi≤cr<ti
i∗
}

ñcr + 1

ñcr







=
1

n+ 1

∏

{r:cr<xi}

ñcr + 1

ñcr

ñxi

where
∑∑∑∑∑∑

C(i,i∗,xi)

denotes the sums over all i from 0 to u and over all i∗ from 0 to si

such that tii∗ > xi.
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Lemma 1.2, and indeed the NPI lower and upper survival functions (1.11) and

(1.12), can also be interpreted along the same lines as the probability redistribution

algorithm for right-censored data as introduced by Efron [35] and also discussed by

Coolen and Yan [27].

1.3.4 NPI for comparing two groups of lifetime data

Coolen and Yan [26] introduced NPI for comparing two independent groups of life-

time data, sayX and Y , including right-censored observations. This comparison is in

terms of lower and upper probabilities for the event that a future observation Xnx+1

of group X is less than a future observation Yny+1 of group Y , based on nx and ny

observations of group X and Y , and the assumptions rc-A(nx) and rc-A(ny). Suppose

that we have observed ux event times from groupX, denoted by x1 < x2 < . . . < xux
,

and υx(= nx − ux) right-censored observations cx,1 < cx,2 < . . . < cx,υx . Let x0 = 0,

xux+1 = ∞, and let sx,i be the right-censored observations in the interval (xi, xi+1),

xi < cix,1 < cix,2 < . . . < cix,sx,i < xi+1, so
∑ux

i=0 sx,i = υx. Similarly, suppose that

there are uy event times from group Y denoted by y1 < y2 < . . . < yuy
and let

y0 = 0 and yuy+1 = ∞, and that there are υy(= ny −uy) right-censored observations

cy,1 < cy,2 < . . . < cy,υy and sy,j right-censored observations in the interval (yj, yj+1),

yj < cjy,1 < cjy,2 < . . . < cjy,sy,j < yj+1, so
∑uy

j=0 sy,j = υy. Then the NPI lower and

upper probabilities for the event Xnx+1 < Yny+1 are

P (Xnx+1<Yny+1)=
ux
∑

i=0

uy
∑

j=0

PX
i







1{xi+1< yj}MY
j +

sy,j
∑

i∗y=1

1{xi+1< cjy,i∗y}M
Y
j,i∗y







(1.13)

P (Xnx+1<Yny+1)=
ux
∑

i=0

uy
∑

j=0

P Y
j







1{xi< yj+1}MX
i +

sx,i
∑

i∗x=1

1{cix,i∗x< yj+1}MX
i,i∗x







(1.14)

where the quantities MX
i (MY

j ), MX
i,i∗x

(MY
j,i∗y

) and PX
i (P Y

j ) are given by (1.3),

(1.4) and (1.6), respectively. Coolen and Yan [26] derived these lower and upper

probabilities by use of the following lemma, given and proven in [26, 81], which is

also used later in the thesis.
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Lemma 1.4. For s ≥ 2, let Jl = (jl, r), with j1 < j2 < . . . < js < r, so we have

nested intervals J1 ⊃ J2 ⊃ . . . ⊃ Js with the same right end-point r (which may be

infinity). We consider two independent real-valued random quantities, say X and Y .

Let the probability distribution for X be partially specified via M -function values,

with all probability mass P (X ∈ J1) described by the s M -function values MX(Jl),

l = 1, . . . , s, so
∑s

l=1MX(Jl) = P (X ∈ J1). Then, without additional assumptions,

s
∑

l=1

P (Y < jl)MX(Jl) ≤ P (Y < X,X ∈ J1) ≤ P (Y < r)P (X ∈ J1)

provides the maximum lower and minimum upper bounds.

1.3.5 Treatment of ties

In NPI it is quite straightforward to deal with tied observations, by assuming that

tied observations differ by small amounts which tend to zero [41]. If such a tie

would occur among different groups, then one can break it similarly in two ways,

different for upper and lower probabilities in such a way that these are maximal

and minimal, respectively, over the possible ways of breaking such ties, without

changing the order of these observations with respect to all other observations [26].

If ties occur between event time and right-censoring time, then as is common in the

literature, the right-censoring time is assumed to be just beyond the event time [44].

Throughout this thesis we deal with tied observations in this way, for more details

we refer to [26, 27, 81].

1.4 Outline of Thesis

The thesis is organized such that each chapter addresses one main inference problem,

and is related to a paper that has been published in an academic journal or which

is in submission. Each chapter is self-contained, with the main problem and the

notation introduced before the core results are presented. The same notation may

be used for different quantities in different chapters, notation introduced in Chapter

1 may also be used.
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In Chapter 2 we introduce NPI for precedence testing for two groups [29]. We

extend that in Chapter 3 to k ≥ 2 groups with focus on different selection problems

[60]. Further extension allowing right-censoring to occur before the experiment is

ended is presented in Chapter 4 [58]. Chapter 5 presents a comparison of two groups

under different progressive censoring schemes [57]. In Chapter 6 we introduce NPI

for competing risks, which is an important topic in reliability [59]. Chapter 7 presents

NPI for comparison of two groups with only a part of the data available [55]. In

the appendix, we enclose the R commands that have been used for calculations.

Despite in some chapters, due to notational complexity we only consider pairwise

comparisons, the R commands provided in Appendix A.1 can be used for more

general events of interest similar to those presented in Chapter 3.

Furthermore, some parts of this thesis have been presented in several confer-

ences and short papers have appeared in related conference proceedings. For exam-

ple, Chapter 2 has been presented at the 5th International Mathematical Methods

in Reliability Conference (Glasgow, UK 2007) [28]. A part of Chapter 3 was pre-

sented at the International Workshop on Applied Probability (Compiegne, France

2008) [52]. Chapter 4 was presented at the International Seminar on Nonparamet-

ric Inference (Vigo, Spain 2008) [53]. Part of Chapter 6 was presented at the 18th

Advances in Risk and Reliability Technology Symposium (Loughborough, UK 2009)

[56]. A comprehensive overview of the main parts of this thesis was presented at the

6th International Symposium on Imprecise Probability: Theories and Applications:

ISIPTA’09 (Durham, UK 2009) [54].



Chapter 2

Comparison of two groups with

early termination

2.1 Introduction

Comparison of lifetimes of units from different groups is a common problem. In this

chapter, we consider the situation where units from two groups are simultaneously

placed on a life-testing experiment, and decisions may be needed before all units

have failed due to cost or time considerations, so the data consist of both observed

lifetimes and observations which are right-censored at the moment the experiment

was terminated.

In classical precedence testing, the experiment is terminated at a certain time or

after a certain number of failures (for a particular group). Epstein [36] first presented

precedence testing, Nelson [63] proposed it as an efficient life-test procedure that

enables decisions after relatively few lifetimes are observed. Balakrishnan and Ng [5]

present an excellent overview, and describe several nonparametric precedence tests

based on the hypothesis of equal lifetime distributions.

As an alternative, we propose Nonparametric Predictive Inference (NPI) for

precedence testing for two groups, with lower and upper probabilities for the event

that the future lifetime of a unit from one group is less than the future lifetime

of a unit from the other group. In Section 2.2, we briefly review some classical

nonparametric precedence tests. Our method is introduced and justified in Sections

16
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2.3 and 2.4 including some special cases and properties. Finally we illustrate and

compare our method with these classical precedence tests via examples in Section

2.5.

2.2 Classical precedence testing

In precedence testing for two groups, units of both groups are placed simultaneously

on a life-testing experiment, and failures are observed as they arise during the ex-

periment, which is terminated as soon as a certain stop criterion has been reached,

so the lifetimes of some units are typically right-censored.

In this section we briefly review some classical nonparametric precedence tests

in the literature, following notations and definitions of Balakrishnan and Ng [5].

Suppose one is interested in comparing the lifetimes of units from two groups X

and Y . Their lifetime distributions are denoted by FX and FY , respectively, and nx

and ny are the number of units of group X and Y that are placed simultaneously

on a life-testing experiment. We assume that the experiment is terminated as soon

as the rthy failure of group Y is observed. It should be noted that for the classical

precedence tests, the stop criterion used is relevant due to the nature of frequentist

hypothesis testing, as it influences the sampling distribution of the test statistic,

which is not the case in the NPI approach presented in Section 2.3.

The classical precedence test was introduced by Nelson [63]. One is interested

in testing the null hypothesis H0 that FX(x) = FY (x) for all x ≥ 0. Let D1 be the

random quantity representing the number of observed lifetimes of group X that are

less than the first observed lifetime of group Y , and let d1 be its observed value.

Similar, let Di be the random quantity representing the number of observed lifetimes

of group X that are between the (i− 1)th and ith observed lifetime of group Y , for

i = 2, . . . , ry, and denote their observed values by di. The precedence test statistic

Q(ry) is the number of lifetimes of group X that precede the rthy lifetime from group

Y , i.e. Q(ry) =
∑ry

i=1 Di. Under H0, the distribution of Q(ry) is

P (Q(ry)= j|H0) =

(

j + ry − 1

j

)(

nx + ny − j − ry
nx − j

)(

nx + ny

ny

)−1

, j = 0, . . . , nx (2.1)
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The classical precedence test may suffer from the masking effect problem, which

is that the null hypothesis may not be rejected for a certain value of ry whilst there

may exist a value less than this ry for which the null hypothesis would be rejected

at the same level of significance. To avoid this problem Balakrishnan and Frattina

[4] proposed the maximal precedence test. The test statistic U(ry) is simply defined

as the maximum of the Di’s defined above, for i = 1, . . . , ry, i.e. U(ry) = max
i=1,...,ry

Di.

Under H0, the cumulative distribution function of U(ry) is given by

P (U(ry)≤d|H0)=P (D1≤d, . . . , Dry≤d|H0)=
∑

CU

(

nx+ny−
ry
∑

i=1

di−ry

ny − ry

)(

nx+ny

ny

)−1

(2.2)

where CU is the set of all possible combinations of di’s (i = 1, . . . , ry) with di ∈
{0, 1, . . . , d} and

∑ry
i=1 di ≤ nx.

The standard Wilcoxon’s rank-sum statistic (the sum of the ranks of the X

failures among all failures) is generalised by Ng and Balakrishnan [66]. They intro-

duced three Wilcoxon-type rank-sum precedence test statistics, namely; the min-

imal, maximal and expected Wilcoxon’s rank-sum precedence tests. Let Rry (R∗
ry)

be the rank-sum of the observed lifetimes of group X that occurred before (after)

the rthy observed lifetime of group Y . Wilcoxon’s rank-sum precedence test statistic

Wry is the sum of Rry and R∗
ry . As the exact lifetimes of group X that occurred

after the rthy observed lifetime of group Y are unknown, so R∗
ry is unknown, the

minimal (maximal) value of R∗
ry and consequently the minimal (maximal) value of

Wilcoxon’s rank-sum precedence test statistic Wry is as follows: when all remaining

(nx −
∑ry

i=1 di) observations of group X occur between the rthy and (ry + 1)th obser-

vation of group Y , then Wilcoxon’s test statistic will be minimal. The test statistic

in this case, called the minimal rank-sum statistic, is

Wmin,ry = Rry + (ry +

ry
∑

i=1

Di + 1) + (ry +

ry
∑

i=1

Di + 2) + . . .+ (ry + nx) (2.3)

Let wmin,ry be the observed value of the test statistic Wmin,ry . Under the null

hypothesis that the lifetime distributions of groups X and Y are the same, the

distribution of Wmin,ry is given by

P (Wmin,ry = w|H0) =
∑

CW

(

nx + ny −
∑ry

i=1 di − ry
ny − ry

)(

nx + ny

ny

)−1

(2.4)
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where CW is the set of all possible combinations of di’s (i = 1, . . . , ry) with di ∈
{0, 1, . . . , nx} and

∑ry
i=1 di ≤ nx, for which also wmin,ry = w holds.

If the nx −
∑ry

i=1 di remaining observations of group X occur after the nth
y ob-

servation of group Y , Wilcoxon’s test statistic is maximal. The test statistic in this

case, called the maximal rank-sum statistic, is

Wmax,ry = Rry + (ny +

ry
∑

i=1

Di + 1) + (ny +

ry
∑

i=1

Di + 2) + . . .+ (ny + nx) (2.5)

The Wilcoxon’s expected rank-sum precedence test statistic, WE,ry , is simply the

average of Wmin,ry and Wmax,ry . Similar to Wmin,ry , the distributions of Wmax,ry

and WE,ry , under H0, can be obtained [5]. The distributions of all mentioned test

statistics under the null-hypothesis will be used to obtain the p-values of these tests

later in Example 2.2. For the classical precedence test, this implies that the p-value

of the observed test statistic is P (Q(ry) ≥ ∑ry
i=1 di|H0) where the distribution of

Q(ry) is given by (2.1). For the maximal precedence test, the p-value of the observed

test statistic is given by P (U(ry) ≥ d|H0), where d is the observed value of U(ry) and

the cumulative distribution of U(ry) is given by (2.2). For the Wilcoxon’s minimal,

maximal and expected rank-sum precedence tests, the p-values of the test statistics

are given by P (Wa,ry ≤ wa|H0) where a = min, max, E and wa is the observed

value of the test statistic, with the distributions of the test statistics are given under

H0 [5]. For more details of these more established methods we refer to [5].

2.3 NPI for precedence testing

To introduce NPI for precedence testing we need first to introduce some notation.

Suppose that X1, . . . , Xn, Xn+1 are positive, continuous and exchangeable random

quantities representing lifetimes. We assume that no ties occur, the results can be

generalised to allow ties [42], see also Subsection 1.3.5.

In precedence testing the experiment is terminated as soon as a certain stop

criterion has been reached. We assume that this stop criterion is expressed in terms

of a stopping time T0, but if instead a number of failures were used as stop criterion

then this would not affect our method, as it is of no relevance in NPI how T0 is
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determined, as long as T0 contains no further information on values beyond T0.

When considering a single group of units, let r denote the number of observations

of X1, . . . , Xn that occur before the stopping time T0, so n − r observations are

right-censored at T0. Let x1 < x2 < . . . < xr be the ordered observed values before

T0, and let x0 = 0 for ease of notation. In this case, all right-censored observations

are the same which simplifies the use of rc-A(n) [27]. For ease of notation, we will

assume that there are no ties between the observed failure times, this ‘tied right-

censoring time’ does not provide any complications, in fact it simplifies the matter

when compared to the general case of varying right-censoring times for which rc-

A(n) provides an inferential approach. The next theorem provides the M -functions

required for precedence testing, which follows from rc-A(n).

Theorem 2.1. For nonparametric predictive precedence testing with stopping time

T0, the assumption rc-A(n) implies that the probability distribution for a nonnegative

random quantity Xn+1 on the basis of data including r real and n− r right-censored

observations, is partially specified by the following M -function values:

MXn+1(xi−1, xi) =
1

n+ 1
, i = 1, . . . , r,

MXn+1(xr,∞) =
1

n+ 1
and MXn+1(T0,∞) =

n− r

n+ 1

Proof. Since there are no censored data before T0, this follows immediately from Def-

inition 1.2 for MXn+1(xi−1, xi) and MXn+1(xr,∞). Suppose the n− r right-censored

observations (beyond T0) are c1 < c2 < . . . < cn−r, then from (1.4)

MXn+1(T0,∞) =
n−r
∑

i∗=1

MXn+1(ci∗ ,∞) =
n−r
∑

i∗=1

1

(n+ 1)ñci∗

∏

{r:cr<ci∗}

ñcr + 1

ñcr

=
1

n+ 1

∏

{r:cr<T0}

ñcr + 1

ñcr

{

n−r
∑

i∗=1

1

ñci∗

∏

{r:T0<cr<ci∗}

ñcr + 1

ñcr

}

=
1

n+ 1

{

−1 +
∏

{r:T0<cr<∞}

ñcr + 1

ñcr

}

=
1

n+ 1
{ñc1 + 1− 1} =

n− r

n+ 1

The fourth equality follows from the fact that the first product is over an empty set,

and by using Lemma 1.1 (b).
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2.4 NPI for comparing two groups with early ter-

mination

To compare two completely independent groups of lifetime data by the NPI approach

for precedence testing, we use the notation as introduced above, but we add an index

x or y corresponding to the groups X and Y . So, nx and ny units of groups X and

Y are placed simultaneously on a life-testing experiment, and rx and ry lifetimes

of groups X and Y are observed before the experiment is terminated at time T0.

So nx − rx and ny − ry lifetimes of groups X and Y are right-censored at T0. Let

x1 < x2 < . . . < xrx and y1 < y2 < . . . < yry be the ordered observed values before

T0 from groups X and Y , respectively. And let x0 = y0 = 0 for ease of notation.

In this section we derive the NPI lower and upper probabilities for the event

that a future observation Xnx+1 of group X is less than a future observation Yny+1

of group Y . Optimal bounds for the probability of Xnx+1 < Yny+1, given the data,

stopping time T0 and based on rc-A(nx) and rc-A(ny), are presented in Theorem 2.2.

Theorem 2.2. For the above scenario, the NPI lower and upper probabilities for

the event Xnx+1 < Yny+1 are

P (Xnx+1 < Yny+1) = A

{

ry
∑

j=1

rx
∑

i=1

1{xi < yj}+ rx(ny − ry)

}

(2.6)

P (Xnx+1 < Yny+1) = A

{

ry
∑

j=1

rx
∑

i=1

1{xi < yj}+ ry + (nx + 1)(ny − ry + 1)

}

(2.7)

where A =
1

(nx + 1)(ny + 1)
·

Proof. The NPI lower probability for the event Xnx+1 < Yny+1 given the data and

T0, i.e. P = P (Xnx+1 < Yny+1), is derived as follows:

P =

ry
∑

j=1

P (Xnx+1 < Yny+1, Yny+1 ∈ (yj−1, yj)) + P (Xnx+1 < Yny+1, Yny+1 ∈ (yry ,∞))

≥
ry
∑

j=1

P (Xnx+1 < yj−1) MYny+1(yj−1, yj) + P (Xnx+1 < yry) MYny+1(yry ,∞) +

P (Xnx+1 < T0) MYny+1(T0,∞)
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=
1

ny + 1

ry
∑

j=1

P (Xnx+1< yj−1)+
1

ny + 1
P (Xnx+1<yry) +

ny − ry
ny + 1

P (Xnx+1 < T0)

≥ A

[

ry
∑

j=1

rx
∑

i=1

1{xi < yj−1}+
rx
∑

i=1

1{xi < yry}+ (ny − ry)
rx
∑

i=1

1{xi < T0}
]

= A

[

ry
∑

j=1

rx
∑

i=1

1{xi < yj}+ rx(ny − ry)

]

.

The first inequality follows by putting all probability masses for Yny+1 corresponding

to the intervals (yj−1, yj) (j = 1, . . . , ry), (yry ,∞) and (T0,∞) to the left end points

of these intervals, and by using Lemma 1.4 for the nested intervals (yry ,∞) and

(T0,∞). The second inequality follows by putting all probability masses for Xnx+1

corresponding to the intervals (xi−1, xi) (i = 1, . . . , rx), (xrx ,∞) and (T0,∞) to the

right end points of these intervals.

The derivation of the corresponding NPI upper probability for the event Xnx+1 <

Yny+1 is given below. The first inequality follows by putting all probability masses for

Yny+1 corresponding to the intervals (yj−1, yj) (j = 1, . . . , ry), (yry ,∞) and (T0,∞)

to the right end points of these intervals, using Lemma 1.4 for the nested intervals

(yry ,∞) and (T0,∞). The second inequality follows by putting all probability masses

for Xnx+1 corresponding to the intervals (xi−1, xi) (i = 1, . . . , rx), (xrx ,∞) and

(T0,∞) to the left end points of these intervals.

P =

ry
∑

j=1

P (Xnx+1 < Yny+1, Yny+1 ∈ (yj−1, yj)) + P (Xnx+1< Yny+1, Yny+1∈ (yry ,∞))

≤
ry
∑

j=1

P (Xnx+1 < yj)MYny+1(yj−1, yj) + P (Xnx+1 < ∞)MYny+1(yry ,∞) +

P (Xnx+1 < ∞)MYny+1(T0,∞)

=
1

ny + 1

ry
∑

j=1

P (Xnx+1 < yj) +
1

ny + 1
P (Xnx+1 < ∞) +

ny − ry
ny + 1

P (Xnx+1 < ∞)

≤ A

ry
∑

j=1

rx+1
∑

i=1

1{xi−1 < yj}+
1

ny + 1
+

ny − ry
ny + 1

= A

[

ry
∑

j=1

rx
∑

i=1

1{xi < yj}+ ry + (ny − ry + 1)(nx + 1)

]
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These NPI lower and upper probabilities are based only on xi (i = 1 . . . , rx), yj

(j = 1, . . . , ry) and T0, further information on location as contained in the obser-

vations is not used. As such, this approach can be regarded as a fully predictive

alternative to standard rank-based methods [50]. It is also easy to show that, for

these lower and upper probabilities the conjugacy property holds.

If the stopping time T0 in the precedence tests, as considered above, does not

affect the experiment, in the sense that all units tested actually fail during the test,

then the results in this chapter are identical to those of NPI for pairwise comparisons

presented by Coolen [19], which is a special case of NPI for multiple comparisons

presented by Coolen and van der Laan [25], see also Subsection 1.3.1.

2.4.1 Special cases

From Theorem 2.2 it follows that if rx = 0 and ry ∈ {0, 1, . . . , ny}, that is, the

experiment is terminated before the first observation of group X, we have

P (Xnx+1 < Yny+1) = 0 and P (Xnx+1 < Yny+1) = 1− A nxry (2.8)

This lower probability is zero, reflecting that on the basis of the data one cannot

exclude the possibility that theX observations will always exceed all Y observations.

If ry = 0 and rx ∈ {0, 1, . . . , nx}, that is, the experiment is terminated before the

first observation of group Y , we have

P (Xnx+1 < Yny+1) = A rxny and P (Xnx+1 < Yny+1) = 1 (2.9)

This upper probability is one, reflecting that one cannot exclude the possibility that

the X observations will always be less than all Y observations. The lower and upper

probabilities in (2.9) can also be obtained from (2.8) using the conjugacy property.

If all units of group Y are observed before the first observation of group X, that

is yny
< x1, and the experiment is terminated after the last unit of group Y is

observed (T0 > yny
), i.e. ry = ny, then, independent of the number of units of group

X observed, we have

P (Xnx+1 < Yny+1) = 0 and P (Xnx+1 < Yny+1) = 1− A nxny (2.10)
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Similarly, if all units of group X are observed before the first observation of group Y ,

that is xnx
< y1, and the experiment is terminated after the last unit of group X is

observed (T0 > xnx
) then, independent of the number of units of group Y observed,

we have

P (Xnx+1 < Yny+1) = A nxny and P (Xnx+1 < Yny+1) = 1 (2.11)

2.4.2 Some properties

We now analyze some properties of the NPI-based lower and upper probabilities

derived in Theorem 2.2. Suppose that the stopping time is increased from T0 to T ∗
0 ,

and denote by r∗x and r∗y the number of lifetimes of group X and Y , respectively,

observed before T ∗
0 . The lower and upper probabilities for the event Xnx+1<Yny+1,

based on the data, T0, rc-A(nx) and rc-A(ny), are denoted by P (Xnx+1<Yny+1) and

P (Xnx+1<Yny+1), while the corresponding lower and upper probabilities for T ∗
0 are

denoted by P ∗(Xnx+1 < Yny+1) and P
∗
(Xnx+1 < Yny+1). We can write r∗x = rx+a

and r∗y = ry+b with a, b nonnegative integers. Using (2.6) the lower probability

P ∗(Xnx+1<Yny+1) can be written as:

P ∗(Xnx+1 < Yny+1) = A

[

ry+b
∑

j=1

rx+a
∑

i=1

1{xi < yj}+ (rx + a)(ny − ry − b)

]

= P (Xnx+1 < Yny+1) + A

[

ry
∑

j=1

rx+a
∑

i=rx+1

1{xi < yj} +

ry+b
∑

j=ry+1

rx+a
∑

i=1

1{xi < yj}+ a(ny − ry − b)− brx

]

(2.12)

Similarly, using (2.7) the upper probability P
∗
(Xnx+1 < Yny+1) can be written as:

P
∗
(Xnx+1<Yny+1) = A

[

ry+b
∑

j=1

rx+a
∑

i=1

1{xi < yj}+ry+b+(nx+1)(ny−ry−b+1)

]

= P (Xnx+1 < Yny+1) + A

[

ry
∑

j=1

rx+a
∑

i=rx+1

1{xi < yj} +

ry+b
∑

j=ry+1

rx+a
∑

i=1

1{xi < yj} − bnx

]

(2.13)

Theorem 2.3 follows from (2.12) and (2.13).
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Theorem 2.3.

(1) Consider the situation that, for a given data set but with increased stopping

time T0, rx has increased while ry is unchanged. Then (i) the lower probability

P (Xnx+1 < Yny+1) is strictly increasing in rx, except if xrx+1 > yny
in which

case the lower probability remains constant, and (ii) the upper probability

P (Xnx+1 < Yny+1) remains constant.

(2) Similarly, consider the situation that ry has increased while rx is unchanged.

Then (i) the lower probability P (Xnx+1 < Yny+1) remains constant, and (ii)

the upper probability P (Xnx+1 < Yny+1) is strictly decreasing in ry, except if

xnx
< yry+1 in which case the upper probability remains constant.

Proof. We prove part (1), the proof of part (2) is similar. To prove (i), increasing rx

while keeping ry constant implies that a is a positive integer and b = 0. Substituting

b = 0 into (2.12) yields

P ∗(Xnx+1<Yny+1)=P (Xnx+1<Yny+1) + A

[

ry
∑

j=1

rx+a
∑

i=rx+1

1{xi < yj}+ a(ny−ry)

]

From this it follows that the lower probability is strictly increasing in rx unless ny =

ry and the double sum equals zero, that is, if ny = ry and all xi, i = rx+1, . . . , rx+a,

are larger than yry . These two conditions hold when xrx+1 > yny
. To prove (ii),

substituting b = 0 into (2.13) yields

P
∗
(Xnx+1 < Yny+1) = P (Xnx+1 < Yny+1) + A

[

ry
∑

j=1

rx+a
∑

i=rx+1

1{xi < yj}
]

From this it follows that the upper probability is strictly increasing in rx unless the

double sum equals zero, that is, if xrx+1 > yry . However, xrx+1 is by definition larger

than yry and consequently the upper probability always remains constant in this

case.

Theorem 2.3 states that the NPI lower (upper) probability for the event Xnx+1 <

Yny+1 never decreases (increases) if T0 increases. This is in line with intuition, as

all possible orderings of all lifetimes which are right-censored at T0 are taken into

account, and also with the general idea behind NPI, which is to explore what can

be inferred from data with only few assumptions added.
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2.5 Examples

In this section, two examples are given. Example 2.1 has been created to illustrate

our method presented in Section 2.4 with focus on the special cases of Theorem 2.3.

Example 2.2 presents a comparison of the NPI method with the classical precedence

tests reviewed in Section 2.2.

Example 2.1. Six units each of group X and group Y are placed simultaneously on

a life-testing experiment and their lifetimes are 1, 2, 3, 10, 11, 12 forX, and 4, 5, 6, 7,

8, 9 for Y , so all 6 observations of group Y are between the 3rd and 4th observations

of groupX. Suppose now that we would have terminated the experiment at stopping

time T0. We calculate the NPI lower and upper probabilities for the event that the

lifetime of a future unit of group X is less than the lifetime of a future unit of group

Y , given the observed lifetimes before T0 for both groups and based on rc-A(6) for

both groups. Table 2.1 and Figure 2.1 show the lower probabilities (2.6) and upper

probabilities (2.7) when T0 increases from 0 to ∞. As the NPI lower and upper

probabilities may only change when a lifetime of either group is observed, we only

have to consider a finite number of time-intervals.

T0 rx ry P P T0 rx ry P P

[0, 1) 0 0 0 1 [7, 8) 3 4 0.3673 0.7551

[1, 2) 1 0 0.1224 1 [8, 9) 3 5 0.3673 0.6939

[2, 3) 2 0 0.2449 1 [9, 10) 3 6 0.3673 0.6327

[3, 4) 3 0 0.3673 1 [10, 11) 4 6 0.3673 0.6327

[4, 5) 3 1 0.3673 0.9388 [11, 12) 5 6 0.3673 0.6327

[5, 6) 3 2 0.3673 0.8776 [12,∞) 6 6 0.3673 0.6327

[6, 7) 3 3 0.3673 0.8163

Table 2.1: NPI lower and upper probabilities for the event X7 < Y7

From Table 2.1 and Figure 2.1 we see that, when increasing rx while keeping

ry constant, the lower probability is stepwise increasing, except for T0 ≥ 9 as then

xrx+1 > yny
. When increasing ry while keeping rx constant, the upper probability is

stepwise decreasing. All this is in agreement with Theorem 2.3 and with intuition.
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Figure 2.1: NPI lower and upper probabilities for the event X7 < Y7

For each T0,
1
2
∈ [P (X7 < Y7), P (X7 < Y7)] which can be interpreted as no strong

indication for X7 < Y7, nor for Y7 < X7 by conjugacy. Table 2.1 also shows that the

imprecision decreases as the number of observations (or T0) increases. The interval

[0.3673, 0.6327] is symmetric around 1
2
, due to the fact that our data are ‘symmetric’

in the order of the observations: first 3 lifetimes of group X, followed by 6 lifetimes

of group Y and then again 3 lifetimes of group X. This interval [0.3673, 0.6327] has

been reached already at T0 = 9 as at that moment all units of group Y are observed,

implying that the 3 remaining lifetimes of group X must be larger than the largest

lifetime of group Y . For our method only the order of the observed lifetimes is

important, not the magnitude. 4

Example 2.2. In this example we compare our NPI approach with the classical

precedence tests reviewed in Section 2.2, using a subset of Nelson’s dataset [64, p.

462] on breakdown times (in minutes) of an insulating fluid that is subject to high

voltage stress. The data are given in Table 2.2.

We compare the lifetimes of units from groups X and Y by calculating the NPI

lower and upper probabilities for the event X11 < Y11, given the stopping time

T0, the observed lifetimes of both groups before T0, and assuming rc-A(10) for both
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Group Lifetimes

X 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75

Y 1.34 1.49 1.56 2.10 2.12 3.83 3.97 5.13 7.21 8.71

Table 2.2: Lifetimes of two samples of an insulating fluid

groups, with the assumption that both groups are completely independent. These

lower and upper probabilities are given in Table 2.3 and Figure 2.2.

T0 rx ry P P T0 rx ry P P

[0, 0.49) 0 0 0 1 [2.10, 2.12) 7 4 0.5289 0.8512

[0.49, 0.64) 1 0 0.0826 1 [2.12, 2.15) 7 5 0.5289 0.8264

[0.64, 0.82) 2 0 0.1653 1 [2.15, 2.57) 8 5 0.5702 0.8264

[0.82, 0.93) 3 0 0.2479 1 [2.57, 3.83) 9 5 0.6116 0.8264

[0.93, 1.08) 4 0 0.3306 1 [3.83, 3.97) 9 6 0.6116 0.8182

[1.08, 1.34) 5 0 0.4132 1 [3.97, 4.75) 9 7 0.6116 0.8099

[1.34, 1.49) 5 1 0.4132 0.9587 [4.75, 5.13) 10 7 0.6364 0.8099

[1.49, 1.56) 5 2 0.4132 0.9174 [5.13, 7.21) 10 8 0.6364 0.8099

[1.56, 1.99) 5 3 0.4132 0.8760 [7.21, 8.71) 10 9 0.6364 0.8099

[1.99, 2.06) 6 3 0.4711 0.8760 [8.71,∞) 10 10 0.6364 0.8099

[2.06, 2.10) 7 3 0.5289 0.8760

Table 2.3: NPI lower and upper probabilities for the event X11 < Y11

Table 2.3 and Figure 2.2 show that, for increasing T0, the lower probability is

increasing when rx increases and remains constant when ry increases. The upper

probability remains constant when rx increases and is decreasing when ry increases,

except for ry ≥ 7 when it remains constant due to xnx
< yry+1 for such ry, which

illustrates Theorem 2.3. The imprecision is decreasing when more lifetimes are

observed. However, if T0 ≥ 4.75, increasing ry while keeping rx constant does not

lead to less imprecision due to the fact that at that time we have observed all

lifetimes of group X (xnx
< yry+1) and consequently increasing ry will not give us

more information about the ordering of the lifetimes of groups X and Y .

One could interpret P (X11 < Y11) >
1
2
as a strong indication that indeed X11 <

Y11. From Table 2.3 we see that if we had stopped the experiment at T0 = 2.06

or later, then indeed P (X11 < Y11) >
1
2
. Had the experiment been stopped earlier,
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Figure 2.2: NPI lower and upper probabilities for the event X11 < Y11

then the NPI lower and upper probabilities would not suggest a strong preference

between the groups.

To compare this with the classical precedence tests, we test H0 : FX = FY

against the alternative hypothesis that FX(x) ≥ FY (x) for x ≥ 0, with strict in-

equality for some x. Table 2.4 gives the values of the test statistics and the cor-

responding p-values (between brackets) for ry = 1, . . . , 6, where the restriction to

these values of ry is chosen as these illustrate all relevant issues in the discussion.

ry 1 2 3 4 5 6

Q(ry) 5 (0.016) 5 (0.070) 5 (0.175) 7 (0.089) 7 (0.185) 9 (0.070)

U(ry) 5 (0.016) 5 (0.033) 5 (0.049) 5 (0.065) 5 (0.081) 5 (0.097)

Wmin,ry 60 (0.016) 65 (0.022) 70 (0.033) 73 (0.031) 76 (0.035) 77 (0.029)

WE,ry 82.5 (0.016) 85 (0.036) 87.5 (0.067) 82 (0.035) 83.5 (0.048) 79 (0.025)

Wmax,ry 105 (0.016) 105 (0.036) 105 (0.086) 91 (0.041) 91 (0.065) 81 (0.024)

Table 2.4: Several nonparametric precedence tests

Table 2.4 shows that the classical precedence test will not reject the null hy-

pothesis of equal distributions at 5% significance level except when the experiment

is terminated after the first lifetime of group Y . The maximal precedence test will

reject the null hypothesis if the experiment is terminated after at most 3 lifetimes
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of group Y . Intuitively, this is logical as we have first observed 5 lifetimes of group

X before the first observation of group Y and no observed lifetimes of group X

between the first and third observation of group Y . In this example, Wilcoxon’s

minimal rank-sum precedence test always rejects the null hypothesis at 5% signifi-

cance level. However, Wilcoxon’s maximal and expected rank-sum precedence tests

reject the null hypothesis only for some values of ry. We saw before that according

to our NPI approach there is an indication that X11 < Y11 when the experiment is

terminated after T0 = 2.06. The results of the classical, Wilcoxon’s maximal and

expected rank-sum precedence tests at this T0 are not in agreement with this but

the maximal and Wilcoxon’s minimal rank-sum precedence tests are. As the NPI

approach is fundamentally different to these hypothesis tests, studying the results

of both might provide useful insights for practical problems. 4

2.6 Concluding remarks

The lower and upper probabilities for predictive precedence testing for two groups,

presented in this chapter, fit in the NPI framework and as such they have strong con-

sistency properties in theory of interval probability [1]. This approach provides an

attractive alternative to the more established methods for nonparametric precedence

testing [5], as instead of testing a null hypothesis the inference directly considers a

comparison of the next observations from the groups considered.

When considering the NPI lower and upper probabilities for the event Xnx+1 <

Yny+1 as a function of the stopping time T0, we showed that these probabilities can

only change at observed lifetimes for groups X or Y . In particular, we showed that,

except for one special case, the lower probability is strictly increasing in rx while

keeping ry constant, and the upper probability is strictly decreasing in ry while

keeping rx constant. As a consequence of this, the imprecision is decreasing as a

function of the number of observed lifetimes and hence as a function of time.

An important issue in statistics is guidance on required design of experiments,

in this situation the numbers of units to be used for both groups and choice of

the stopping time for the experiment. Due to the rather minimal assumptions
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underlying our NPI approach, with the inferences largely based on observed data,

it does not offer a satisfactory solution to this important question. However, once

an experiment is underway, one can monitor the lower and upper probabilities as

presented in this chapter, and one can stop the experiment if one judges these to

indicate a strong enough preference between the two groups. Of course, before any

data become available, one can study some design issues, e.g. the minimum required

number of observations to possibly get a lower probability greater than a half, but

as these would be based on most or least favourable configurations of the not yet

observed data, indications from such studies might be of little practical value.



Chapter 3

Multiple comparisons with early

termination

3.1 Introduction

In Chapter 2 we introduced NPI for comparison of two groups with early termination

of experiments. In this chapter, we consider the situation where units from several

groups (k ≥ 2) are simultaneously placed on a life-testing experiment, and decisions

may be needed before all units have failed due to cost or time considerations.

Balakrishnan and Ng [5] described several nonparametric precedence tests based

on the hypothesis of equal lifetime distributions. In Section 3.2 we briefly describe

some of these classical methods. In Sections 3.3, 3.4 and 3.5 we present NPI for

precedence testing for k ≥ 2 groups in order to select the best group, the subset

of best groups and the subset including the best group, respectively. Examples are

provided throughout to illustrate our method and to compare it with the classical

methods. Section 3.6 contains some concluding remarks.

3.2 Classical methods

When the null hypothesis of the equality (homogeneity) of two (or more) popu-

lations (e.g. processes, treatments) is rejected, one may want to identify which of

these populations is the best. Balakrishnan and Ng [5] introduced several nonpara-

32



3.2. Classical methods 33

metric tests for this selection problem when an early decision is required (called

precedence testing). Below we briefly describe these precedence selection methods

using notation and definitions from Balakrishnan and Ng [5].

Suppose that we have independent random samples from k ≥ 2 different pop-

ulations. Let Xj,ij (ij = 1, . . . , nj) be the lifetime of the ijth component of a ran-

dom sample from population πj with distribution function Fj (j = 1, . . . , k). We

have N =
∑k

j=1 nj units placed simultaneously on a lifetime testing experiment.

The question of interest is to test whether these populations are homogeneous, i.e.

H0 : F1 = F2 = . . . = Fk against the alternative that population πi is the best

(longer life), that is HAi : Fi < Fj for all j 6= i and j = 1, . . . , k. That is, it can be

concluded that Xi, a random quantity representing the lifetime of a unit of popula-

tion i, is stochastically larger than Xj (i.e. Xi �st Xj) if and only if Fi(x) ≤ Fj(x)

for all x ≥ 0 with strict inequality for at least one x, consequently Fi < Fj.

In precedence testing the aim is to reach a decision before all units have failed.

So the experiment is terminated as soon as the r̄ith failure from group i is observed,

where r̄i = bniqc for i = 1, . . . , k and 0 < q < 1, where bac is the largest integer

not greater than a. Consequently, the stopping time T0 can be defined as T0 =

min
1≤i≤k

Xi,(r̄i), where Xi,(r̄i) is the r̄ith order statistic of sample i.

Suppose now that the experiment is terminated at sample i, i.e. T0 = Xi,(r̄i),

then the ordinary precedence statistic [6] is defined as

Q∗(i) = min
1≤j≤k
j 6=i

(

Q
(i)
j /nj

)

(3.1)

where Q
(i)
j is the number of failures observed before Xi,(r̄) from the sample j (j =

1, . . . , k, j 6= i). Small values of Q∗(i) will lead to rejection of the null hypothesis

H0. In this case one can choose HAj (πj is the best) if and only if (Q
(i)
j /nj) = Q∗(i)

for j 6= i and T0 = Xi,(r̄i). If for two or more samples the statistic (Q
(i)
j /nj) is equal

to Q∗(i) then one of the corresponding populations is randomly selected as the best.

Now letD
(i)
j,s be the number of failures of sample j that occur between the (s−1)th

and sth failure of group i, s = 2, . . . , r̄i and let D
(i)
j,1 be the number of failures of

sample j that occur before the first failure of group i. Let W
(i)
j (j = 1, . . . , k, j 6= i)
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be a random quantity defined by

W
(i)
j =

1

2
nj(nj + 2r̄i + 1)− (r̄i + 1)

r̄i
∑

s=1

D
(i)
j,s +

r̄i
∑

s=1

s D
(i)
j,s

Then the minimal Wilcoxon rank-sum statistic [68] is given by

W ∗(i) = max
1≤j≤k

j 6=i





W
(i)
j − E[W

(i)
j |H0]

√

V ar[W
(i)
j |H0]



 (3.2)

where E[W
(i)
j |H0] and V ar[W

(i)
j |H0] are the expected value and the variance of the

statistic W
(i)
j under H0. Large values of W ∗(i) will lead to rejection of the null

hypothesis, in which case one can choose the alternative hypothesis HAj (πj is the

best) if and only if T0 = Xi,(r̄i) and (W
(i)
j −E[W

(i)
j |H0])(V ar[W

(i)
j |H0])

−1/2 = W ∗(i),

for j 6= i.

In this chapter we will focus on the balanced-sample case only (nj = n for all

j) when we compare our method with the classical precedence selection procedures,

since these classical procedures may not be effective when the sample sizes vary

much [5, pp. 226, 265]. For the balanced-sample case, the statistics in (3.1) and

(3.2) reduce to Q∗(i) = minQ
(i)
j and W ∗(i) = maxW

(i)
j , over all j = 1, . . . , k and

j 6= i, respectively. For more details we refer to Balakrishnan and Ng [5]. It

should be emphasized that the NPI method presented in this chapter is equally

straightforward to implement for balanced-sample and unbalanced-sample cases.

A somewhat separate, yet strongly related, branch of statistical research is so-

called ‘selection methods’, which also have the explicit target to select a single

‘best’ group or population or a subset of groups, along the same lines considered

in this chapter. The two main classical approaches in this field are indifference

zone selection [11, 12] and subset selection [38], which were combined by Verheijen

et al. [75]. Coolen and van der Laan [25] presented NPI methods for selection,

in this chapter we follow the same approach with the generalization to allow early

termination of the experiments, hence linking to the classical concepts of precedence

testing.
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3.3 Selecting the best group

In precedence testing, units of all groups are placed simultaneously on a life-testing

experiment, and failures are observed as they arise during the experiment. The

experiment is terminated as soon as a certain stop criterion has been reached, so

the lifetimes of some units are typically right-censored. We assume that this stop

criterion is expressed in terms of a stopping time T0, but if instead a number of

failures were used as stop criterion then this would not affect our method, as it

is of no relevance in NPI how T0 is determined as long as T0 contains no further

information on the residual event times beyond T0 for right-censored units. In

Chapter 2 we introduced NPI for precedence testing for two groups. In this chapter

we extend NPI to precedence testing for k ≥ 2 groups in order to select the best

group, the subset of best groups, and the subset including the best group. Again we

use the assumption rc-A(n) required for precedence testing which is given in Theorem

2.1.

Suppose we have k ≥ 2 groups and nj + 1 random quantities from group j,

denoted by Xj,ij where ij = 1, 2, . . . , nj , nj + 1, j = 1, 2, . . . , k. For each group j,

nj units are put on a lifetime experiment and we are interested in the behaviour of

the future random variable Xj,nj+1. Therefore, we have N =
∑k

j=1 nj units on the

lifetime experiment and one may want to terminate the experiment at certain time

T0. Let 0 = xj,0 < xj,1 < xj,2 < . . . < xj,rj ≤ T0 < ∞ be the ordered observed values

(failures) from group j, j = 1, . . . , k.

These observed values from group j produce rj + 2 intervals, where the first rj

intervals are defined by Ijij = (xj,ij−1, xj,ij), ij = 1, . . . , rj , j = 1, . . . , k, and the

remaining intervals are defined by Ijrj+1 = (xj,rj ,∞), Ijrj+2 = (T0,∞), notice that

these are overlapping. Let L(Ijij) and U(Ijij) be the lower and the upper bounds

for the interval Ijij , ij = 1, . . . , rj + 2, j = 1, . . . , k. That is, L(Ijij) = xj,ij−1 for

ij = 1, . . . , rj + 1 and L(Ijrj+2) = T0. Similar for the upper bound, U(Ijij) = xj,ij

for ij = 1, . . . , rj , and U(Ijrj+1) = U(Ijrj+2) = ∞. Here the intervals Ijij are open

intervals, but in future when we mention the (left or right) end points we actually

mean the limit end points which are not included in these open intervals.

For our NPI approach we assume rc-A(nj) for each group [27]. Beyond the data,
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our method requires the exchangeability assumptions of the random variables per

group to be met. We also assume that groups are completely independent. We

will specify partially the probability distribution for a future quantity, Xj,nj+1, j =

1, . . . , k, using M -functions presented in Theorem 2.1.

Theorem 3.1 gives the NPI lower and upper probability for the event that the

lifetime of the next observation from one group, say l, is greater than the lifetime

of the next observation from each other group, that is

P (l) = P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

and P
(l)

= P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

Theorem 3.1. The NPI lower and upper probabilities for the event that the life-

time of the next observation from group l is greater than the lifetime of the next

observation from each other group are

P (l) =
1

k
∏

j=1

(nj + 1)















rl
∑

il=1

k
∏

j=1

j 6=l

rj
∑

ij=1

1{xj,ij < xl,il}+ (nl − rl)
k
∏

j=1

j 6=l

rj















(3.3)

P
(l)

=
1

k
∏

j=1

(nj + 1)

rl
∑

il=1

k
∏

j=1

j 6=l



1 +

rj
∑

ij=1

1{xj,ij < xl,il}



+
nl − rl + 1

nl + 1
(3.4)

Proof. The proof is a special case of the proof of Theorem 3.3, with S (in Theorem

3.3) now only containing group l.

3.3.1 Special cases

In this part, we discuss some special cases of these lower and upper probabilities,

which are easily verified from (3.3) and (3.4).

1. If rl ≥ 0 and there exists at least one j 6= l for which rj = 0, then the NPI

lower probability is P (l) = 0, since we have not seen any failure from group

j 6= l. Hence, we cannot exclude the possibility that we would never see a

failure from group(s) j 6= l. Further, if rl = 0 then the upper probability P
(l)

is equal to one.
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2. If rl = 0 and rj > 0 for all j 6= l, then the NPI upper probability P
(l)

is one,

as we cannot exclude the possibility that we would never see a failure of group

l. The corresponding lower probability is

P (l) =
nl

∏k
j=1(nj + 1)

k
∏

j=1

j 6=l

rj

Further, if rl = 0 and rj = nj for all j 6= l, that is we have observed all units

from each group j 6= l and the experiment is ended before we observe any

failure from group l, then the NPI lower probability is

P (l) =
k
∏

j=1

nj

nj + 1

3. If rl > 0 and rj = 0 for all j 6= l, so we have not seen any failure for all

groups j 6= l, then we cannot exclude the possibility that we would never see

a failure of these groups and consequently P (l) = 0. The corresponding upper

probability is

P
(l)

=
rl

∏k
j=1(nj + 1)

+
nl − rl + 1

nl + 1

Further, if rl = nl and rj = 0, that is we have observed all units from group

l and the experiment is ended before we observe any failure from all other

groups, then the NPI upper probability is

P
(l)

=
nl

∏k
j=1(nj + 1)

+
1

nl + 1

4. If rl > 0, rj > 0 and xj,rj < xl,1 for all j 6= l, then the NPI lower and upper

probabilities are

P (l) =
nl

∏k
j=1(nj + 1)

k
∏

j=1

j 6=l

rj, P
(l)

=
rl

∏k
j=1(nj + 1)

k
∏

j=1

j 6=l

(rj + 1) +
nl − rl + 1

nl + 1

But if xj,1 > xl,rl , for all j 6= l, then the NPI lower and upper probabilities are

P (l) =
(nl − rl)

∏k
j=1(nj + 1)

k
∏

j=1

j 6=l

rj, P
(l)

=
rl

∏k
j=1(nj + 1)

+
nl − rl + 1

nl + 1
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3.3.2 Some properties

Now, we study the effect upon the NPI lower and upper probabilities when the

stopping time is increased from T0 to T0 + ε, for small ε > 0, such that there is only

one extra failure from one group occurs.

Theorem 3.2. (i) If a failure occurs from group l then the NPI lower probability

P (l) remains constant. However the NPI upper probability P
(l)

decreases by

1

nl + 1
+

1
∏k

j=1(nj + 1)

k
∏

j=1

j 6=l

(rj + 1)

except when rj = nj, for all j 6= l, in which case the upper probability remains

constant.

(ii) If a failure occurs for group j∗, where j∗ ∈ {1, . . . , k} \ {l}, then the NPI upper

probability P
(l)

remains constant. However, the NPI lower probability increases by

nl − rl
k
∏

j=1

(nj + 1)

k
∏

j=1

j 6={l,j∗}

rj

except when rl = nl, or when at least one rj = 0 for a j 6= {j∗, l}, in which cases

the lower probability remains constant.

Proof. For case i (ii), replace rl (rj∗) by rl + 1 (rj∗ + 1) in formula (3.3) and (3.4),

then this follows by basic analysis of the lower and upper probabilities of Theorem

3.1. This is similar to the proof of Theorem 3.4.

Theorem 3.2 is in line with the intuition that the lower probability for a certain

event quantifies the amount of information in favour of the event while the upper

probability quantifies the amount of information against the event. If rl is increased

while leaving all other rj the same, then, when considering the event Xl,nl+1 =

max
1≤j≤k

Xj,nj+1, the amount of information in favour of this event remains the same

but the amount of information against this event increases, except when rj = nj

for all j 6= l. Consequently, P (l) does not change but P
(l)

may decrease. For the

same event, when rj for a j 6= l increases while all other ri, i 6= j, remain constant,
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the amount of information in favour of the event increases, except when rl = nl or

when there exists a j 6= {l, j∗} for which rj = 0, while the amount of information

against the event remains the same. Consequently, P (l) may increase but P
(l)

does

not change.

At any value of T0, we can state that the data provide a strong indication that

group l is the best if P (l) > P
(j)

for all j 6= l. Of course, this may not occur,

and we may be happy to have data providing a weak indication that group l is

the best. It might seem attractive to state that, if P (l) > P (j) and P
(l)

> P
(j)

for

all j 6= l, there would be a weak indication that group l is the best. Indeed, if

one has to select one group and there is a group for which such a weak indication

of being best holds, then that is the natural candidate. However, such a weak

indication can be very weak indeed, in particular as it can already occur for relatively

small T0, with P (l) positive but very small. If such a weak indication holds for

one group, and in addition one judges the lower probability of this group being

best to be sufficiently high, then it seems a reasonable basis for the choice of this

group as being the best. In all these considerations, it is an advantage that the the

difference between corresponding lower and upper probabilities (P
(l) −P (l)) reflects

the amount of information available, and it decreases if more relevant information

becomes available. If one judges this difference to be too large, or if one judges each

lower probability of a group being best too small to base a choice on the information

available, then clearly one must either get more information, e.g. by continuing the

experiment or try to repeat the experiment with more units, or one could explore

the use of other statistical approaches with more modeling assumptions.

In discussions in the examples in this chapter, we will call one group ‘better’

than another, or ‘best’, if the first of these conditions is satisfied, of course the use

of ‘better’ and ‘best’ must be interpreted with care as these judgments are just based

on direct comparison of one next observation for each group according to the NPI

method.

Below two examples are given to illustrate our method for selecting the best

group and to compare it with the classical methods reviewed in Section 3.2.
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Example 3.1. To illustrate our method for selecting the best group among k other

groups, we use the data from Coolen and van der Laan [25] as presented in Table

3.1.

Group

1 5.01 5.04 5.60 5.78 6.43 6.53 6.96 7.00 7.21 7.58

8.12 8.26 8.27 8.34 8.62 8.66 8.91 8.94 9.05 9.16

2 4.50 4.86 5.10 5.15 5.17 5.34 5.99 6.18 6.72 7.39

7.44 7.46 7.47 7.76 8.38 8.42 8.52 8.81

3 6.84 6.91 7.22 7.24 7.25 7.35 7.55 7.62 7.69 7.98

7.99 8.04 8.08 8.18 8.97

4 4.71 8.20 9.03

Table 3.1: Data set, Example 3.1

This data set consists of four groups and is used by Coolen and van der Laan

[25] in order to demonstrate the NPI method for selection of the best source and

a subset to include the best source for complete data, so without censoring. We

interpret this data set as the lifetimes of units from 4 different groups. The size of

the groups are n1 = 20, n2 = 18, n3 = 15 and n4 = 3, and Xj,ij (ij = 1, . . . , nj)

represents the lifetime of unit ij in group j.

A group is considered as the ‘best’ when the lifetime of a future unit from this

group is larger than the lifetime of a future unit from all other groups. Our inference

depends on the data, the rc-A(nj) assumptions (j = 1, 2, 3, 4) for each group, and

stopping time T0. Table 3.2 presents the NPI lower and upper probabilities for the

event that the lifetime of a future unit of group l (l = 1, 2, 3, 4) is larger than the

lifetimes of a future unit of all other groups, as given by (3.3) and (3.4), for stopping

time T0 in several intervals. We denote these lower and upper probabilities by P (l)

and P
(l)
, respectively.

Let us consider the situation when we terminate the experiment at T0 = 5. Until

this point we observed only two failures from group 2 and one failure from group

4, and we have not yet observed any failures from groups 1 and 3. Here all lower

probabilities are equal to zero since for each l, there exists a group j 6= l for which

we have not observed a failure yet. Moreover, while the upper probabilities for the
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T0 r1 r2 r3 r4 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

P (4) P
(4)

[4.86, 5.01) 0 2 0 1 0 1 0 0.895 0 1 0 0.750

[5.99, 6.18) 4 7 0 1 0 0.811 0 0.633 0.016 1 0 0.750

[7.00, 7.21) 8 9 2 1 0.010 0.627 0.006 0.529 0.041 0.886 0.011 0.750

[7.21, 7.22) 9 9 3 1 0.014 0.582 0.010 0.529 0.046 0.831 0.019 0.750

[7.22, 7.24) 9 9 4 1 0.018 0.582 0.013 0.529 0.046 0.777 0.025 0.750

[7.46, 7.47) 9 12 6 1 0.033 0.582 0.019 0.387 0.055 0.667 0.051 0.750

[7.47, 7.55) 9 13 6 1 0.036 0.582 0.019 0.340 0.058 0.667 0.055 0.750

[7.55, 7.58) 9 13 7 1 0.041 0.582 0.021 0.340 0.058 0.616 0.064 0.750

[7.99, 8.04) 10 14 11 1 0.066 0.543 0.029 0.296 0.065 0.416 0.121 0.750

[8.42, 8.52) 14 16 14 2 0.164 0.448 0.073 0.244 0.077 0.268 0.207 0.606

[8.62, 8.66) 15 17 14 2 0.171 0.432 0.075 0.218 0.080 0.268 0.224 0.606

[8.66, 8.81) 16 17 14 2 0.171 0.416 0.076 0.218 0.081 0.268 0.234 0.606

[8.81, 8.91) 16 18 14 2 0.175 0.416 0.076 0.195 0.082 0.268 0.242 0.606

[8.91, 8.94) 17 18 14 2 0.175 0.402 0.076 0.195 0.084 0.268 0.252 0.606

[8.94, 8.97) 18 18 15 2 0.178 0.388 0.076 0.195 0.085 0.248 0.275 0.606

[8.97, 9.03) 18 18 15 2 0.178 0.388 0.076 0.195 0.085 0.248 0.275 0.606

[9.03, 9.05) 18 18 15 3 0.199 0.388 0.076 0.195 0.085 0.248 0.275 0.582

[9.05, 9.16) 19 18 15 3 0.199 0.388 0.076 0.195 0.085 0.248 0.275 0.582

[9.16,∞) 20 18 15 3 0.199 0.388 0.076 0.195 0.085 0.248 0.275 0.582

Table 3.2: The best group: NPI lower and upper probabilities

first and third groups are equal to 1, those for groups 2 and 4 are less than 1, being

equal 0.895 and 0.750, respectively. As no failure is observed from groups 1 and 3,

we cannot exclude the possibility that we will never observe any failures from these

groups and consequently P
(1)

= P
(3)

= 1.

At T0 = 6, we still have not observed any failure from group 3, so we cannot

exclude the possibility that we will never observe any failure from this group and

consequently P
(3)

= 1. However, the lower probability for this group is now positive

as there is no other group for which we have not observed a failure. For all other

groups the lower probability is still zero as we have not seen any failure yet from

group 3.

From Theorem 3.2 we know that the lower probability never decreases and the

upper probability never increases. For example, consider the situation where the

stopping time T0 is increased from 7.50 to 7.55. At T0 = 7.55, a failure of group

3 occurs. We want to calculate the lower and upper probabilities for the event

X3,n3+1 = max
1≤j≤4

Xj,nj+1. For this case, the lower probability remains constant (P (3) =

0.058), but the upper probability decreases from 0.667 at T0 = 7.50 to 0.616 at
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T0 = 7.55, which illustrates Theorem 3.2(i). However, for the event X1,n1+1 =

max
1≤j≤4

Xj,nj+1 the upper probability remains constant (P
(1)

= 0.582) but the lower

probability increases from 0.036 at T0 = 7.50 to 0.041 at T0 = 7.55, which illustrates

Theorem 3.2(ii).

There are some special cases when all lower and upper probabilities remain con-

stant when a failure occurs from any group. For example, at T0 = 9.03 we have

observed all units from all groups except the first group which still has two units

which have not failed. Let l = 1 and assume we will allow for an extra failure to

occur. Here of course the failure must be from the first group (T0 = 9.05). In this

case all lower and upper probabilities remain as they were at T0 = 9.03, as the

amount of information in favour and against the event does not change. In fact, all

lower and upper probabilities do not change anymore after 9.03.

At T0 = 8.81, we have observed failure times of all units from the second group.

Now consider l = 2 and let the stopping time increase to 8.91, so that we observe

an extra failure of group 1. In this case the lower and upper probabilities remain

constant (P (2) = 0.076 and P
(2)

= 0.195). In fact, any failure from other groups

after we have observed failures of all units from group 2 will not affect the lower and

upper probabilities P (2) and P
(2)
.

From T0 = 7.55 on, the fourth group has the greatest lower and upper probabil-

ities. However, from the beginning of the experiment till T0 = 7.22 the third group

has the greatest lower and upper probabilities. Which means that at T0 ≤ 7.22,

there is a weak indication that group 3 is best, since P (j) < P (3) < P
(j)

< P
(3)

for

j = 1, 2, 4, however, there is a weak indication that group 4 is best for T0 ≥ 7.55,

since P (j) < P (4) < P
(j)

< P
(4)

for j = 1, 2, 3. Also we can note that P
(3)

remains

equal to 1 for quite a long time, since the first failure from the third group occurs

relatively late.

The imprecision decreases as the stopping time T0 increases, which reflects the

amount of information we have (Table 3.2). For example, we can see that the fourth

group has larger imprecision as there are only a few observations in this group.

A crucial question is how to make decisions using these NPI lower and upper

probabilities. If we observe all units from groups 2, 3 and 4, so for T0 ≥ 9.03, we see
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that P
(2)

< P (1) and P
(2)

< P (4) implying that group 1 and 4 are certainly better

than group 2. Also P
(3)

< P (4) implying that group 4 is better than group 3. It is

still difficult to distinguish between groups 1 and 4. As P (1) < P (4) < P
(1)

< P
(4)

there is a weak preference for group 4. For T0 ≥ 8.62, group 4 is better than group 2

(P
(2)

< P (4)), and for T0 ≥ 8.97, group 4 is better than groups 2 and 3 (P
(2)

< P (4)

and P
(3)

< P (4)). However, we have to be careful as group 4 only has 3 observations

and its imprecision is large. Therefore, we will now exclude the fourth group from

the comparison and we will recompute the NPI lower and upper probabilities to

study the effect of the fourth group on the comparison.

T0 r1 r2 r3 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

[4.86, 5.01) 0 2 0 0 1 0 0.895 0 1

[5.99, 6.18) 4 7 0 0 0.813 0 0.635 0.066 1

[7.00, 7.21) 8 9 2 0.040 0.634 0.023 0.531 0.164 0.897

[7.47, 7.55) 9 13 6 0.143 0.592 0.076 0.365 0.233 0.710

[7.55, 7.58) 9 13 7 0.165 0.592 0.083 0.365 0.233 0.669

[7.99, 8.04) 10 14 11 0.264 0.561 0.117 0.329 0.258 0.519

[8.42, 8.52) 14 16 14 0.354 0.510 0.171 0.294 0.274 0.411

[8.62, 8.66) 15 17 14 0.367 0.504 0.173 0.277 0.279 0.411

[8.66, 8.81) 16 17 14 0.367 0.499 0.175 0.277 0.281 0.411

[8.81, 8.91) 16 18 14 0.376 0.499 0.175 0.264 0.284 0.411

[8.91, 8.94) 17 18 14 0.376 0.496 0.175 0.264 0.287 0.411

[8.94, 8.97) 18 18 14 0.376 0.493 0.175 0.264 0.289 0.411

[8.97, 9.05) 18 18 15 0.381 0.493 0.175 0.264 0.289 0.405

[9.05, 9.16) 19 18 15 0.381 0.493 0.175 0.264 0.289 0.405

[9.16,∞) 20 18 15 0.381 0.493 0.175 0.264 0.289 0.405

Table 3.3: The best group: NPI lower and upper probabilities (without group 4)

Table 3.3 presents NPI lower and upper probabilities (3.3) and (3.4) after we

have excluded the fourth group from this comparison, to study the effect of this

group on our inferences. For example, at T0 = 8.42 we observed 14, 16 and 14

failures from groups 1, 2 and 3, respectively. Here P
(2)

< P (1) which indicates that

the first group is better than the second group. The second group would be the

worst group for T0 ≥ 8.62 since then P
(2)

< P (1) and P
(2)

< P (3). When observing

all units from all groups, there exists a weak preference for group 1 compared to

group 3 as P (3) < P (1) < P
(3)

< P
(1)
. In addition, the imprecision is slightly larger

for group 3 than for group 1.
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Furthermore, as we can see from Tables 3.2 and 3.3, dropping group 4 leads

to substantial increases in the NPI lower and upper probabilities for both the first

group and the third group, with slight increases in the lower and upper probabilities

for the second group. However, it is still not possible to make a clear decision on

which group will have the largest next observation. Removing the fourth group has

an influence not only on improving the lower and upper probabilities but also on

reducing the imprecision for other groups. 4

Example 3.2. In this example, we compare our method with the classical prece-

dence selection methods in order to select the best group. Table 3.4 shows the

natural logarithm of times to breakdown of an insulating fluid at three voltage lev-

els (30kv, 35kv and 40kv), as given by Nelson [64, p. 278]. We will refer to these

voltage levels as groups j = 1, 2, 3, respectively. Here we have a balanced-sample

case where n1 = n2 = n3 = 12. Let Xj,ij represent the natural logarithm of time

to breakdown for the ijth unit at voltage level j, ij = 1, . . . , 12 and j = 1, 2, 3.

Balakrishnan et al. [6] and Ng et al. [68] considered the last two values at level

Group Times to breakdown of an insulating fluid

1 30kv 3.912 4.898 5.231 6.782 7.279 7.293

7.736 7.983 8.338 9.668 10.282+ 11.363+

2 35kv 3.401 3.497 3.715 4.466 4.533 4.585

4.754 5.553 6.133 7.073 7.208 7.313

3 40kv 0.000 0.000 0.693 1.099 2.485 3.219

3.829 4.025 4.220 4.691 5.778 6.033

Table 3.4: Times (ln) to breakdown of an insulating fluid

30kv (group) as real failures although they are in fact censored observations. We

follow their approach, although as these values are larger than all observations for

the other groups, it makes no difference to our approach for any T0 < 10.282.

The classical precedence selection procedures normally test the homogeneity of

the lifetime distributions against the alternative that one distribution stochastically

dominates the other distributions (so one population is the best) in terms of their

reliability (longer life). That means, the classical selection procedures are designed
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to test H0 : F1 = F2 = F3 in favour of the alternative HAi : Fi < Fj, for all

j 6= i, j = 1, 2, 3.

Here we have k = 3 lifetime samples with equal sample sizes. We will stop

the experiment as soon as the 8th failure (r̄ = 8) from any group has occurred

following Ng et al. [68]. So the experiment is terminated at T0 = 4.025, when the

8th breakdown time of group 3 is observed. The test statistic for the ordinary

precedence test, calculated from (3.1), is Q∗(3) = min{1, 3} = 1 and the p-value of

this test is 0.0256. The minimal Wilcoxon rank-sum precedence test statistic (3.2)

equals W ∗(3) = max{173, 168} = 173 and the p-value is 0.0066.

In this case, at significance level 5%, we reject the null hypothesis for both test

statistics Q∗(3) and W ∗(3), and therefore we will select the first population (30kv)

as the best, i.e. we reject H0 in favour of HA1. We would get a different decision at

significance level 1%, for which the minimal Wilcoxon rank-sum precedence selection

method leads to rejection of the null hypothesis while the ordinary precedence selec-

tion method does not lead to rejection of the null hypothesis. In such a situation it

is a good idea to apply our method to the data to see whether our method leads to

a ‘best’ or ‘worst’ group. Table 3.5 contains the NPI lower and upper probabilities

that the lifetime of the next observation of group l (l = 1, 2, 3) is larger than the

lifetime of the next observation of each other group for certain values of T0.

T0 r1 r2 r3 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

0.693 0 0 3 0 1 0 1 0 0.771

3.401 0 1 6 0.033 1 0 0.926 0 0.541

4.025 1 3 8 0.130 0.938 0.033 0.779 0.007 0.393

4.691 1 6 10 0.310 0.938 0.040 0.575 0.011 0.249

4.898 2 7 10 0.360 0.901 0.062 0.508 0.018 0.249

6.033 3 8 12 0.467 0.864 0.096 0.452 0.027 0.128

6.133 3 9 12 0.516 0.864 0.096 0.398 0.027 0.128

7.293 6 11 12 0.603 0.834 0.123 0.304 0.027 0.128

11.363 12 12 12 0.636 0.834 0.123 0.268 0.027 0.128

Table 3.5: The best group: NPI lower and upper probabilities

Table 3.5 shows that, after we have only observed three failures from group 3

(40kv, T0 = 0.693) we cannot make any reasonable decision (P (1) = P (2) = 0 and

P
(1)

= P
(2)

= 1) on whether the first or the second group is the best, since we have
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not yet observed any failures from both groups.

However, at T0 = 4.025, when we have observed the 8th failure from group 3, we

have P (3) < P (2) < P (1) and P
(3)

< P
(2)

< P
(1)

but P
(3)

� P (1) or P
(3)

� P (2). So,

there is no strong indication to select group 3 as the best group, which is in agreement

with the ordinary precedence test at significance level 1% that one particular group

is the worst. However, there is a weak indication that group 3 is the worst, but this

does not follow from the classical methods.

Here, when we have observed all failures, we have a strong indication that group

1 is the best as P
(2)

< P (1) and P
(3)

< P (1). In fact this holds already at T0 = 6.033.

At T0 = 4.691 we can conclude already that group 1 is better than group 3 as from

that moment on we have P
(3)

< P (1). Then at T0 = 6.133, we also have in addition

P
(2)

< P (1) and consequently we have a strong indication that group 1 is the best.

So at T0 = 4.025, our method leads to a conclusion in the line with the minimal

Wilcoxon rank-sum precedence selection method.

In this example we show that the NPI method and the classical precedence tests

do not necessarily lead to the same conclusions, but it is difficult to compare these

two due to the different inferential goals and the different basic underlying assump-

tions. Hence, we do not see these as competing methods for the same problems, but

more as complementary methods that can provide further insight into specific appli-

cations, and which may be more or less suitable depending on the explicit inferential

goal. 4

3.4 Selecting the subset of best groups

Suppose that the experiment is terminated at time T0 and our interest is to select

a subset of groups such that all the groups in this subset are ‘better’ than all not

selected groups, that is the lifetime of the next observation of each group in the

subset will be greater than the lifetime of the next observation of all groups not in

the subset. Let S = {l1, l2, . . . , lm} be a subset of m groups (1 ≤ m ≤ k− 1) from k

independent groups, and let NS be the complementary set of S which contains the

remaining k −m groups.



3.4. Selecting the subset of best groups 47

We will derive the NPI lower and upper probabilities for the event that the next

observation of each group in S has longer lifetime than the next observation of each

group in NS, denoted by

P S= P

(

min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

and P
S
= P

(

min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

These NPI lower and upper probabilities are given in Theorem 3.3, where the fol-

lowing notation is used
rl+2
∑∑∑∑∑∑

il=1

l∈S

=

rl1+2
∑

il1=1

...

rlm+2
∑

ilm=1

(3.5)

Theorem 3.3. The NPI lower and upper probabilities for the event that the next

observation of each group in S has longer lifetime than the next observation of each

group in NS are

P S =

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





∑rj
ij=1 1{xj,ij < min

l∈S
{L(I lil)}}

nj + 1



 .
∏

l∈S

MXl,nl+1
(I lil) (3.6)

P
S
=

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





1 +
∑rj

ij=1 1{xj,ij < min
l∈S

{U(I lil)}}
nj + 1

+

(nj − rj)1{T0 < min
l∈S

{U(I lil)}}
nj + 1



 .
∏

l∈S

MXl,nl+1
(I lil) (3.7)

Proof. First, we derive the lower probability as follows

P

(

min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

= P

(

⋂

j∈NS

{Xj,nj+1 < min
l∈S

Xl,nl+1}
)

=

rl+2
∑∑∑∑∑∑

il=1

l∈S

P

(

⋂

j∈NS

{Xj,nj+1 < min
l∈S

Xl,nl+1}|Xl,nl+1 ∈ I lil , l ∈ S

)

.
∏

l∈S

MXl,nl+1
(I lil)

≥
rl+2
∑∑∑∑∑∑

il=1

l∈S

P

(

⋂

j∈NS

{Xj,nj+1 < min
l∈S

{L(I lil)}}
)

.
∏

l∈S

MXl,nl+1
(I lil)

≥
rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





∑rj
ij=1 1{xj,ij < min

l∈S
{L(I lil)}}

nj + 1



 .
∏

l∈S

MXl,nl+1
(I lil)
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The first inequality follows by putting all probability mass for Xl,nl+1 (l ∈ S) as-

signed to the intervals I lil = (xl,il−1, xl,il) for il = 1, . . . , rl, (xl,rl ,∞) and (T0,∞)

in the left end points of these intervals, and by using Lemma 1.4 for the nested

intervals (xl,rl ,∞) and (T0,∞). The second inequality follows by putting all prob-

ability mass for Xj,nj+1 (j ∈ NS) assigned to the intervals Ijij = (xj,ij−1, xj,ij) for

ij = 1, . . . , rj, (xj,rj ,∞) and (T0,∞) in the right end points of these intervals. The

upper probability is obtained in a similar way, but now all probability masses for

the random quantities involved are put at the opposite end points of the respective

intervals, which leads to

P

(

min
l∈S

Xl,nl+1 > max
j∈NS

Xj,nj+1

)

= P

(

⋂

j∈NS

{Xj,nj+1 < min
l∈S

Xl,nl+1}
)

=

rl+2
∑∑∑∑∑∑

il=1

l∈S

P

(

⋂

j∈NS

{Xj,nj+1 < min
l∈S

Xl,nl+1}|Xl,nl+1 ∈ I lil , l ∈ S

)

.
∏

l∈S

MXl,nl+1
(I lil)

≤
rl+2
∑∑∑∑∑∑

il=1

l∈S

P

(

⋂

j∈NS

{Xj,nj+1 < min
l∈S

{U(I lil)}}
)

.
∏

l∈S

MXl,nl+1
(I lil)

≤
rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





rj+2
∑

ij=1

1{L(Ijij) < min
l∈S

{U(I lil)}}. MXj,nj+1
(Ijij)





∏

l∈S

MXl,nl+1
(I lil)

=

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





1+
∑rj

ij=11{xj,ij<min
l∈S

{U(I lil)}}+(nj−rj)1{T0<min
l∈S

{U(I lil)}}
nj + 1





∏

l∈S

MXl,nl+1
(I lil)

3.4.1 Special cases

We now present some special cases of the NPI lower and upper probabilities (3.6)

and (3.7).

1. If rl = 0 for all l ∈ S, then the NPI lower probability is

P S =
∏

j∈NS

rj
nj + 1

∏

l∈S

nl

nl + 1

and P S = 0 if there exists at least one j ∈ NS for which rj = 0. Since we

have not seen any failure from any group in S, this means that we cannot
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exclude the possibility that we will never see a failure from any group in S,

consequently P
S
= 1.

2. If rj = 0 for at least one j ∈ NS and rl ≥ 0 for all l ∈ S, then the NPI lower

probability P S = 0 since there exists a group in NS for which we have not

seen any failure. This means that we cannot exclude the situation that we will

never see a failure from this group. Further, if rj = 0 for all j ∈ NS then the

NPI upper probability is

P
S
=
∏

l∈S

nl − rl + 1

nl + 1

(

1−
∏

j∈NS

1

nj + 1

)

+
∏

j∈NS

1

nj + 1

3.4.2 Some properties

Now, we study the effect upon the lower and upper probabilities (3.6) and (3.7)

when the stopping time is increased from T0 to T0 + ε for small ε > 0, such that

there is only one extra failure from one group occurs.

Theorem 3.4. (i) If a failure from group l∗ ∈ S occurs in the interval (T0, T0 + ε),

then the NPI lower probability P S remains constant. However, the NPI upper

probability P
S
decreases by

1

nl∗ + 1

∏

l∈S\{l∗}

nl − rl + 1

nl + 1

(

1−
∏

j∈NS

rj + 1

nj + 1

)

except when rj = nj, for all j ∈ NS, in which case the upper probability remains

constant.

(ii) If a failure from group j∗ ∈ NS occurs in the interval (T0, T0 + ε), then the NPI

upper probability P
S
remains constant. However, the NPI lower probability P S

increases by
1

nj∗ + 1

∏

j∈NS\{j∗}

rj
nj + 1

∏

l∈S

nl − rl
nl + 1

except when rl = nl for at least one l ∈ S or when there exists a j ∈ NS \ {j∗} for

which rj = 0, in which cases the lower probability remains constant.

Proof. For case i (ii), replace rl∗ (rj∗) by r̃l∗ = rl+1 (r̃j∗ = rj∗+1) in formula (3.6)

and (3.7), then this follows by basic analysis of the lower and upper probabilities
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of Theorem 3.3. For the sake of completeness we include the detailed proof below.

To reduce notation we use L∗(I lil)= min
l∈S\{l∗}

L(I lil) and U∗(I lil)= min
l∈S\{l∗}

U(I lil). First to

proof case (i),

P S
l∗ =

rl+2
∑∑∑∑∑∑

il=1

l∈S\{l∗}





rl∗
∑

il∗=1

∏

j∈NS

rj
∑

ij=1

1{xj,ij<min
l∈S

{L(I lil)}}
(nj + 1)(nl∗ + 1)

+

∏

j∈NS

rj
∑

ij=1

1{xj,ij<min{xl∗,rl∗ , L
∗(I lil)}}

(nj + 1)(nl∗ + 1)
+
∏

j∈NS

rj
∑

ij=1

1{xj,ij<min{xl∗,r̃l∗ , L
∗(I lil)}}

(nj + 1)(nl∗ + 1)
+

∏

j∈NS

rj
∑

ij=1

1{xj,ij<min{T0+ε, L∗(I lil)}}(nl∗−rl∗−1)

(nj + 1)(nl∗ + 1)





∏

l∈S\{l∗}

MXl,nl+1
(I lil)

= P S +

rl+2
∑∑∑∑∑∑

il=1

l∈S\{l∗}





∏

j∈NS

rj
∑

ij=1

1{xj,ij < min{xl∗,r̃l∗ , L
∗(I lil)}}

(nj + 1)(nl∗ + 1)
+

∏

j∈NS

rj
∑

ij=1

1{xj,ij < min{T0 + ε, L∗(I lil)}}(nl∗ − rl∗ − 1)

(nj + 1)(nl∗ + 1)
−

∏

j∈NS

rj
∑

ij=1

1{xj,ij < min{T0, L
∗(I lil)}}(nl∗ − rl∗)

(nj + 1)(nl∗ + 1)





∏

l∈S\{l∗}

MXl,nl+1
(I lil)

And since for all l ∈ S \ {l∗}, 0 ≤ L(I lil) ≤ T0 < xl∗,r̃l∗ < T0 + ε, and consequently

min{xl∗,r̃l∗ , L
∗(I lil)} = min{T0 + ε, L∗(I lil)} = min{T0, L

∗(I lil)} = L∗(I lil)

then the last term between square brackets will vanish. And,

P
S

l∗ =

rl+2
∑∑∑∑∑∑

il=1

l∈S\{l∗}





rl∗
∑

il∗=1

∏

j∈NS

rj+2
∑

ij=1

1{L(Ijij)< min
l∈S

{U(I lil)}}MXj,nj+1
(Ijij) +

∏

j∈NS

rj+2
∑

ij=1

1{L(Ijij) < min{xl∗,r̃l∗ , U
∗(I lil)}}

nl∗ + 1
MXj,nj+1

(Ijij) +

∏

j∈NS

rj+2
∑

ij=1

1{L(Ijij)< min{U(I l
∗

r̃l∗+1), U
∗(I lil)}}

nl∗ + 1
MXj,nj+1

(Ijij) +

∏

j∈NS

rj+2
∑

ij=1

1{L(Ijij)<min{U(I l
∗

r̃l∗+2), U
∗(I lil)}}(nl∗−rl∗−1)

nl∗ + 1
MXj,nj+1

(Ijij)





.
∏

l∈S\{l∗}

MXl,nl+1
(I lil)
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= P
S
+

1

nl∗+1

rl+2
∑∑∑∑∑∑

il=1

l∈S\{l∗}





∏

j∈NS

rj+2
∑

ij=1

1{L(Ijij)< min{xl∗,r̃l∗ , U
∗(I lil)}}MXj,nj+1

(Ijij) −

∏

j∈NS

rj+2
∑

ij=1

1{L(Ijij)<U∗(I lil)}MXj,nj+1
(Ijij)





∏

l∈S\{l∗}

MXl,nl+1
(I lil) (3.8)

Now,

rj+2
∑

ij=1

1{L(Ijij)<U∗(I lil)}MXj,nj+1
(Ijij)=

1+
rj
∑

ij=1

1{xj,ij<U∗(I lil)}+(nj−rj)1{T0+ε<U∗(I lil)}

nj + 1

(3.9)

and since 1{T0 + ε < min{xl∗,r̃l∗ , U
∗(I lil)}} = 0 for l ∈ S \ {l∗} and all il, we have

rj+2
∑

ij=1

1{L(Ijij)<min{xl∗,r̃l∗,U
∗(I lil)}}MXj,nj+1

(Ijij)=

1+
rj
∑

ij=1

1{xj,ij<min{xl∗,r̃l∗,U
∗(I lil)}}

nj + 1

(3.10)

If U∗(I lil) 6= ∞, then (3.9) and (3.10) will be equal and consequently the term be-

tween square brackets in (3.8) will vanish. However, for U∗(I lil) = ∞, the equations

(3.9) and (3.10) reduce to 1 and (rj + 1)/(nj + 1), respectively. Therefore, we can

rewrite (3.8) as

P
S

l∗ = P
S
+

1

nl∗ + 1

(

∏

j∈NS

rj + 1

nj + 1
− 1

)

rl+2
∑∑∑∑∑∑

il=rl+1

l∈S\{l∗}

∏

l∈S\{l∗}

MXl,nl+1
(I lil)

= P
S
+

1

nl∗ + 1

(

∏

j∈NS

rj + 1

nj + 1
− 1

)

∏

l∈S\{l∗}

rl+2
∑∑∑∑∑∑

il=rl+1

l∈S\{l∗}

MXl,nl+1
(I lil)

= P
S
+

1

nl∗ + 1

(

∏

j∈NS

rj + 1

nj + 1
− 1

)

∏

l∈S\{l∗}

(

1

nl + 1
+

nl − rl
nl + 1

)

(3.11)

We used the known identity (
∑

i ai)(
∑

j bj) =
∑

i

∑

j aibj to obtain the final form of

P
S

l∗ , i.e. (3.11). And when rj = nj ∀j ∈ NS , it follows from (3.11) that P
S

l∗ = P
S

which completes the proof of part (i).
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And for case (ii),

P S
j∗ =

rl+2
∑∑∑∑∑∑

il=1

l∈S





∏

j∈NS\{j∗}

∑rj
ij=1 1{xj,ij< min

l∈S
{L(I lil)}}

nj + 1





.





∑rj∗

ij∗=11{xj∗,ij∗< min
l∈S

{L(I lil)}}+1{xj∗,r̃j∗< min
l∈S

{L(I lil)}}
nj∗ + 1





∏

l∈S

MXl,nl+1
(I lil)

= P S +

rl+2
∑∑∑∑∑∑

il=1

l∈S





∏

j∈NS\{j∗}

∑rj
ij=1 1{xj,ij< min

l∈S
{L(I lil)}}

nj + 1





.





1{xj∗,r̃j∗< min
l∈S

{L(I lil)}}
nj∗ + 1



 .
∏

l∈S

MXl,nl+1
(I lil) (3.12)

Since for all l ∈ S , xl,rl < xj∗,r̃j∗ < T0 + ε, we have 1{xj∗,r̃j∗ < min
l∈S

{L(I lil)}} = 0

except when il = rl + 2, ∀l ∈ S, in which case L(I lil) = T0 + ε and therefore

1{xj∗,r̃j∗ < T0 + ε} = 1. Recall that when the experiment is terminated at xj∗,r̃j∗

(i.e. xj∗,r̃j∗ = T0 + ε), we assume that this stopping time is beyond xj∗,r̃j∗ by a very

small value which tends to zero. We can rewrite (3.12) as

P S
j∗ = P S +

1{xj∗,r̃j∗ < T0 + ε}
nj∗ + 1

∏

j∈NS\{j∗}

∑rj
ij=1 1{xj,ij < T0 + ε}

nj + 1

∏

l∈S

nl − rl
nl + 1

= P S +
1

nj∗ + 1

∏

j∈NS\{j∗}

rj
nj + 1

∏

l∈S

nl − rl
nl + 1

(3.13)

and indeed we see that the lower probability P S
j∗ is greater than or equal to P S.

From (3.13), it is clear that when there exists at least one l ∈ S for which rl = nl

then P S
j∗ = P S. Also P S

j∗ = P S when there exists a j ∈ NS \{j∗} for which rj = 0.

P
S

j∗ =

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS\{j∗}





1+
∑rj

ij=11{xj,ij<min
l∈S

{U(I lil)}}+(nj−rj)1{T0 + ε<min
l∈S

{U(I lil)}}
nj + 1





.







1+
∑r∗j

ij∗=1 1{xj∗,ij∗<min
l∈S

{U(I lil)}}
nj∗ + 1

+
1{xj∗,r̃j∗<min

l∈S
{U(I lil)}}

nj∗ + 1
+

(nj∗−rj∗−1)1{T0 + ε<min
l∈S

{U(I lil)}}
nj∗ + 1





∏

l∈S

MXl,nl+1
(I lil) (3.14)
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Since only a failure from group j∗ ∈ NS occurs in the interval (T0, T0 + ε), we have

1{T0 + ε < min
l∈S

{U(I lil)}} = 1{T0 < min
l∈S

{U(I lil)}}, hence (3.14) can be rewritten as

P
S

j∗ =P
S
+

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS\{j∗}





1+
∑rj

ij=11{xj,ij<min
l∈S

{U(I lil)}}+(nj−rj)1{T0<min
l∈S

{U(I lil)}}
nj + 1





.





1{xj∗,r̃j∗<min
l∈S

{U(I lil)}}
nj∗ + 1

−
1{T0< min

l∈S
{U(I lil)}}

nj∗ + 1





∏

l∈S

MXl,nl+1
(I lil) (3.15)

If min
l∈S

{U(I lil)} 6= ∞, then 1{T0 < min
l∈S

{U(I lil)}} = 1{xj∗,r̃j∗ < min
l∈S

{U(I lil)}} =

0, and when min
l∈S

{U(I lil)} = ∞, we have 1{T0 < min
l∈S

{U(I lil)}} = 1{xj∗,r̃j∗ <

min
l∈S

{U(I lil)}} = 1. Therefore, the whole last term in (3.15) will vanish, and conse-

quently P
S

j∗ = P
S
which completes the proof of part (ii).

Example 3.3. We use the data set of Example 3.1 to illustrate our method for

selecting the subset of best groups. A subset S is considered as the ‘best’ when

the lifetime of a future unit from each group in S is larger than the lifetime of a

future unit from each group outside this set, so in NS. Our inference depends on

the data, the rc-A(nj) assumption for group j (j = 1, 2, 3, 4) and stopping time T0.

To begin, we compute the NPI lower and upper probabilities from (3.6) and (3.7) for

all possible subsets that contain only two groups, so S equal to {1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4} and {3, 4}, the results for several ranges of values of T0 are presented

in Table 3.6.

For example, at T0 = 4.50 we observe the first failure for group 2. Here all lower

probabilities are equal to zero since there exists at least one j /∈ S for which rj = 0,

which means that we cannot exclude the possibility that we will never observe any

failure from this group. However, the upper probabilities for these events are not

all the same. For example, the upper probability for S equal to {1, 3} is one, since

in this situation we have not observed any failure from any group in S, so there is a

possibility that we would never observe any failure from any group in S. However,

for all subsets S which include group 2, the NPI upper probabilities are less than

one, since in this case a failure from a group belonging to S has occurred which is

an indication against the event of interest.
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T0 r1 r2 r3 r4 P {1,2} P
{1,2}

P {1,3} P
{1,3}

P {1,4} P
{1,4}

[4.50, 4.71) 0 1 0 0 0 0.948 0 1 0 1

[4.71, 4.86) 0 1 0 1 0 0.948 0.012 1 0 0.752

[4.86, 5.01) 0 2 0 1 0 0.897 0.024 1 0 0.752

[5.60, 5.78) 3 6 0 1 0 0.599 0.066 0.873 0 0.646

[6.72, 6.84) 6 9 0 1 0 0.395 0.093 0.762 0 0.542

[7.00, 7.21) 8 9 2 1 0.010 0.349 0.093 0.635 0.020 0.477

[7.21, 7.22) 9 9 2 1 0.010 0.327 0.093 0.604 0.020 0.445

[7.47, 7.55) 9 13 6 1 0.025 0.233 0.108 0.499 0.071 0.445

[7.55, 7.58) 9 13 7 1 0.028 0.233 0.108 0.476 0.083 0.445

[8.04, 8.08) 10 14 12 1 0.036 0.202 0.111 0.359 0.143 0.423

[8.08, 8.12) 10 14 13 1 0.038 0.202 0.111 0.339 0.154 0.423

[8.42, 8.52) 14 16 14 2 0.059 0.174 0.117 0.308 0.170 0.362

[8.52, 8.62) 14 17 14 2 0.059 0.168 0.117 0.308 0.174 0.362

[8.66, 8.81) 16 17 14 2 0.059 0.166 0.117 0.305 0.174 0.357

[8.81, 8.91) 16 18 14 2 0.059 0.162 0.117 0.305 0.176 0.357

[8.91, 8.94) 17 18 14 2 0.059 0.161 0.117 0.303 0.176 0.355

[8.94, 8.97) 18 18 14 2 0.059 0.160 0.117 0.302 0.176 0.354

[8.97, 9.03) 18 18 15 2 0.059 0.160 0.117 0.299 0.177 0.354

[9.03, 9.05) 18 18 15 3 0.059 0.160 0.117 0.299 0.177 0.354

[9.05, 9.16) 19 18 15 3 0.059 0.160 0.117 0.299 0.177 0.354

[9.16,∞) 20 18 15 3 0.059 0.160 0.117 0.299 0.177 0.354

T0 r1 r2 r3 r4 P {2,3} P
{2,3}

P {2,4} P
{2,4}

P {3,4} P
{3,4}

[4.50, 4.71) 0 1 0 0 0 0.948 0 0.948 0 1

[4.71, 4.86) 0 1 0 1 0 0.948 0 0.711 0 0.751

[4.86, 5.01) 0 2 0 1 0 0.897 0 0.672 0 0.751

[5.60, 5.78) 3 6 0 1 0.026 0.701 0 0.516 0.021 0.751

[6.72, 6.84) 6 9 0 1 0.045 0.565 0 0.399 0.063 0.751

[7.00, 7.21) 8 9 2 1 0.054 0.510 0.011 0.399 0.082 0.674

[7.21, 7.22) 9 9 2 1 0.058 0.510 0.013 0.399 0.091 0.674

[7.47, 7.55) 9 13 6 1 0.058 0.309 0.038 0.274 0.116 0.533

[7.55, 7.58) 9 13 7 1 0.058 0.294 0.042 0.274 0.116 0.503

[8.04, 8.08) 10 14 12 1 0.060 0.212 0.062 0.248 0.129 0.363

[8.08, 8.12) 10 14 13 1 0.060 0.200 0.065 0.248 0.129 0.336

[8.42, 8.52) 14 16 14 2 0.063 0.182 0.079 0.200 0.134 0.293

[8.52, 8.62) 14 17 14 2 0.063 0.179 0.079 0.191 0.135 0.293

[8.66, 8.81) 16 17 14 2 0.063 0.179 0.080 0.191 0.136 0.293

[8.81, 8.91) 16 18 14 2 0.063 0.176 0.080 0.185 0.137 0.293

[8.91, 8.94) 17 18 14 2 0.063 0.176 0.080 0.185 0.137 0.293

[8.94, 8.97) 18 18 14 2 0.063 0.176 0.080 0.185 0.138 0.293

[8.97, 9.03) 18 18 15 2 0.063 0.175 0.080 0.185 0.138 0.290

[9.03, 9.05) 18 18 15 3 0.063 0.175 0.080 0.183 0.138 0.288

[9.05, 9.16) 19 18 15 3 0.063 0.175 0.080 0.183 0.138 0.288

[9.16,∞) 20 18 15 3 0.063 0.175 0.080 0.183 0.138 0.288

Table 3.6: The subset of best groups: NPI lower and upper probabilities
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We can also study the behaviour of the NPI lower and upper probabilities when a

failure from any group occurs. To this end, assume that we terminate the experiment

at T0 = 7. In this situation we have observed 8, 9, 2 and 1 failures from groups 1,

2, 3 and 4, respectively. Suppose that we are interested in the subset S = {1, 2}.
In this case, P {1,2} = 0.010 and P

{1,2}
= 0.349. Suppose now that the stopping

time is increased from 7 to 7.21. In this case a failure occurs from the first group

at time 7.21. We see that, while the lower probability remains constant, the upper

probability decreases from 0.349 to 0.327, which illustrates Theorem 3.4(i). However,

when increasing the stopping time from 8.04 to 8.08, so that an extra failure of group

3 occurs, the upper probability that S = {1, 2} is the subset with the best groups

remains constant, but the lower probability increases from 0.036 to 0.038, which

illustrates Theorem 3.4(ii).

Suppose now that we stop the experiment at T0 = 8.97 and that we are interested

in S = {2, 3}. Then we have observed all units from all groups in S, but there are 3

units that still have not failed in groups in NS. For T0 ≥ 8.97, the lower and upper

probabilities that S = {2, 3} is the subset with the two best groups will not change

(P {2,3}= 0.063, P
{2,3}

= 0.175), which illustrates the special case of Theorem 3.4(ii).

If we change attention to S = {1, 4}, also for T0 ≥ 8.97, then the lower and upper

probabilities again remain constant (P {1,4}= 0.177, P
{1,4}

= 0.354) since we have

observed all units from NS, which illustrates the special case of Theorem 3.4(i).

To carry out the comparison to select the best subset, we notice that if we

terminate the experiment at T0 = 8.52, P
{1,2}

< P {1,4} which provides a strong

indicates to exclude {1, 2} from being the best. In addition, at T0 = 8.97 we can

exclude the set {2, 3} from being the subset with the best groups as P
{2,3}

< P {1,4}.

This may be due to the fact that the second group is included in these sets, since the

second group was the worse group as found in Example 3.1. However, this does not

hold for {2, 4} as P
{2,4}

≯ P {1,4}. This happens because this set consists of the best

and the worse group (see the results of Example 3.1). So, we only have a strong

indication that {1, 2} and {2, 3} are not the best subsets. As P {2,4} < P {1,3} <

P {3,4} < P {1,4} and P
{2,4}

< P
{3,4}

< P
{1,3}

< P
{1,4}

there is a weak indication

that S = {1, 4} is the best subset of size 2. 4
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3.5 Selecting the subset including the best group

In this section we consider a similar scenario as in Section 3.4, with the experiment

terminated at time T0 but now our objective is to select a subset of groups such that

the group that provides the largest future lifetime is included in this subset. As in

Section 3.4, let S = {l1, l2, ..., lm} be a selected subset of m groups (1 ≤ m ≤ k− 1)

from k independent groups and letNS be the complementary set of S which contains

the k−m nonselected groups. We will derive the NPI lower and upper probabilities

for the event that the next observation from at least one of the selected groups in S

is greater than the next observation from each group in NS, denoted by

P S̃=P

(

max
l∈S

Xl,nl+1>max
j∈NS

Xj,nj+1

)

and P
S̃
=P

(

max
l∈S

Xl,nl+1>max
j∈NS

Xj,nj+1

)

These lower and upper probabilities are given in Theorem 3.5, using the notation

(3.5) as before.

Theorem 3.5. The NPI lower and upper probabilities for the event that the next

observation of at least one group in S is greater than the next observation of each

group in NS are

P S̃ =

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





∑rj
ij=1 1{xj,ij < max

l∈S
{L(I lil)}}

nj + 1



 .
∏

l∈S

MXl,nl+1
(I lil) (3.16)

P
S̃
=

rl+2
∑∑∑∑∑∑

il=1

l∈S

∏

j∈NS





1 +
∑rj

ij=1 1{xj,ij < max
l∈S

{U(I lil)}}
nj + 1

+

(nj − rj)1{T0 < max
l∈S

{U(I lil)}}
nj + 1



 .
∏

l∈S

MXl,nl+1
(I lil) (3.17)

Proof. This is similar to the proof of Theorem 3.3, but with ’min’ replaced by ’max’

in every step.

3.5.1 Special cases

Below we present some special cases of the NPI lower and upper probabilities (3.16)

and (3.17).



3.5. Selecting the subset including the best group 57

1. If rl = 0 for at least one l ∈ S, then the NPI upper probability P
S̃
= 1, since

we have not seen any failure from at least one group in S. This means that

we cannot exclude the possibility that we would never see a failure from such

a group in S. Further, if rl = 0 for all l ∈ S, then the NPI lower probability is

P S̃ =
∏

j∈NS

rj
nj + 1

(

1−
∏

l∈S

1

nl + 1

)

which is equal to zero if there exists at least one j ∈ NS for which rj = 0.

2. If rj = 0 for at least one j ∈ NS and rl > 0 for all l ∈ S, then the NPI lower

probability P S̃ = 0 since there exists a group in NS for which we have not

seen any failure. This means that we cannot exclude the possibility that we

would never see a failure from this group. Further, if rj = 0 for all j ∈ NS,

then the NPI upper probability is

P
S̃
= 1−

∏

l∈S

rl
nl + 1

[

1−
∏

j∈NS

1

nj + 1

]

so if rl = 0 for at least one l ∈ S, then P
S̃
= 1.

3.5.2 Some properties

Now, we study the effect upon the lower and upper probabilities when the stopping

time is increased from T0 to T0 + ε, for small ε > 0 such that only one extra failure

from one group occurs.

Theorem 3.6. (i) If a failure from group l∗ ∈ S occurs in the interval (T0, T0 + ε),

then the NPI lower probability P S̃ remains constant, and the NPI upper probability

P
S̃
decreases by

1

nl∗ + 1

∏

l∈S\{l∗}

rl
nl + 1

(

1−
∏

j∈NS

rj + 1

nj + 1

)

except when rj = nj for all j ∈ NS or when there exists a l ∈ S \ {l∗} for which

rl = 0, in which cases the upper probability remains constant.

(ii) If a failure from group j∗ ∈ NS occurs in the interval (T0, T0 + ε), then the NPI

upper probability P
S̃
remains constant, and the NPI lower probability P S̃ increases
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by

1

nj∗ + 1

∏

j∈NS\{j∗}

rj
nj + 1

(

1−
∏

l∈S

rl + 1

nl + 1

)

except when rl = nl for all l ∈ S or when there exists a j ∈ NS \ {j∗} for which

rj = 0, in which cases the lower probability remains constant.

Proof. For case i (ii), replace rl (rj∗) by rl + 1 (rj∗ + 1) in formula (3.16) and

(3.17), then this follows by basic analysis of the NPI lower and upper probabilities

of Theorem 3.5, see the proof of Theorem 3.4.

It can easily be shown that the NPI lower and upper probabilities for selecting the

subset of best groups, given by (3.6) and (3.7), cannot exceed those for selecting

the subset including the best group, given by (3.16) and (3.17). This follows from

1{xj,ij < min
l∈S

{•}} ≤ 1{xj,ij < max
l∈S

{•}} and 1{T0 < min
l∈S

{•}} ≤ 1{T0 < max
l∈S

{•}},
where ‘•’ refers to L(I lil) or U(I lil).

Example 3.4. Consider again the data set from Example 3.1, which we also used in

Example 3.3. The NPI lower and upper probabilities for the event that the lifetime

of the next observation from at least one group in S is greater than the lifetime

of the next observation of each group in NS, are calculated from (3.16) and (3.17)

at different stopping times T0 for all possible subsets containing 2 groups and are

presented in Table 3.7.

At T0 = 4.5, which is the moment when we observe the first failure (group 2),

all lower probabilities are zero and all upper probabilities are one, which is different

from the case when we select the subset of 2 best groups (Example 3.3), since for that

case there were some upper probabilities which are less than one. This is because at

T0 = 4.5, whichever subset of 2 groups we consider, this subset will always contain

at least one group for which we have not seen any failure, so there is no evidence

against the possibility that this subset can still contain the best group.

For example, for S = {1, 3}, the lower probability at T0 = 4.71 is 0.013, while

the corresponding upper probability is one. At T0 = 4.71 we have seen failures from

groups 2 and 4. Therefore, we cannot exclude the possibility that we will not observe

any failure from any group in S. In fact, the upper probabilities for the sets that
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T0 r1 r2 r3 r4 P {1̃,2} P
{1̃,2}

P {1̃,3} P
{1̃,3}

P {1̃,4} P
{1̃,4}

[4.50, 4.71) 0 1 0 0 0 1 0 1 0 1

[4.71, 4.86) 0 1 0 1 0 1 0.013 1 0 1

[4.86, 5.01) 0 2 0 1 0 1 0.026 1 0 1

[5.60, 5.78) 3 6 0 1 0 0.956 0.078 1 0 0.965

[6.72, 6.84) 6 9 0 1 0 0.869 0.117 1 0 0.930

[6.84, 6.91) 6 9 1 1 0.013 0.869 0.117 0.987 0.025 0.930

[7.00, 7.21) 8 9 2 1 0.026 0.828 0.117 0.965 0.049 0.909

[7.21, 7.22) 9 9 2 1 0.026 0.808 0.117 0.961 0.049 0.898

[7.47, 7.55) 9 13 6 1 0.073 0.737 0.159 0.882 0.200 0.898

[7.55, 7.58) 9 13 7 1 0.083 0.737 0.159 0.865 0.232 0.898

[8.04, 8.08) 10 14 12 1 0.129 0.695 0.168 0.760 0.419 0.890

[8.08, 8.12) 10 14 13 1 0.139 0.695 0.168 0.742 0.453 0.890

[8.42, 8.52) 14 16 14 2 0.267 0.624 0.271 0.648 0.529 0.834

[8.52, 8.62) 14 17 14 2 0.267 0.613 0.279 0.648 0.550 0.834

[8.66, 8.81) 16 17 14 2 0.267 0.588 0.279 0.624 0.550 0.829

[8.81, 8.91) 16 18 14 2 0.267 0.576 0.286 0.624 0.568 0.829

[8.91, 8.94) 17 18 14 2 0.267 0.563 0.286 0.613 0.568 0.827

[8.94, 8.97) 18 18 14 2 0.267 0.549 0.286 0.603 0.568 0.826

[8.97, 9.03) 18 18 15 2 0.270 0.549 0.286 0.589 0.587 0.826

[9.03, 9.05) 18 18 15 3 0.293 0.549 0.308 0.589 0.587 0.826

[9.05, 9.16) 19 18 15 3 0.293 0.549 0.308 0.589 0.587 0.826

[9.16,∞) 20 18 15 3 0.293 0.549 0.308 0.589 0.587 0.826

T0 r1 r2 r3 r4 P {2̃,3} P
{2̃,3}

P {2̃,4} P
{2̃,4}

P {3̃,4} P
{3̃,4}

[4.50, 4.71) 0 1 0 0 0 1 0 1 0 1

[4.71, 4.86) 0 1 0 1 0 1 0 0.987 0 1

[4.86, 5.01) 0 2 0 1 0 1 0 0.974 0 1

[5.60, 5.78) 3 6 0 1 0.035 1 0 0.922 0.044 1

[6.72, 6.84) 6 9 0 1 0.070 1 0 0.883 0.131 1

[6.84, 6.91) 6 9 1 1 0.070 0.975 0.013 0.883 0.131 0.987

[7.00, 7.21) 8 9 2 1 0.091 0.951 0.035 0.883 0.172 0.974

[7.21, 7.22) 9 9 2 1 0.102 0.951 0.040 0.883 0.192 0.974

[7.47, 7.55) 9 13 6 1 0.102 0.800 0.118 0.841 0.263 0.927

[7.55, 7.58) 9 13 7 1 0.102 0.768 0.135 0.841 0.263 0.917

[8.04, 8.08) 10 14 12 1 0.110 0.581 0.240 0.832 0.305 0.871

[8.08, 8.12) 10 14 13 1 0.110 0.547 0.258 0.832 0.305 0.861

[8.42, 8.52) 14 16 14 2 0.166 0.471 0.352 0.729 0.376 0.733

[8.52, 8.62) 14 17 14 2 0.166 0.450 0.352 0.721 0.387 0.733

[8.66, 8.81) 16 17 14 2 0.171 0.450 0.377 0.721 0.412 0.733

[8.81, 8.91) 16 18 14 2 0.171 0.432 0.377 0.714 0.424 0.733

[8.91, 8.94) 17 18 14 2 0.173 0.432 0.387 0.714 0.437 0.733

[8.94, 8.97) 18 18 14 2 0.174 0.432 0.397 0.714 0.451 0.733

[8.97, 9.03) 18 18 15 2 0.174 0.413 0.411 0.714 0.451 0.730

[9.03, 9.05) 18 18 15 3 0.174 0.413 0.411 0.692 0.451 0.708

[9.05, 9.16) 19 18 15 3 0.174 0.413 0.411 0.692 0.451 0.708

[9.16,∞) 20 18 15 3 0.174 0.413 0.411 0.692 0.451 0.708

Table 3.7: The set including the best group: NPI lower and upper probabilities
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contain group 3, i.e. {1, 3}, {2, 3} and {3, 4}, will be one until T0 = 6.84 (i.e. the

time at which we observe the first failure from group 3). The lower probabilities for

the sets that do not include the third group, i.e. {1, 2}, {1, 4} and {2, 4}, are zero

until T0 = 6.84.

To study the behaviour of these NPI lower and upper probabilities, let us consider

the situation when the stopping time T0 is increased from 7 to 7.21, and let S = {1, 2}
be the set of interest. At time 7.21 a failure of group 1 is observed. Here, the lower

probability remains constant as the amount of information in favour of this event

remains the same. However, the upper probability decreases from 0.828 to 0.808 as

the amount of information against this event has increased (Theorem 3.6(i)). When

we consider S = {2, 3}, with T0 increasing from 7 to 7.21, then the upper probability

remains constant, but, the lower probability increases from 0.091 to 0.102, as the

amount of information in favour of this event now increases (Theorem 3.6(ii)).

At T0 = 8.97 we have observed failures of all units from groups 2 and 3. If the

set of interest is S = {2, 3}, we see that the lower and upper probabilities remain

constant for T0 ≥ 8.97 since we have observed all units of all groups in S (special

case Theorem 3.6(ii)). Also, if the set of interest is S = {1, 4}, the lower and upper

probabilities remain constant since we have observed all units from all groups in NS

(special case Theorem 3.6(i)).

At the time when we have observed all units from all groups, i.e. T0 = 9.16, we

have a strong indication that the set {1, 4} is better than {1, 2} and {2, 3}, in the

sense that it is more likely that {1, 4} contains the best group since

0.549 = P
{1̃,2}

< P {1̃,4} = 0.587 and 0.413 = P
{2̃,3}

< P {1̃,4} = 0.587

In fact the set {1, 4} has the highest lower and upper probability when all failure

times have been observed for all units from all groups. However, we have a weak

indication that {1, 4} is the set which contains the best group since we have

P {1̃,3} < P {2̃,4} < P {3̃,4} < P {1̃,4} < P
{1̃,3}

< P
{2̃,4}

< P
{3̃,4}

< P
{1̃,4}

We can exclude {2, 3} from the comparison from T0 = 8.42 onwards, since P
{2̃,3}

<

P {1̃,4}. Also the set {1, 2} can be excluded from T0 = 8.91 onwards since P
{1̃,2}

<

P {1̃,4}. 4
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Example 3.5. In this example all NPI procedures that have been introduced in

this chapter are illustrated, so we consider selecting the best group (Section 3.3),

selecting the subset of best groups (Section 3.4) and selecting the subset including

the best group (Section 3.5). We consider subsets that contain three groups as

well as subsets that contain one or two groups. Due to space limitations only the

stopping times T0 at which we exclude a subset or a group from the comparison are

reported.

Group breakdown times

1 7.74 17.05 20.46 21.02 22.66 43.40 47.30 139.07 144.12 175.88 194.90

2 0.27 0.40 0.69 0.79 2.75 3.91 9.88 13.95 15.93 27.80 53.24

82.85 89.29 100.58 215.10

3 0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50 7.35

8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

4 0.35 0.59 0.96 0.99 1.69 1.97 2.07 2.58 2.71 2.90 3.67

3.99 5.35 13.77 25.50

5 0.09 0.39 0.47 0.73 0.74 1.13 1.40 2.38

Table 3.8: The times to breakdown (in minutes) at five voltage levels

We use a data set also used by Lawless [48, p. 3], which consists of the times to

breakdown (in minutes) of electrical insulating fluids at seven voltage levels. These

data were originally studied by Nelson [65], who particularly studied the accelerated

life testing nature of the data. We do not attempt to model the explicit effect

of accelerated life testing but just use these data to illustrate the NPI methods

presented in this chapter. We will use only five out of these seven voltage levels in

this example, see Table 3.8, to illustrate our method. More precisely, we exclude

the first two voltage levels from the original data set since they contain relatively

few units compared with the other voltage levels. Again let Xj,ij represent the

time to breakdown for unit ij at voltage level j, which we refer to as group j, with

ij = 1, . . . , nj and j = 1, . . . , 5 representing voltage level 30, 32, 34, 36 and 38,

respectively. The corresponding sample sizes are 11, 15, 19, 15 and 8, respectively.

In this data set, the range of times to breakdown vary from 0.09 at voltage level 5

to 215.10 at voltage level 2.

Let us consider selection of a subset of 3 groups, so we have 10 different possible
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subsets: {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5},
{2, 4, 5} and {3, 4, 5}. Of course, there are also 10 possible subsets containing 2

different voltage levels: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4},
{3, 5} and {4, 5}.

We start considering selection of the subset of 3 best groups. When we have

observed all units from all groups we will select the subset {1, 2, 3} as the subset of

best groups with NPI lower and upper probabilities P {1,2,3} = 0.337 and P
{1,2,3}

=

0.535, respectively. Actually we can conclude the same result (i.e. {1, 2, 3} as the

best subset) at an early stage. In fact, already if we stopped the experiment at

T0 = 6.5 we would select the set {1, 2, 3} as the best subset among all ten subsets,

see Table 3.9. Note that, at this point we still have not observed any breakdown

from the first group while we have observed already the breakdown times of all

units from group 5. Table 3.9 explains how we can establish an early decision from

the beginning. For example, at T0 = 2.38, we have observed all breakdown times

for units from group 5 and we have not observed any breakdowns from the first

group, and therefore we will exclude any set that contains group 5 from being the

best. Moreover, at T0 = 2.90 we can exclude 7 of the 10 subsets from comparison of

becoming the best subset. At this time, the subsets {1, 2, 3}, {1, 2, 4} and {1, 3, 4}
remain in the comparison process. Figure 3.1 shows a pairwise comparison between

the best subset {1, 2, 3} and the two second best subsets {1, 2, 4} and {1, 3, 4}, for
different T0. We can see that at T0 = 3.99, P

{1,2,4}
< P {1,2,3} and at T0 = 6.50,

P
{1,3,4}

< P {1,2,3}.

Consequently, if we terminate the experiment at T0 = 6.5 we get the same

decision as when we would have observed all units from all groups. Doing that

would lead to a much shorter testing time, and we can keep 9 units out of 15 from

group 2, 9 out of 19 from group 3, 2 out of 15 from group 4 and all units from group

1 to be possibly used for other purposes.

Now we consider selecting a subset of 3 groups that includes the best group.

Table 3.10 shows that 4 out of 10 subsets could be excluded from the comparison at

T0 = 13.77, and a fifth subsets at T0 = 25.5. Unlike the case of selecting the subset

of best groups, there are three sets {1, 2, 3}, {1, 2, 4} and {1, 2, 5} which cannot be
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Figure 3.1: The subset of best groups: NPI lower and upper probabilities for T0 ≤ 10
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T0 r1 r2 r3 r4 r5 Set(s) out Pairwise comparison with {1, 2, 3}

1.69 0 4 4 5 7 {2, 4, 5} 0.123 = P
{2,4,5}

< P {1,2,3} = 0.131

1.97 0 4 4 6 7 {3, 4, 5} 0.126 = P
{3,4,5}

< P {1,2,3} = 0.154

{2, 3, 5} 0.145 = P
{2,3,5}

< P {1,2,3} = 0.154

2.07 0 4 4 7 7 {1, 4, 5} 0.153 = P
{1,4,5}

< P {1,2,3} = 0.177

2.38 0 4 4 7 8 {1, 2, 5} 0.114 = P
{1,2,5}

< P {1,2,3} = 0.200

{1, 3, 5} 0.139 = P
{1,3,5}

< P {1,2,3} = 0.200

2.90 0 5 5 10 8 {2, 3, 4} 0.235 = P
{2,3,4}

< P {1,2,3} = 0.275

3.99 0 6 6 12 8 {1, 2, 4} 0.292 = P
{1,2,4}

< P {1,2,3} = 0.314

6.50 0 6 10 13 8 {1, 3, 4} 0.326 = P
{1,3,4}

< P {1,2,3} = 0.328

Table 3.9: The subset of best groups: pairwise comparison with {1, 2, 3}

excluded from any time onwards. Consequently, we do not have a strong indication

to select one of these three sets as the set that is most likely to include the best

group as even when we have observed all units, we have P
{1̃,2,4}

≮ P {1̃,2,3} and

P
{1̃,2,5}

≮ P {1̃,2,3}.

In Table 3.11, the stopping times at which we exclude a group from being the

best group are reported, where the NPI lower and upper probabilities are calculated

from (3.3) and (3.4). As we can see from Table 3.11, we can exclude group 5 from

being the best group already at T0 = 6.5, at which time 0.112 = P
(5)
< P (1) = 0.124.

Groups 4 and 3 can be excluded at T0 = 12.06 and T0 = 31.75, respectively, as then

we have 0.193 = P
(4)
< P (1) = 0.197 and 0.288 = P

(3)
< P (1) = 0.310. In addition,

when we have observed breakdown times of all units from all groups (or even before,

i.e. at T0 = 82.85) we can conclude that the first group is the best since P (1) > P
(l)

for l = 2, 3, 4, 5. At T0 = 82.85 we can exclude the second group from being the

best group (where 0.378 = P
(2)
< P (1) = 0.391) which may explain the situation of

being {1, 2, 3}, {1, 2, 4} and {1, 2, 5} to be the subsets that contains the best group

since these contain the best group and the second best group (i.e. group 2).

Suppose, for example, that we terminate the experiment at T0 = 25.5. From

Table 3.10 it follows that in this case we can exclude 5 of the 10 subsets from

being the subset that includes the best group, therefore, the sets {1, 2, 3}, {1, 2, 4},
{1, 2, 5}, {1, 3, 5} and {1, 3, 4} will remain under comparison. At the same time (at
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T0 = 25.5), see Table 3.11, we can exclude groups 4 and 5 from being the best group,

therefore we still have groups 1, 2 and 3 under comparison. This explains why any

set that contains two of these groups is still under consideration for being the set

that includes the best group. However, this is not the case for {2, 3, 5} and {2, 3, 4}
since the first group (the best) is not included in them.

T0 r1 r2 r3 r4 r5 Set(s) out Pairwise comparison with {1, 2, 3}

5.35 0 6 9 13 8 {3, 4, 5} 0.685 = P
{3̃,4,5}

< P {1̃,2,3} = 0.717

9.88 1 7 13 13 8 {2, 4, 5} 0.696 = P
{2̃,4,5}

< P {1̃,2,3} = 0.717

13.77 1 7 14 14 8 {2, 3, 5} 0.751 = P
{2̃,3,5}

< P {1̃,2,3} = 0.769

{2, 3, 4} 0.762 = P
{2̃,3,4}

< P {1̃,2,3} = 0.769

25.50 5 9 14 15 8 {1, 4, 5} 0.803 = P
{1̃,4,5}

< P {1̃,2,3} = 0.811

72.89 7 11 19 15 8 {1, 3, 5} 0.811 = P
{1̃,3,5}

< P {1̃,2,3} = 0.811

139.07 8 14 19 15 8 {1, 3, 4} 0.809 = P
{1̃,3,4}

< P {1̃,2,3} = 0.811

Table 3.10: The subset including the best group: pairwise comparison with {1, 2, 3}

T0 r1 r2 r3 r4 r5 group out Pairwise comparison with group 1

6.50 0 6 10 13 8 group 5 0.112 = P
(5)

< P (1) = 0.124

12.06 1 7 14 13 8 group 4 0.193 = P
(4)

< P (1) = 0.197

31.75 5 10 15 15 8 group 3 0.288 = P
(3)

< P (1) = 0.310

82.85 7 12 19 15 8 group 2 0.378 = P
(2)

< P (1) = 0.391

Table 3.11: The best group: pairwise comparison with group 1

Now let us consider the case of selecting the subset of 2 best groups. From

T0 = 8.27 onwards, see Table 3.12, all subsets except {1, 2} and {1, 3} are excluded

from being the subset of 2 best groups. Here we have a strong indication to exclude

these subsets since their corresponding upper probabilities are less than P {1,2}, but

there is only a weak indication that {1, 2} is the best subset of 2 best groups since

P {1,3} < P {1,2} < P
{1,3}

< P
{1,2}

.

From the one-group comparison, see Table 3.11, at T0 = 8.27 the fifth group can

be excluded (in fact this can be concluded already for T0 ≥ 6.5) as P
(5)

< P (1). In

addition, we exclude the fourth and the third group at T0 = 12.06 and T0 = 31.75,

respectively. That may explain why, when considering subsets consisting of two
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T0 r1 r2 r3 r4 r5 Set(s) out Pairwise comparison with {1, 2}

2.71 0 4 4 9 8 {4, 5} 0.051 = P
{4,5}

< P {1,2} = 0.064

2.90 0 5 5 10 8 {2, 5} 0.079 = P
{2,5}

< P {1,2} = 0.086

3.16 0 5 6 10 8 {3, 5} 0.082 = P
{3,5}

< P {1,2} = 0.102

4.15 0 6 7 12 8 {1, 5} 0.122 = P
{1,5}

< P {1,2} = 0.137

4.85 0 6 9 12 8 {3, 4} 0.155 = P
{3,4}

< P {1,2} = 0.172

{2, 4} 0.168 = P
{2,4}

< P {1,2} = 0.172

8.27 1 6 13 13 8 {1, 4} 0.243 = P
{1,4}

< P {1,2} = 0.256

{2, 3} 0.251 = P
{2,3}

< P {1,2} = 0.256

Table 3.12: The subset of best groups: pairwise comparison with {1, 2}

groups (Table 3.12) the subsets that contain the fifth group can be excluded from

T0 = 4.15. However, by the end of the experiment we do not have a strong indication

to choose between the subsets {1, 2} and {1, 3} for selecting the subset of best groups.
With regard to selection of the subset of 2 groups that includes the best group,

from T0 = 32.52 onwards (Table 3.13) the subsets {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}
and {4, 5} are excluded from being the subset including the best group. Here we

have a strong indication that these subsets can be excluded since their corresponding

upper probabilities are less than P {1̃,2}, but there is only a weak indication to select

{1, 2} as the subset including the best group since P {1̃,4} < P {1̃,5} < P {1̃,3} < P {1̃,2}

and P
{1̃,5}

< P
{1̃,4}

< P
{1̃,3}

< P
{1̃,2}

.

T0 r1 r2 r3 r4 r5 Set(s) out Pairwise comparison with {1, 2}

5.35 0 6 9 13 8 {4, 5} 0.283 = P
{4̃,5}

< P {1̃,2} = 0.315

8.27 1 6 13 13 8 {3, 5} 0.438 = P
{3̃,5}

< P {1̃,2} = 0.451

12.06 1 7 14 13 8 {3, 4} 0.455 = P
{3̃,4}

< P {1̃,2} = 0.484

25.50 5 9 14 15 8 {2, 4} 0.516 = P
{2̃,4}

< P {1̃,2} = 0.547

{2, 5} 0.522 = P
{2̃,5}

< P {1̃,2} = 0.547

32.52 5 10 16 15 8 {2, 3} 0.592 = P
{2̃,3}

< P {1̃,2} = 0.601

Table 3.13: The subset including the best group: pairwise comparison with {1, 2}

On the other hand, at T0 = 8.27 we can exclude only the subsets {3, 5} and

{4, 5} from being the subset including the best group. In the one-group comparison

(Table 3.11), we exclude group 5 from being the best group already at T0 = 6.5.
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However, while {2, 5} contains the fifth group, it is still under comparison until

T0 = 25.5. With respect to {1, 5}, and by the end of the experiment, there is no

strong indication to exclude this subset from being the subset including the best

group although this subset includes the best (group 1) and the worst group (group

5). Note that this subset was excluded at T0 = 4.15 from being the subset of 2 best

groups (Table 3.12). Actually we excluded all subsets that contain the fifth group

from being the subset of best groups at T0 = 4.15, which is even before we would

decide to exclude the fifth group from being the best group (one-group comparison,

Table 3.11) at T0 = 6.5.

At T0 = 6.5, we see from Table 3.9 that we can select {1, 2, 3} as the subset

of best groups containing 3 groups. However, at this time, we see from Table 3.12

that we do not have a strong indication to select one subset for being the subset of

best groups among {1, 2}, {1, 3}, {1, 4} and {2, 3}, although {1, 2}, {1, 3} and {2, 3}
are subsets of {1, 2, 3}, but the subset {1, 4} contains only one group from {1, 2, 3}.
Later, at T0 = 8.27 we exclude the subset {2, 3} (⊂ {1, 2, 3}) from being the subset

of best groups.

At T0 = 25.5, see Table 3.10, we do not have a strong indication to select one

of {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4} and {1, 3, 5} as the subset including the best

group. Here all possible 3-group subsets which include the best group (i.e. group 1)

are still under comparison except for {1, 4, 5}, which contains the two worst groups

(i.e. groups 4 and 5) according to Table 3.11. However, we exclude the subset

{1, 4, 5}, at T0 = 25.5 from being the subset including the best group. However at

this time (Table 3.13) we do not have a strong indication in favour of selecting one

of {1, 2}, {1, 3}, {1, 4}, {1, 5} and {2, 3} as the subset including the best group.

At T0 = 25.5, the subset {2, 3} is also still under comparison for being the subset

including the best group while group 1 (the best group) is not included in this

subset. However, at least all subsets that include group 1 (the best group) are still

under comparison for the subset including the best group when breakdown times

have been observed for all units on test. 4
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3.6 Concluding remarks

In this chapter we have presented NPI for comparison of several groups through

experiments that may be terminated before the event of interest has been observed

for all units. This work generalizes the NPI approach for selection presented by

Coolen and van der Laan [25], with close links to methods for precedence testing

which are explicitly developed to deal with such early termination.

We note that when the stopping time increases from T0 to T0 + ε such that only

one extra failure occurs from one particular group, the lower probability remains ei-

ther constant or increases and the upper probability remains constant or decreases.

Hence, when T0 increases to T0 + ε, the imprecision remains constant or decreases.

It is shown that the lower probability for a certain event can be interpreted as quan-

tifying the amount of information in favour of the event while the upper probability

can be interpreted as quantifying the amount of information against the event.

The NPI method presented here is not considered to be a competitor for es-

tablished classical methods for precedence testing and selection, but it provides an

interesting alternative which may be suitable particularly in cases where interest is

explicitly in a future observation from one or more selected groups. It may well

be the case that these different methods lead to quite different conclusions, so care

must be taken about the actual inferential conclusions. As always, applying a variety

of suitable statistical methods to a practical problem might give valuable insights

into the problem and the different methods, where differences typically occur due

to different underlying assumptions and explicitly different inferential goals of the

methods.



Chapter 4

Comparisons of lifetime data with

early termination

4.1 Introduction

Coolen and Yan [26] introduced NPI for comparison of two groups of lifetime data

that contain right-censored observations, using the suitable rc-A(n) assumption per

group. However, they did not consider situations with more than two groups, nor

the effect of early termination of the lifetime experiment. In Chapters 2 and 3

we presented NPI for comparison of groups of data with early termination of the

experiment, say at time T0, but all observations prior to T0 were required to be actual

failure times, so no right-censoring was possible apart from the right-censoring at T0

of all units that had not yet failed. In this chapter we generalise that by developing

NPI for comparison of multiple groups of lifetime data including right-censored

observations, and with possible early termination of the lifetime experiment.

A short overview about the classical precedence tests is given in Section 4.2. The

NPI lower and upper probabilities for comparing k groups in order to select the best

group, with possible early termination of the lifetime experiment, are presented in

Section 4.3, and this approach is illustrated and discussed via examples in Section

4.4. Some concluding remarks are given in Section 4.5.

69
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4.2 Classical precedence tests

Suppose we have k ≥ 2 independent groups, for group j (j = 1, . . . , k) nj units are

placed on a lifetime experiment, and let their random times to failure be denoted

by Xj,1, . . . , Xj,nj
. In classical statistics, it is typically assumed that these random

quantities are independent and identically distributed, with continuous distribution

function Fj. Several nonparametric tests have been proposed in the literature for

comparing k groups of units placed simultaneously on a lifetime experiment [15, 16].

Classical precedence testing methods consider the null hypothesis H0 : F1(x) =

. . . = Fk(x) for all x, which is tested against several alternative hypotheses, e.g. the

most general alternative H1 : Fi(x) 6= Fj(x) for at least one pair of i and j and

some value of x. Another alternative hypothesis that has been used is the one-sided

alternative H2 : Fi(x) ≤ F1(x), with strict inequality for at least one i = 2, 3, . . . , k

and some x [16]. This is of particular use in applications where one wants to com-

pare a control population, with distribution function F1, to other populations, with

distribution functions F2, . . . , Fk, to test if any of the other populations are better

than the control population. Tests for several alternative hypotheses are presented

in [15, 16]. For given p ∈ (0, 1), these tests typically depend on the statistics

Ujp = njF̂jF̂
−1
1 (p), j = 2, 3, . . . , k, where F̂j denotes the Kaplan-Meier estimator of

Fj(x) [44] and F̂−1
1 (u) is the Kaplan-Meier quantile function corresponding to F̂1.

The asymptotic distribution of some functions of these statistics Ujp are given in

[16], which also presents more details of such nonparametric precedence tests.

Let us consider one of these precedence tests proposed by Chakraborti and Desu

[15] where, for a test of size α, one may reject H0 in favour of H2 if

V = (N σ̂2
1)

−1/2

k
∑

j=2

(Ujp − njp) < −zα (4.1)

where N =
∑k

j=1 nj, and zα is the upper 100α-percentile of the standard normal

distribution. Let xj,(i) be the (distinct) ith largest failure time from group j, also let

hji and ñxj,(i)
be the number of failures and the number of units at risk, respectively,

at xj,(i). Then, under H0, σ̂
2
1 = (N/n1) (1− (n1/N))2 Ĵ0

1 +
∑k

j=2(nj/N) Ĵ0
j , where

Ĵ0
j = (1− p)2

∑

i:xj,(i)≤F̂−1(p)

nj hji

ñxj,(i)
(ñxj,(i)

− hji)
, j = 1, . . . , k.
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In the NPI approach presented in this chapter, no null hypothesis is tested.

Instead, different groups are compared by considering one further unit from each

group, the lifetime of which is assumed to be exchangeable with those of units that

were actually tested for the corresponding group. The NPI approach uses lower

and upper probabilities to quantify the uncertainties involved with the comparisons

of such random quantities, this enables meaningful inferences without the need for

further assumptions.

4.3 NPI for lifetime data with early termination

In this section, we consider a life-testing experiment to compare units of k ≥ 2

groups, which are assumed to be completely independent, with the experiment start-

ing on all units at time 0. The experiment can be terminated before all units have

failed, say at time T0, which is assumed not to hold any information on residual time-

to-failure for units that have not yet failed. We also allow right-censoring to occur

before the experiment is stopped, due to a censoring process that is assumed to be

independent of the failure process. So we consider both right-censored observations

in the original data and right-censoring due to stopping the experiment at T0. For

group j (j = 1, . . . , k) nj units are in the experiment, of which uj units fail before (or

at) T0, with ordered failure times xj,1 < . . . < xj,uj
≤ T0, and cj,1 < . . . < cj,υj < T0

are right-censoring times (we assume no tied observations for ease of notation, gen-

eralization is straightforward as discussed in Subsection 1.3.5). Let xj,0 = 0 and

xj,uj+1 = ∞. Let sj,ij be the number of right-censored observations in the interval

(xj,ij , xj,ij+1), ij = 0, . . . , uj − 1, with xj,ij < c
ij
j,1 < . . . < c

ij
j,sj,ij

< xj,ij+1. Similarly,

let sj,uj
be the number of right-censored observations in the interval (xj,uj

, T0), with

xj,uj
< c

uj

j,1 < . . . < c
uj

j,sj,uj
< T0 and

∑uj

ij=0 sj,ij = υj, so nj − (uj + υj) units from

group j are right-censored at T0.

To compare the k groups, we consider a hypothetical further unit from each

group which would also have been involved in this experiment, with Xj,nj+1 the

random failure time for the further unit from group j which is assumed to be ex-

changeable with the failure times of the nj units of the same group included in
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the experiment. The assumption rc-A(nj) implies the M -function values for Xj,nj+1

presented in Theorem 4.1.

Theorem 4.1. For NPI with lifetime data containing right-censored observations,

and with early termination of the experiment at time T0, the assumption rc-A(nj)

implies that the following M -function values apply for Xj,nj+1, on the basis of data

consisting of uj failure times and (nj − uj) right-censored observations:

M j
ij
= MXj,nj+1

(xj,ij , xj,ij+1) =
1

nj + 1

∏

{r:cj,r<xj,ij
}

ñj,cj,r + 1

ñj,cj,r

M j
ij ,tj

= MXj,nj+1
(c

ij
j,tj

, xj,ij+1) =
1

(nj + 1)

(

ñ
j,c

ij
j,tj

)−1
∏

{r:cj,r<c
ij
j,tj

}

ñj,cj,r + 1

ñj,cj,r

M j
T0

= MXj,nj+1
(T0,∞) =

nj − (uj + υj)

nj + 1

∏

{r:cj,r<T0}

ñj,cj,r + 1

ñj,cj,r

where ij = 0, . . . , uj , tj = 1, . . . , sj,ij , and ñj,cj,r and ñ
j,c

ij
j,tj

are the number of units

from group j in the risk set just prior to time cj,r and c
ij
j,tj

, respectively. Also

P j
ij

= P (Xj,nj+1 ∈ (xj,ij , xj,ij+1)) =
1

nj + 1

∏

{r:cj,r<xj,ij+1}

ñj,cj,r + 1

ñj,cj,r

P j
T0

= P (Xj,nj+1 ∈ (T0,∞)) = MXj,nj+1
(T0,∞) = M j

T0
.

Proof. This is similar to the proof of Theorem 2.1. For group j, suppose there are

wj(=nj−uj−υj) right-censored times beyond T0, denoted by cT0
j,1< . . .< cT0

j,wj
. Then,

MXj,nj+1
(T0,∞) =

wj
∑

i∗j=1

MXj,nj+1
(cT0

j,i∗j
,∞) =

1

nj + 1

wj
∑

i∗j=1

1

ñ
j,c

T0
j,i∗

j

∏

{r:cj,r<c
T0
j,i∗

j
}

ñj,cj,r + 1

ñj,cj,r

=
1

nj + 1

∏

{r:cj,r<T0}

ñj,cj,r + 1

ñj,cj,r

{

wj
∑

i∗j=1

1

ñ
j,c

T0
j,i∗

j

∏

{r:T0<cj,r<c
T0
j,i∗

j
}

ñj,cj,r + 1

ñj,cj,r

}

=
1

nj + 1

∏

{r:cj,r<T0}

ñj,cj,r + 1

ñj,cj,r

{

∏

{r:T0<cj,r<∞}

ñj,cj,r + 1

ñj,cj,r

− 1

}

=
1

nj + 1

∏

{r:cj,r<T0}

ñj,cj,r + 1

ñj,cj,r

{

ñ
j,c

T0
j,1

+ 1− 1

}

The fourth equality follows from Lemma 1.1, and ñ
j,c

T0
j,1

= nj − uj − υj.
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In this chapter we restrict attention to the events Xl,nl+1 = max
1≤j≤k

Xj,nj+1, for

l = 1, . . . , k, where the NPI lower and upper probabilities, presented in Theorem

4.2, are specified with the use of Theorem 4.1.

Theorem 4.2. The NPI lower and upper probabilities for the event that the next

observed lifetime from group l is the maximum of all next observed lifetimes for

the k groups in the experiment, with one future lifetime per group considered, i.e.

P (l) = P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

and P
(l)

= P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

, are

P (l)=

ul
∑

il=0
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(4.3)

Proof. First, we write the probability for the event of interest as

P (l) = P

(

Xl,nl+1 = max
1≤j≤k

Xj,nj+1

)

= P
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The NPI lower probability is derived as follows
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The first inequality follows by putting all probability masses for Xl,nl+1 correspond-

ing to the intervals (xl,il , xl,il+1), for il = 0, 1, . . . , ul, and (T0,∞), in the left end

points of these intervals, and by using Lemma 1.4 for the nested intervals. The

second inequality follows by putting all probability masses for Xj,nj+1, for j =

1, . . . , k, j 6= l, corresponding to the intervals (xj,ij , xj,ij+1), with (ij = 0, 1, . . . , uj),

and (T0,∞), in the right end points of these intervals. The NPI upper probability is

obtained in a similar way, but now all probability masses for the random quantities

involved are put at the opposite end points of the respective intervals, then

P (l) ≤
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≤
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It is easily seen that the value of T0 only influences these lower and upper prob-

abilities through the values of uj. If ul = 0 then P
(l)

= 1, while if uj = 0 for at

least one j 6= l then P (l) = 0. If the experiment is terminated before a single unit

has failed, then P (l) = 0 and P
(l)

= 1 for all groups. These extreme cases illustrate

an attractive feature of these NPI lower and upper probabilities in quantifying the

strength of statistical information, in an intuitive manner that is not possible with

precise probabilities. If T0 increases, P (l) never decreases and P
(l)

never increases,

and they can only change if further events are observed as we will see later in the

examples.

If the experiment is not ended before event times for all units have been observed

(whether the units have failed or were right-censored), then the terms including T0

in (4.2) and (4.3) disappear, and we get an extension of the results by Coolen and

Yan [26], who only considered NPI for comparison of two groups of lifetime data.

In this case, the NPI lower and upper probabilities are
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Another special case occurs if there are no right-censored observations before T0,

then these results are identical to those presented in Chapter 3 (Section 3.3). One

can study these lower and upper probabilities, given in Theorem 4.2, in detail fol-

lowing the same argument as in Chapters 2 and 3.
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4.4 Examples

In this section, two examples with data from the literature are presented to illustrate

our method, and in the second example we also briefly discuss a classical precedence

testing alternative for the same data.

Example 4.1. We use a data set from Desu and Raghavarao [33, p. 263], represent-

ing the recorded times (months) until promotion at a large company, for 19 employ-

ees in k = 3 departments, which we refer to as ‘groups’ in line with terminology used

throughout this chapter. The data are as follows: For group 1: 15, 20+, 36, 45, 58, 60

(n1 = 6), for group 2: 12, 25+, 28, 30+, 30+, 36, 40, 45, 48 (n2 = 9), and for group

3: 30+, 40, 48, 50 (n3 = 4), where ‘+’ indicates that the employee left the company

at that length of service before getting promotion, hence this can be considered to

be a right-censored observation. One could argue about whether or not this right-

censoring process is independent of the promotion process, but as we only use this

data set to illustrate our new method, and have no further circumstantial informa-

tion, we do not address this in more detail. We consider at which department the

data suggest that one needs to work the longest to get a promotion. In this example,

as we are looking at maximum time till promotion, the ‘best group’ in terminology

from Section 4.3, of course actually represents the department where one has to

work the longest to achieve a promotion. This data set contains tied observations,

we deal with them as discussed in Subsection 1.3.5.

T0 u1 u2 u3 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

[0, 12) 0 0 0 0 1 0 1 0 1

[12, 15) 0 1 0 0 1 0 0.9029 0 1

[15, 28) 1 1 0 0 0.8629 0 0.9029 0.0114 1

[28, 36) 1 2 0 0 0.8629 0 0.7974 0.0243 1

[36, 40) 2 3 0 0 0.7140 0 0.6591 0.0887 1

[40, 45) 2 4 1 0.0678 0.7140 0.0248 0.5398 0.1135 0.8332

[45, 48) 3 5 1 0.0813 0.6148 0.0315 0.4341 0.1969 0.8332

[48, 50) 3 6 2 0.1670 0.6148 0.0315 0.3542 0.2161 0.7475

[50, 58) 3 6 3 0.2392 0.6148 0.0315 0.3542 0.2161 0.6617

[58, 60) 4 6 3 0.2392 0.6148 0.0315 0.3542 0.2161 0.6617

[60,∞) 5 6 3 0.2392 0.6148 0.0315 0.3542 0.2161 0.6617

Table 4.1: The best group: NPI lower and upper probabilities
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Figure 4.1: The best group: NPI lower and upper probabilities

We use these data to illustrate the NPI method proposed in this chapter, for

which we also wish to illustrate the effect of possible early termination of a lifetime

experiment. To enable this, we now assume that the recorded times until promotion

are all measured from the same moment in time, and we consider the effect on our

inferences if, instead of having the complete data as given above, the differences in

time to promotion were studied after T0 months. In this case, all observations that

are larger than T0 are replaced by right-censored observations at T0. For several

values of T0, the NPI lower probabilities P (l) and NPI upper probabilities P
(l)
, for

l = 1, 2, 3, are presented in Table 4.1. For all values of T0 until it is greater than the

largest observation in the data set (60), these NPI lower and upper probabilities are

also displayed in Figure 4.1. At no value for T0 the data indicate strongly that one

of the groups leads to longest time to promotion.

As mentioned before, T0 only influences the NPI lower and upper probabilities

considered here via the uj, so the actually observed failure times, in the sense that,

for increasing T0, these lower and upper probabilities for each group are constant

except when T0 increases past an observed uj. For example, for 15 ≤ T0 < 28,

the NPI lower and upper probabilities for all three groups remain constant since no

observed failure times are in this interval, even though there are two right-censored
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observations in this interval. These right-censored observations affect the NPI lower

and upper probabilities with larger values of T0, at later failure times, as the jump

sizes in these functions will increase. At T0 = 28, when the experiment would include

the failure time 28 for a unit of group 2, the upper probability for group 2 decreases

and the lower probability for group 3 increases. However, the lower probabilities for

groups 1 and 2 still remain 0 for T0 = 28, as there has not yet been an observed

failure for group 3 at that moment in time, so the data do not exclude the possibility

that units in group 3 would never fail. If the experiment is ended before the first

failure of a particular group occurs, as is the case for group 3 at T0 less than 40

in this example, then the extreme case corresponding to these lower probabilities

for groups 1 and 2, according to the NPI M -functions, allows the probability mass

related to failure for units of group 3 to go to infinity, which explains why the lower

probabilities for groups 1 and 2 remain equal to 0 until T0 increases past 40, the

smallest time at which a unit of group 3 fails.

If the experiment is stopped at T0 ∈ [15, 50), both the lower and upper proba-

bilities for group 3 are greater than the lower and upper probabilities, respectively,

for groups 1 and 2, as discussed before one could argue that this provides a weak

indication that group 3 leads to the longest times until promotion. However, the

large imprecision in these lower and upper probabilities indicates that the evidence

for such a claim is weak, so care must be taken when formulating any conclusion

along these lines. For larger values of T0, such that event times for most units have

been observed in the experiment, group 3 has most imprecision remaining, which

reflects that there are only few observations for group 3. 4

Example 4.2. In this example we use a data set considered by Lee and Desu

[49], which gives leukemia remission times (in days) for patients undergoing three

different treatments, so k = 3, and the numbers of patients per treatment are

n1 = 25, n2 = 19 and n3 = 22. The data are given in Table 4.2, where ‘+’

again denotes that an observation is right-censored. In this example, ‘better’ means

that a treatment leads to larger remission times. This data set was also used by

Chakraborti and van der Laan [16] to illustrate precedence testing, with Treatment
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Treatment 1 Treatment 2 Treatment 3

4 5 9 10 10 8 10 10 12 8 10 11 12+ 23

12 13 20+ 23 28 14 20 48 70 25 25 28 28 31

28 28 29 31 32 75 99 103 161+ 31 40 48 89 124

37 41 41 57 62 162 169 195 199+ 143 159+ 190+ 196+ 197+

74 100 139 258+ 269+ 217+ 220 245+ 205+ 219+

Table 4.2: The remission times (in days) of leukemia patients

1 considered as a control treatment, and with focus on the median of the remission

times for the control treatment, i.e. F̂−1
1 (0.5) = 29.39, F̂2(29.39) = 0.3334 and

F̂3(29.39) = 0.4207, consequently the value of V , from equation (4.1), is −0.975.

They tested the null hypothesis that all treatments have the same effect, against

the alternative that at least one of Treatments 2 or 3 is better than Treatment 1.

They concluded that, at 5% significance level, there is no evidence that any of the

Treatments 2 or 3 is better than Treatment 1.

This data set also contains tied observations and we deal with them in the same

manner as discussed in Subsection 1.3.5. Table 4.3 presents the NPI lower and upper

probabilities for the events that Treatment l (l = 1, 2, 3) is the best, i.e. Treatment

l leads to larger remission times than the other two treatments, for a number of

times T0 at which the experiment could have been stopped, where as before all

units for which no event had yet been observed at T0 would be considered to be

right-censored at T0. If we stop the experiment any time before 162 (i.e. T0 < 162)

then we have a weak indication that treatments 2 and 3 are better than treatment

1, since P (1) < P (j) and P
(1)

< P
(j)

for j = 2, 3. However, if we consider, for

example, the case where the experiment would have been stopped at T0 = 162,

then the data would provide a strong indication that Treatments 2 and 3 are both

better than Treatment 1, since P
(1)

< P (j) for j = 2, 3. Of course, as these NPI

lower (upper) probabilities never decrease (increase), the same indication holds if

the experiment would have continued beyond time 162, no matter if or when it

would have stopped. This is an interestingly different conclusion than that reached

by Chakraborti and van der Laan [16], and is a good indication of the importance of

using several statistical methods simultaneously. It should be noted that, if in this

example the experiment is not terminated before an event for each unit has been



4.5. Concluding remarks 80

T0 u1 u2 u3 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

[5, 8) 2 0 0 0 0.9232 0 1 0 1

[8, 10) 3 1 1 0.0019 0.8851 0.0045 0.9505 0.0053 0.9570

[10, 11) 5 3 2 0.0103 0.8102 0.0139 0.8535 0.0253 0.9156

[11, 13) 6 4 3 0.0201 0.7734 0.0243 0.8059 0.0396 0.8741

[13, 20) 7 5 3 0.0246 0.7366 0.0281 0.7586 0.0571 0.8741

[20, 23) 7 6 3 0.0291 0.7366 0.0281 0.7113 0.0681 0.8741

[23, 25) 8 6 4 0.0380 0.6992 0.0408 0.7113 0.0776 0.8339

[25, 28) 8 6 6 0.0559 0.6992 0.0592 0.7113 0.0776 0.7536

[28, 31) 12 6 8 0.0703 0.5598 0.1155 0.7113 0.1066 0.6772

[31, 37) 14 6 10 0.0826 0.4927 0.1674 0.7113 0.1189 0.6034

[37, 40) 15 6 10 0.0826 0.4592 0.1793 0.7113 0.1250 0.6034

[40, 48) 17 6 11 0.0876 0.3934 0.2232 0.7113 0.1362 0.5678

[48, 57) 17 7 12 0.0992 0.3934 0.2417 0.6823 0.1501 0.5351

[57, 62) 18 7 12 0.0992 0.3624 0.2550 0.6823 0.1559 0.5351

[62, 70) 19 7 12 0.0992 0.3313 0.2682 0.6823 0.1618 0.5351

[70, 74) 19 8 12 0.1047 0.3313 0.2682 0.6558 0.1773 0.5351

[74, 89) 20 9 12 0.1091 0.3015 0.2803 0.6304 0.2004 0.5351

[89, 99) 20 9 13 0.1125 0.3015 0.2985 0.6304 0.2004 0.5085

[99, 103) 21 10 13 0.1173 0.2750 0.3093 0.6069 0.2225 0.5085

[103, 162) 22 11 15 0.1260 0.2510 0.3510 0.5848 0.2450 0.4664

[162, 169) 22 12 15 0.1291 0.2510 0.3510 0.5664 0.2581 0.4664

[169, 195) 22 13 15 0.1322 0.2510 0.3510 0.5480 0.2713 0.4664

[195, 220) 22 15 15 0.1353 0.2510 0.3510 0.5302 0.2840 0.4664

[220,∞) 22 14 15 0.1404 0.2510 0.3510 0.5226 0.2840 0.4664

Table 4.3: The best group: NPI lower and upper probabilities

recorded (so T0 > 269), then the NPI lower and upper probabilities corresponding

to Treatment 3 have the largest imprecision, which is caused by the fact that for this

treatment more observations are right-censored, particularly the larger observations,

than for the other treatments. 4

4.5 Concluding remarks

This chapter has introduced NPI for comparing k ≥ 2 independent groups of units

placed simultaneously on a lifetime experiment, with the possibility that the exper-

iment is ended before all event times have been observed. For each unit, the event

time recorded, if it happens before the experiment is ended, is either the time of

an observed failure or a right-censoring time. Where classical frequentist methods
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in statistics tend to base such comparison on hypotheses tests, the NPI approach

directly compares random failure times of further units from these groups, which are

assumed to be related to the observations per group through the assumption A(n).

We consider it an advantage that, as clearly shown in Examples 4.1 and 4.2 for

smaller values of T0, corresponding NPI lower and upper probabilities may differ so

much that they do not point towards clear decisions. This makes clear that, in order

to derive stronger guidance, more information is needed, which in this application

area would imply to either continue the experiment or to repeat it with more units

involved. Of course, if there are no possibilities to gain further information, the

wide bounds do not lead to indecision, but they just make clear that the data

and method used do not strongly indicate a preference for any of the groups. In

this case, the data and NPI method may still provide some weak indications to

support a specific choice, whereas alternative statistical methods, if they lead to a

null hypothesis of ‘equal probability distributions’ not being rejected, would provide

very little guidance on what group to choose if one must do so.

We only considered comparison of different groups by focusing on a single group

being best, defined in terms of maximum value of the random lifetime for a future

observation. Generalization to consider subsets of groups, either such that they

contain the best one or that all selected groups are better than all not-selected

groups, is achievable along the lines of Chapter 3 and Coolen and van der Laan [25].



Chapter 5

Progressive Censoring

5.1 Introduction

One topic that has led to a substantial literature in frequentist statistics involving

right-censored data is progressive censoring [3, 47], where, during a lifetime experi-

ment, non-failing units are withdrawn from the experiments. This could be done to

save cost or time, but it may also be useful, at the moment a unit fails, to study the

unit in detail in comparison with units in the same experiment that have not failed,

to get better knowledge about the underlying cause of failure [61, 67]. There may

also be specific circumstances which cause some units to fail due to reasons unre-

lated to the experimentation [18], and it may occur that an individual or unit drops

out of the study before the end of the experiment [3], which also makes progressive

censoring schemes useful. Several progressive censoring schemes have been consid-

ered in the literature, including progressive Type-I censoring, progressive Type-II

censoring [3] and Type-II progressively hybrid censoring [46].

In this chapter we present Nonparametric Predictive Inference (NPI) for com-

parison of two groups under different progressive censoring schemes. Section 5.2

provides a short overview of progressive censoring schemes for as far as required in

this chapter. In Sections 5.3, 5.4 and 5.5 we present the main results of this chapter,

namely the NPI lower and upper probabilities for the event that the lifetime of a

future unit from group Y is greater than the lifetime of a future unit from group

X, under the three different progressive censoring schemes discussed in Section 5.2.

82
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The main focus is on the progressive Type-II censoring scheme, as it has received

most attention in the literature, for which the results stated are proved in detail.

However, we also briefly present NPI for the two other schemes, the proofs of these

follow the same lines of reasoning as for the progressive Type-II censoring results

and are not included in full detail. NPI for these scenarios, and for a few related

situations, is illustrated and discussed via an example, and the chapter ends with

some concluding remarks in Section 5.7.

5.2 Progressive censoring schemes

This section provides a brief overview of three progressive censoring schemes, called

progressive Type-I censoring, progressive Type-II censoring and Type-II progres-

sively hybrid censoring. In a progressive Type-I censoring scheme, see Figure 5.1(a),

n units are placed on a lifetime experiment. Of these n units, r fail during the

experiment, we assume ( in order to simplify presentation of the approach presented

in this chapter) that they fail at r different failure times x1 < x2 < . . . < xr. At

m times T1 < T2 < . . . < Tm, some further units may be randomly withdrawn

from the experiment, leading to right-censored observations for their corresponding

lifetimes. At such a time Tj (j = 1, . . . ,m) where progressive censoring is taking

place, let Rj denote the number of units that are removed from the experiment

without having failed. We assume that the experiment finishes at time Tm, hence

Tm > xr and Rm = n − r −∑m−1
j=1 Rj. For use later in this chapter, we define sj

to be the number of failures between the consecutive right-censoring times Tj−1 and

Tj, so sj = #{Tj−1 < xi ≤ Tj : i = 1, . . . , r} (j = 2, . . . ,m), and s1 is the num-

ber of failures before T1. Then the data from this experiment, under a progressive

Type-I censoring scheme, consist of r =
∑m

j=1 sj observed failure times and n − r

right-censoring times.

In a progressive Type-II censoring scheme, see Figure 5.1(b), the number of units

to be observed to fail is fixed, let this number be r. At each observed failure time,

which we again assume to be r different times x1 < x2 < . . . < xr, some further

units which have not failed are randomly removed from the experiment, and at the
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(b) Progressive Type-II censoring
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(c) Type-II progressively hybrid censoring

Figure 5.1: Three different progressive censoring schemes

last failure time xr all the remaining units are removed from the experiment. Let Ri

denote the number of units that have not failed but are removed from the experiment

at failure time xi, for i = 1, . . . , r, then Rr = n− r −∑r−1
i=1 Ri. The data consist of

the r observed failure times x1 < x2 < . . . < xr, together with the numbers of units

with right-censored lifetimes at each of these failure times, which information we

denote by R̆ = (R1, R2, . . . , Rr). Some special cases of this censoring scheme occur

if r = n, then Ri = 0 for all i = 1, . . . , r, which means that there is no censoring

actually occurring, and if we have Ri = 0 for all i = 1, . . . , r−1 and Rr = n−r then

we obtain a conventional Type-II censored sample with censoring only due to the

experiment being stopped before all units have failed. A special case of progressive

Type-II censoring is the ‘throw away scheme’, presented by Cohen and Clifford [17],

in which a fixed number of units is withdrawn from the experiment at each observed

breakdown time. Such special cases are not highlighted further in this chapter, but

are briefly considered in Example 5.1.

In a progressive Type-II censored experiment, it might take a very long time
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to reach the prefixed number r. Therefore, it may be attractive to consider an ex-

periment which is ended as soon as either r failures have been observed, or at a

specific time, say T , whichever occurs first. In the latter case, the lifetimes of all the

remaining units in the experiment at time T are right-censored at this time, in addi-

tion to the right-censored lifetimes of units that were progressively censored during

the experiment at different failure times before T . This scenario is called Type-II

progressive hybrid censoring, and is a mixture of progressive Type-II censoring and

conventional Type-I censoring, see Figure 5.1(c). Let xJ denote the largest observed

failure time prior to T , and again we assume that no failures coincide, so the ob-

served failure times are x1 < x2 < . . . < xJ < T . At xi, for i = 1, . . . , J , Ri units

are randomly withdrawn from the experiment. Finally, all the remaining RT units

are withdrawn from the experiment at time T , so RT = n− J −∑J
i=1 Ri.

As mentioned above, one may be interested in comparing two independent pop-

ulations or treatments, say X and Y . For example, X may refer to a control group

and Y to a new treatment group [7], where statistical inference would be aimed

at investigating whether or not Y can be considered to provide an improvement

compared to X. Most classical statistics methods presented in the literature [7],

including several nonparametric methods, approach such comparison problems by

hypothesis testing. In particular, they tend to assume continuous cumulative dis-

tribution functions for the random quantities of interest, say F (·) corresponding to

X and G(·) corresponding to Y , and test the null hypothesis that the two groups

X and Y are the same with regard to the random quantity of interest, so they test

H0 : F (x) = G(x), for all x, against the hypothesis that group Y tends to have

greater lifetimes than group X, expressed via the stochastic dominance hypothesis

H1 : F (x) ≥ G(x) with strict inequality holding for at least one x. The approach

presented in this chapter is fundamentally different, with comparisons formulated

directly in terms of a future observation for each of the two groups considered, a

method which does not involve testing of hypotheses.

We focus on the progressive Type-II censoring scheme, for which in the literature

two cases are considered, depending on whether progressive censoring has been ap-

plied to only one group or to both groups. In the first case, the progressive Type-II
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censoring scheme applies to only one group, say group Y , and it is assumed that the

data from group X result from an experiment without progressive censoring, but

which is also ended when the experiment of group Y ends, at failure time yr from

group Y , so the group X data consist of failure times prior to yr and right-censored

lifetimes at yr, resulting from standard Type-II censoring at yr. For this case, Ng and

Balakrishnan [5, 67] have proposed several tests, including the weighted precedence

test, the weighted maximal precedence test and the maximal Wilcoxon rank-sum

precedence test as extensions of classical precedence tests that are suitable for this

scenario. Bairamov and Eryilmaz [2] considered exceedance statistics for the same

setting.

As the second case, one considers the situation with progressive Type-II censoring

applied independently to both groups X and Y . Recently, Balakrishnan et al. [7]

introduced a precedence test based on placement statistics with progressive censoring

for both groups. The proposed precedence test statistic, P(s), is basically the number

of failures from group X that precede the sth (1 ≤ s ≤ ry) failure from group Y ,

where ry is the number of failures from group Y . Two further precedence tests are

proposed by Balakrishnan et al. [8, 9] for progressive censoring in both samples. The

first is a Wilcoxon type rank-sum precedence test, T(ry), where all censored items

are assumed to fail immediately after the censoring occurs. Then T(ry) is defined as

the sum of the ranks of the X observations in the combined sample (i.e. X and Y

combined together) [8, 9]. The second test statistic, Q̄(ry), is based on the Kaplan-

Meier estimator [44] of the cumulative distribution functions F and G. Let Qj be

the number of failures from group X between the (j − 1)th and jth failure from

group Y for which F̂ (xi) ≥ Ĝ(yj), for j = 1, 2, . . . , ry where y0 = 0. Then,

Q̄(ry) =

ry
∑

j=1

Qj +
1

2
Qry+1

where the Qry+1 is obtained by assuming that the remaining unobserved failures

from group X (i.e. the failures from group X that greater than yry) occur before

the censored items from group Y at yry for which F̂ (xi) ≥ Ĝ(yry+1), where yry+1 is

taken as the (ry +1)th progressive Type-II censored order statistic with progressive

censoring scheme (Ry
1, . . . , R

y
ry−1, 0, ny−ry−1−∑ry−1

j=1 Ry
j ). For the null distributions



5.3. NPI for progressive Type-II censoring 87

of these test statistics and for more details we refer to [8, 9]. The NPI approach is

compared to these methods in Example 5.1.

5.3 NPI for progressive Type-II censoring

For the progressive Type-II censoring scheme, n units are placed on a lifetime ex-

periment, and for r of these units actual failure times are observed during the ex-

periment, while at each observed failure time for one of these r units, some of the

remaining units may be withdrawn from the experiment, until the r-th failure time

when the experiment is ended, and hence all remaining units are removed from the

experiment. We can consider the n − r progressively censored units (according to

the scheme R̆ = (R1, R2, . . . , Rr)) as being grouped in blocks, each consisting of

units censored at a specific observed failure time. Hence, this leads to all censored

units in one block to be censored at the same time, which is dealt with by rc-A(n) as

described below. For ease of notation, we assume throughout that there are no ties

between the observed failure times, the tied right-censoring times do not provide

complications and actually simplify the approach as discussed below. In addition,

we use x0 = 0 and xr+1 = ∞. The following theorem provides the M -functions re-

quired for NPI applied to comparison of lifetime data under the progressive Type-II

censoring scheme, together with the total probability mass assigned to the interval

(xi, xi+1).

Theorem 5.1. To apply NPI to data from an experiment with a progressive Type-

II censoring scheme with R̆ = (R1, R2, . . . , Rr), the assumption rc-A(n) implies that

the probability distribution for a nonnegative random quantity Xn+1 on the basis

of data including r real and (n− r) progressively censored observations, is partially

specified by the following M -function values, for i = 0, 1, . . . , r,

MX(xi, xi+1) = MXn+1(xi, xi+1) =
1

n+ 1

i−1
∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1Rl + 1

(5.1)

MX(x+
i , xi+1)=MXn+1(x

+
i , xi+1)=

[

Ri

n− i−∑i
l=1Rl+1

]

MX(xi, xi+1) (5.2)
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where x+
i is used to indicate a value infinitessimally greater than xi, which can

be interpreted as representing the lower bound for the interval that would contain

the actual lifetimes for all units censored at xi. Then the total probability mass

assigned to the interval (xi, xi+1) is the sum of the two M -functions corresponding

to (xi, xi+1) and (x+
i , xi+1) (for i = 0, 1, . . . , r), and is given by

PX(xi, xi+1) = P (Xn+1 ∈ (xi, xi+1)) =
1

n+ 1

i
∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1Rl + 1

(5.3)

Proof. We can write the observations, both failure times and right-censoring times,

of n units from group X as given below, in which we assume that all observations are

different values for ease of presentation, but for tied right-censored observations one

can derive the exact NPI results as limiting situation with the difference between

such right-censoring times becoming infinitesimally small. We follow Coolen and

Yan [27] in assuming, which is also standard in the wider literature, that coinciding

failure and right-censoring times are actually such that the latter is slightly larger

than the failure time. Let the data be

0 < x1 < c11 < . . . < c1R1
< x2 < c21 < . . . < c2R2

< x3 < . . .

< . . . < xi < ci1 < . . . < ciRi
< xi+1 < . . . < xr < cr1 < . . . < crRr

< ∞

For the setting considered in this chapter, cili is actually the right-censoring time of

the lith unit censored at xi, for i = 1, . . . , r and li = 1, . . . , Ri.

For any block k (k = 1, . . . , r), xk < ck1 < . . . < cklk < . . . < ckRk
< xk+1, ñck

lk

is

the number of units at risk at cklk , that is ñck
lk

= n− k − (lk − 1)−∑k−1
l=1 Rl. Then,

and from (1.3),

MX(xi, xi+1) =
1

n+ 1

∏

{k:ck<xi}

ñck + 1

ñck

=
1

n+ 1

i−1
∏

k=1

Rk
∏

lk=1

ñck
lk

+ 1

ñck
lk

=
1

n+ 1

i−1
∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1Rl + 1

similar, and from (1.6),

PX(xi, xi+1) =
1

n+ 1

∏

{k:ck<xi+1}

ñck + 1

ñck

=
1

n+ 1

i
∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1Rl + 1
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since MX(x+
i , xi+1) = PX(xi, xi+1)−MX(xi, xi+1), then

MX(x+
i , xi+1) =

1

n+ 1

[

i−1
∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1 Rl + 1

][

Ri

n− i−∑i
l=1Rl + 1

]

In this section we present NPI to compare two groups, say X and Y , when one

(or both) is (are) progressively censored. Throughout, we consider the two groups

to be completely independent. In NPI, the comparison of groups X and Y is in

terms of lower and upper probabilities for the event that a single future observation

from group Y is greater than a single future observation from group X, where lower

and upper probabilities are used in order to keep inferential assumptions, added to

the data observed, restricted.

Suppose that we have two independent groups, X and Y , consisting of nx

and ny units, all placed on a lifetime experiment. Units of both groups are pro-

gressively Type-II censored with the schemes R̆x = (Rx
1 , R

x
2 , . . . , R

x
rx) and R̆y =

(Ry
1, R

y
2, . . . , R

y
ry). In practice, for example, group X could be a control group, with

a new treatment applied to units in group Y , and the aim might be to draw con-

clusions on whether or not the new treatment group tends to provide improved

lifetimes. Given the data, R̆x, R̆y, and with the appropriate assumptions rc-A(nx)

and rc-A(ny) for the respective groups, Theorem 5.2 presents the NPI lower and up-

per probabilities for the event that the next future observation from group Y , Yny+1,

is greater than the next future observation from group X, Xnx+1.

Theorem 5.2. The NPI lower and upper probabilities for the event that the next

future observation from group Y is greater than the next future observation from

group X, under the progressive Type-II censoring scheme for both groups, are

P
(

Yny+1 > Xnx+1

)

=

ry
∑

j=0

{

rx
∑

i=0

1{xi+1 < yj}PX(xi, xi+1)

}

P Y (yj, yj+1) (5.4)

P
(

Yny+1 > Xnx+1

)

=

ry
∑

j=0

{

rx
∑

i=0

1{xi < yj+1}PX(xi, xi+1)

}

P Y (yj, yj+1) (5.5)

with PX and P Y according to equation (5.3).
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Proof. The NPI lower probability for the event Xnx+1 < Yny+1, given the data and

progressive Type-II censoring schemes R̆x and R̆y, is derived as follows:

P = P (Xnx+1 < Yny+1) =
ry
∑

j=0

P (Xnx+1 < Yny+1, Yny+1 ∈ (yj, yj+1))

≥
ry
∑

j=0

{

P (Xnx+1 < yj)M
Y (yj, yj+1) + P (Xnx+1 < y+j )M

Y (y+j , yj+1)
}

=
ry
∑

j=0

P (Xnx+1 < yj)
{

MY (yj, yj+1) +MY (y+j , yj+1)
}

=
ry
∑

j=0

P (Xnx+1 < yj)P
Y (yj, yj+1)

≥
ry
∑

j=0

rx
∑

i=0

1{xi+1 < yj}PX(xi, xi+1)P
Y (yj, yj+1)

The first inequality follows by putting all probability masses for Yny+1 corresponding

to the intervals (yj, yj+1) and (y+j , yj+1) (j = 1, . . . , ry) to the left end points of these

intervals, and by using Lemma 1.4 for the nested intervals (yj, yj+1) and (y+j , yj+1).

The second inequality follows by putting all probability masses for Xnx+1 corre-

sponding to the intervals (xi, xi+1) and (x+
i , xi+1) (i = 1, . . . , rx) to the right end

points of these intervals. We should notice that P (Xnx+1 < y+j ) = P (Xnx+1 < yj)

since the Ry
j units that are right-censored at yj do not cause these probabilities to

be different due to the assumption of an infinitesimal difference between y+j and yj,

and due to the fact that the M -functions in NPI are generally assigned to open

intervals between observations.

The NPI upper probability is obtained in a similar way, but now all probability

masses for the random quantities involved are put at the opposite end points of

the respective intervals. We should notice that 1{x+
i < yj+1} = 1{xi < yj+1} by

arguments similar to those used in the derivation above for the lower probability.

P = P (Xnx+1 < Yny+1) =
ry
∑

j=0

P (Xnx+1 < Yny+1, Yny+1 ∈ (yj, yj+1))

≤
ry
∑

j=0

P (Xnx+1 < yj+1)P
Y (yj, yj+1)

≤
ry
∑

j=0

P Y (yj, yj+1)
rx
∑

i=0

{

1{xi<yj+1}MX(xi, xi+1)+1{x+
i<yj+1}MX(x+

i , xi+1)
}

=
ry
∑

j=0

rx
∑

i=0

P Y (yj, yj+1)1{xi < yj+1}
{

MX(xi, xi+1) +MX(x+
i , xi+1)

}

=
ry
∑

j=0

rx
∑

i=0

1{xi < yj+1}PX(xi, xi+1)P
Y (yj, yj+1)
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The use of these NPI lower and upper probabilities is illustrated in Example 5.1.

Next we present the NPI lower and upper probabilities for the two other progressive

censoring schemes discussed in Section 5.2, for these all ingredients required for the

complete derivations are provided, but detailed proofs are not presented as these

follow the general lines of the proof above.

5.4 NPI for progressive Type-I censoring

In a progressive Type-I censoring scheme for n units on a lifetime experiment, as

discussed in Section 5.2, Rj units are withdrawn from the experiment at Tj (j =

1, . . . ,m), and for a total of r =
∑m

j=1 sj units the actual failure times will be

observed, where sj is the number of observed failure times between Tj−1 and Tj.

Again assuming no ties among the observed failure times, the data can be written

as

· · · < Tj−1 < xj
1 < · · · < xj

sj
< Tj < xj+1

1 < . . . < xj+1
sj+1 < Tj+1 < . . .

�
��

�
��

�
��

Rj−1 Rj Rj+1

where xj
ij

is the ijth observed failure time between Tj−1 and Tj (ij = 1, . . . , sj,

j = 1, . . . ,m). For this situation, the NPI approach for comparison of two groups,

X and Y , similarly as presented in the previous section, is as follows. Let

Bj =
1

n+ 1

j
∏

k=1

n−∑k
l=1 sl −

∑k−1
l=1 Rl + 1

n−∑k
l=1 sl −

∑k
l=1Rl + 1

then the M -functions corresponding to a progressive Type-I censoring scheme, are

(for j = 1, . . . ,m and ij = 1, . . . , sj)

MX(0, x1
1) = B1 , MX(xj

ij
, xj

ij+1) = Bj−1 ,

MX(Tj, x
j+1
1 ) =

[

Rj

n−∑j
l=1 sl −

∑j
l=1Rl+1

]

Bj−1 , PX(xj
ij
, xj

ij+1) = Bj

where xj+1
1 ( xj

sj
) is the first (last) failure time observed after (before) we removed

Rj units at time Tj, and where xj
sj+1 = xj+1

1 and xm+1
1 = ∞.

Now we consider two groups X and Y under such a progressive Type-I censoring

scheme, with right-censoring times T x
a (a = 1, . . . , p) and T y

b (b = 1, . . . , q), such that
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Rx
a (Ry

b ) units of group X (Y ) that have not failed are withdrawn from the experi-

ment at T x
a (T y

b ). Then the numbers of failures from both groups are rx =
∑p

a=1 s
x
a

and ry =
∑q

b=1 s
y
b , where sxa (syb) is the number of failures between the consecutive

right-censoring times T x
a−1 and T x

a (T y
b−1 and T y

b ). The NPI lower probability for the

event Xnx+1 < Yny+1 in this situation is

P =

q
∑

b=1







sy
b
∑

ib=1

P (Xnx+1 < ybib)M
Y (ybib , y

b
ib+1) + P (Xnx+1 < T y

b )M
Y (T y

b , y
b+1
1 )







where

P (Xnx+1 < ·) =
p
∑

a=1

sxa
∑

ia=0

1{xa
ia+1 < ·}PX(xa

ia , x
a
ia+1)

and the corresponding NPI upper probability is

P =

q
∑

b=1

sy
b
∑

ib=0

P (Xnx+1 < ybib+1)P
Y (ybib , y

b
ib+1)

where

P (Xnx+1 < ·) =
p
∑

a=1

{

sxa
∑

ia=0

1{xa
ia < ·}MX(xa

ia , x
a
ia+1) + 1{T x

a < ·}MX(T x
a , x

a+1
1 }

}

As mentioned before, detailed justification of these results follows the same lines as

the proof in the previous section. The special case where such progressive censoring

is only applied to one of the two groups also follows straightforwardly, and will be

briefly illustrated in Example 5.1.

5.5 NPI for Type-II progressively hybrid censor-

ing

Under this scheme of progressive censoring, that was also introduced in Section 5.2,

one only observes the J failure times which occur prior to time T , and at failure

time xi (i = 1, . . . , J) Ri units that have not failed are removed, and finally the

experiment is ended at time T , when the RT remaining units are removed from

the experiment. For this progressive censoring scheme, we can use the same M -

functions as given in (5.1) and (5.2) for the intervals (xi, xi+1) and (x+
i , xi+1), where
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i = 0, 1, . . . , J , x0 = 0 and xJ+1 = ∞. However, for the additional interval (T,∞),

the M -function value is

MX(T,∞) =
1

n+ 1

[

RT

n− J −∑J
i=1 Ri −RT + 1

]

J
∏

k=1

n− k −∑k−1
l=1 Rl + 1

n− k −∑k
l=1 Rl + 1

This also leads to the same formula (5.3) being appropriate for the probability

PX(xi, xi+1), for i = 0, 1, . . . , J −1, while for the last interval we have PX(xJ ,∞) =

MX(xJ ,∞) +MX(x+
J ,∞) +MX(T,∞).

NPI for comparison of two groups, X and Y , under such Type-II progressively hy-

brid censoring with (Rx
1 , R

x
2 , . . . , R

x
Jx
, Rx

Tx) and (Ry
1, R

y
2, . . . , R

y
Jy
, Ry

T y), respectively,

is again based on the NPI lower and upper probabilities for the direct comparison

of one future observation from each group, so for the event Xnx+1 < Yny+1. For this

censoring scheme, these NPI lower and upper probabilities are

P =

Jy
∑

j=0

P (Xnx+1 < yj)P
Y (yj, yj+1)+{P (Xnx+1 < T y)−P (Xnx+1 < yJy)}MY (T y,∞)

where

P (Xnx+1 < ·) =
Jx
∑

i=0

1{xi+1 < ·}PX(xi, xi+1)

and

P =

Jy
∑

j=0

P (Xnx+1 < yj+1)P
Y (yj, yj+1) + P (Xnx+1 < ∞)MY (T y,∞)

where

P (Xnx+1 < ·) =
Jx
∑

i=0

1{xi < ·}PX(xi, xi+1}+ {1{T x < ·} − 1{xJx < ·}}MX(T x,∞)

Detailed justification of these results is again similar to the proof given for the

progressive Type-II censoring scheme, and this case is also illustrated in Example

5.1.

Finally, let us briefly comment on what could be considered a special case of the

progressive censoring schemes described above, namely if we just decide to terminate

the lifetime experiment at a certain time point, say T0, which could be a specific

failure time, and with no other censoring applied. In this case, we have R̆x =

(0, 0, . . . , Rx
rx) and R̆y = (0, 0, . . . , Ry

ry), where R
x
rx = nx−rx and Ry

ry = ny−ry. NPI
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for comparison of two groups under this setting, co-called precedence testing, was

presented in Chapter 2, whereas the generalization of such results to several groups

was presented in Chapter 3. This precedence testing scenario is also included in

Example 5.1.

5.6 Example

In this section, an example is given to illustrate the NPI approach for comparison

of two groups of lifetime data under several progressive censoring schemes.

Example 5.1. In this example, we use a subset of Nelson’s dataset [64, p. 462] on

breakdown times (in minutes) of an insulating fluid that is subject to high voltage

stress. The data are given in Table 5.1, for both groups there are 10 units involved

in the experiment, hence nx = ny = 10. This data set was also used in Chapter 2

to illustrate the NPI approach for precedence testing (Example 2.2).

Group Lifetimes

X 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75

Y 1.34 1.49 1.56 2.10 2.12 3.83 3.97 5.13 7.21 8.71

Table 5.1: Lifetimes of two samples of an insulating fluid

Ng and Balakrishnan [67] used this data set to illustrate the weighted prece-

dence and weighted maximal precedence tests, when progressive Type-II censor-

ing is assumed to be applied to group Y . In their example, under the scheme

R̆y = (3, 0, 0, 0, 2), only 5 breakdown times from group Y are observed, for the other

5 units the observations are right-censored. They assume that the three units with

actual observed breakdown times 2.10, 3.83 and 3.97 are instead removed from the

experiment at the first breakdown time (y1 = 1.34), and that the two units with the

largest actual breakdown times, 7.21 and 8.71, are removed from the experiment at

the fifth breakdown time, which then is y5 = 5.13. So for all units of group X the

actual breakdown times are observed, and such times are observed for 5 units from

group Y , at times 1.34, 1.49, 1.56, 2.12 and 5.13. Ng and Balakrishnan [67] derived

the weighted precedence test statistic as equal to 67, with p-value 0.009 for the test
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of the null-hypothesis that both groups’ breakdown times are equally distributed,

and the weighted maximal precedence test statistic is equal to 50 with corresponding

p-value 0.006. Therefore, they conclude that there is a strong indication to reject

this null-hypothesis, even with this specific result of progressive censoring applied

to the Y group. Their analysis concludes that there is substantial evidence in the

data to support a claim that breakdown times for group Y tend to be significantly

larger than for group X.

Below we present the NPI results for this example, applying different progressive

censoring schemes. We consider several cases with (mostly) progressive censoring,

some in which it is applied only to group Y as done by Ng and Balakrishnan [67],

and some cases with such censoring applied to both groups. We present the NPI

lower and upper probabilities that group Y is better than group X, as before in the

direct predictive sense by comparing one future observation from each group, X11

and Y11 in this example. Of course, the appropriate assumptions rc-A(10) are again

made per group, and it is assumed that the groups are completely independent.

Case A: Progressive Type-II censoring applied to group Y

Consider the same setting as used by Ng and Balakrishnan [67] and described above,

with three units withdrawn from the experiment at the first observed breakdown

time for group Y (at y1 = 1.34), and two units for this group withdrawn at the last

observed breakdown time, y5 = 5.13, so with R̆y = (3, 0, 0, 0, 2). It is also assumed

that all breakdown times for the units from group X are observed. So, with yc

denoting a right-censored observation at time y, the data actually used in this case

are

X : 0.49, 0.64, 0.82, 0.93, 1.08, 1.99, 2.06, 2.15, 2.57, 4.75

Y : 1.34, 1.34c, 1.34c, 1.34c, 1.49, 1.56, 2.12, 5.13, 5.13c, 5.13c

For this specific situation, the corresponding NPI lower and upper probabilities, as

presented in Section 5.3, are P (Y11 > X11) = 0.6139 and P (Y11 > X11) = 0.8052.

These values could be interpreted as pretty strongly supporting the explicit event

of interest here, namely that if we would get one future value for each of these two

groups, under exchangeability assumed per group, then the lower probability that
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Y11 would be greater than X11 will be substantially larger than 0.5, which might be

interpreted as reflecting a strong indication in favour of this event. This conclusion

is in line with the test results by Ng and Balakrishnan [67] for exactly the same case.

As this conclusion actually turns out to follow in each of the cases below (this is not

necessarily the case in general, of course), it is not repeated nor further discussed

there, and the NPI results are just given for illustration without further detailed

discussion.

Case B: Progressive Type-II censoring applied to groups X and Y

Suppose that the progressive Type-II censoring scheme is applied to both groups X

and Y , with R̆x = (3, 1, 1, 0, 0) and R̆y = (3, 2, 0, 0, 0) and resulting in the following

data,

X : 0.49, 0.49c, 0.49c, 0.49c, 0.64, 0.64c, 0.93, 0.93c, 2.06, 2.15

Y : 1.34, 1.34c, 1.34c, 1.34c, 1.56, 1.56c, 1.56c, 2.10, 3.83, 7.21

If we calculate the test statistics proposed by [7, 8, 9], using notation as introduced

in Section 5.2, we have P(3) = 4, P(5) = 5 and T(5) = 70. To calculate Q̄(5), we need

to calculate the Kaplan- Meier estimator of F (xi) and G(yj) as follows.

F̂ (0.49) = 0.10, F̂ (0.64) = 0.25, F̂ (0.93) = 0.44, F̂ (2.06) = 0.72 and F̂ (2.15) = 1

Ĝ(1.34) = 0.10, Ĝ(1.56) = 0.25, Ĝ(2.10) = 0.50, Ĝ(3.83) = 0.75 and Ĝ(7.21) = 1

Since Q1 = 3, Q2 = 0, Q3 = 1, Q4 = 1, Q5 = 0 and Q6 = 0, then Q̄(5) = 5.

Using the near 5% critical values and the exact level of significance summarized in

[7, 8, 9], we do not reject the null hypothesis for P(3), P(5) and Q̄(5) at significance

level 5%, however we reject the null hypothesis for T(5) at significance level 5%.

The NPI results for the comparison of these two groups of breakdown times are

P (Y11 > X11) = 0.5448 and P (Y11 > X11) = 0.8678.

Case C: Type-II progressively hybrid censoring applied to groups X and Y

In this example, a progressive Type-II censoring scheme is applied to groups X and

Y , with R̆x = (2, 1, 0, 1, 0, 0) and R̆y = (1, 2, 0, 3). However, the experiment will be

ended at T = 2.11, making this a Type-II progressively hybrid censoring scheme as
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discussed in Section 5.2. Suppose that the resulting data from this experiment are

as follows,

X : 0.49, 0.49c, 0.49c, 0.64, 0.64c, 0.93, 1.99, 1.99c, 2.06, 2.11c

Y : 1.34, 1.34c, 1.49, 1.49c, 1.49c, 2.10, 2.11c, 2.11c, 2.11c, 2.11c

Then the corresponding NPI lower and upper probabilities are P (Y11 > X11) =

0.5148 and P (Y11 > X11) = 0.8744.

Case D: Progressive Type-I censoring applied to group Y

In this case, some units of group Y are removed from the experiment before break-

down, at different times, say at T = (T1, T2, T3) = (1.5, 3.5, 5.5). Suppose that one

unit is removed at T1 = 1.5, three at T2 = 2.5, and one at T3 = 5.5, and let us

assume that this leads to the following data for group Y : 1.34, 1.49, 1.5c, 1.56, 2.10,

3.5c, 3.5c, 3.5c, 3.83 and 5.5c. We assume that no progressive censoring is applied to

group X. The corresponding NPI lower and upper probabilities for the comparison

of groups X and Y are P (Y11 > X11) = 0.6364 and P (Y11 > X11) = 0.8244.

Case E: Throw away censoring scheme applied to groups X and Y

Suppose that the ‘throw away scheme’, as briefly discussed in Section 5.2, is ap-

plied to both groups X and Y , with one unit withdrawn each time, hence R̆x =

(1, 1, 1, 1, 1) and R̆y = (1, 1, 1, 1, 1). Suppose further that the actually observed

breakdown times (and corresponding right-censoring times) under this scheme are

as follows,

X : 0.49, 0.49c, 0.64, 0.64c, 0.93, 0.93c, 1.08, 1.08c, 2.06, 2.06c

Y : 1.34, 1.34c, 1.56, 1.56c, 2.10, 2.10c, 3.83, 3.83c, 7.21, 7.21c

Then the corresponding NPI lower and upper probabilities are P (Y11 > X11) =

0.5333 and P (Y11 > X11) = 0.9291.

Case F: Precedence testing

Precedence testing can be considered as a special case of progressive censoring, as

briefly explained at the end of Section 5.5, the corresponding NPI results for this
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approach are presented in Chapter 2. Suppose that the breakdown of insulating

fluids experiment is terminated as soon as the fifth breakdown from group Y is

observed, i.e. at time y5 = 2.12. Then the breakdown times of five units from group

Y are right-censored at that time, together with three units from group X. Then

P (Y11 > X11) = 0.5289 and P (Y11 > X11) = 0.8264.

Case G: Complete data

Let us end this example by considering NPI comparison of these two groups of

breakdown data using the complete data as presented in Table 5.1, so without

any (progressive) censoring scheme applied. NPI for such a comparison of complete

data from two groups was already presented by Coolen [19], and is also easily derived

from the results in this chapter by obvious choices for the censoring schemes, namely

Rx
i = Ry

j = 0 for all i and j, and hence rx = nx and ry = ny. For this situation, the

NPI results are P (Y11 > X11) = 0.6364 and P (Y11 > X11) = 0.8099. 4

5.7 Concluding remarks

In this chapter, we introduced NPI for comparison of two groups of lifetime data

under several progressive censoring schemes. The NPI method has the attractive

feature that it is applicable whether progressive censoring is adopted for one group

or for both groups, and also for different censoring schemes. We have restricted

attention to two groups, but the methods presented here are quite easily generalized

to multiple groups, along the lines of the NPI methods for selection presented in

Chapters 3 and 4. Although the ideas for such a generalization are indeed straight-

forward, deriving analytical expressions of the corresponding NPI lower and upper

probabilities becomes somewhat tedious, it is more attractive to develop software

routines that perform such calculations for any specific M -functions specified per

group, and for any number of groups. In fact one can use the R commands provided

in the appendix of this thesis for such purposes since it can be used for comparison

of several groups and with different selection events of interest.



Chapter 6

Competing Risks

6.1 Introduction

In reliability, failure data often correspond to competing risks [13, 71], where several

failure modes can cause a unit to fail, and where failure occurs due to the first failure

event caused by one of the failure modes. Coolen et al. [23] introduced Nonparamet-

ric Predictive Inference (NPI) to some reliability applications, including lower and

upper survival functions for a future unit, illustrated with an application with com-

peting risks data. They illustrated the lower and upper marginal survival functions,

which are restricted to a single failure mode. In this chapter, the main question

considered is which failure mode will cause the next unit to fail, or for example in

survival analysis terminology, which disease causes the next individual considered to

die. From now on, terminology from reliability will be used, so events considered are

failures of units, but the methods proposed are of course more generally applicable.

In this chapter, NPI lower and upper probabilities are presented for the event

that a future unit, say unit n + 1, will fail due to a specific failure mode, based

on data consisting of times of failures resulting from competing risks for n units.

It also illustrates the effect of grouping different failure modes together, and some

special cases and features are discussed. This approach uses NPI for right-censored

data as presented by Coolen and Yan [27], see also Subsection 1.3.2. The use of

lower and upper probabilities to quantify uncertainty has gained increasing attention

during the last decade, short and detailed overviews of theories and applications in

99
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reliability, together called ‘imprecise reliability’, are presented by Coolen and Utkin

[24, 74].

Some aspects of competing risks are briefly reviewed in Section 6.2. Section

6.3 presents NPI for the competing risks problem. In Section 6.4 we consider the

special case of two failure modes which leads to some interesting results. The NPI

method is illustrated by some examples in Section 6.5. NPI can also be applied

for different censoring mechanisms, which is illustrated in Section 6.6 for competing

risks inferences under progressive censoring. Some concluding remarks are given in

Section 6.7.

6.2 Competing risks

In competing risks, several failure modes can cause a unit to fail. Throughout this

chapter, we assume that each unit cannot fail more than once and it is not used any

further once it has failed, and that a failure is caused by a single failure mode which,

upon observing a failure, is known with certainty. Tsiatis [73] showed that failure

data resulting from such competing risks cannot be used to identify dependence

between the failure modes. Effectively, this means that such data can only be used

to learn about the marginal distributions, which are the distributions of failure

times restricted to single failure modes, for which all failures caused by other failure

modes lead to right-censored observations. Throughout this chapter we assume that

the failure modes are independent, inclusion of assumed dependence would be an

interesting topic for future research, but cannot be learned about from the data as

considered here as shown by Tsiatis, and NPI has also not yet been developed to

take dependence into account.

In this chapter, we consider competing risks, with k distinct failure modes that

can cause a unit to fail. It is further assumed that such failure observations are ob-

tained for n units. As is common in study of failure data under competing risks, for

each unit k random quantities are considered, say Tj for j = 1, . . . , k, where Tj repre-

sents the unit’s time to failure under the condition that failure occurs due to failure

mode j. These Tj are assumed to be independent continuous random quantities,
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which implies the assumption that the failure modes occur independently, and the

failure time of the unit is T = min(T1, . . . , Tk). Therefore, each unit considered can

have one failure time and it will be known with certainty which failure mode caused

a failure. Hence, for the Tj corresponding to the other failure modes, which did not

cause the failure of the unit, the unit’s observed failure time is a right-censoring

time.

In a sample of size n, suppose that there are q (q ≤ n) distinct failure times

x1 < x2 < . . . < xq. Let hij be the number of units that failed due to failure

mode j at time xi, and ñxi
be the number of units at risk at xi. Then, the marginal

distribution function of Tj, also called the Cumulative Incidence Function (CIF)[70],

Fj(t), can be estimated as

F̂j(t) =
∑

all i, xi≤t

hij

ñxi

Ŝ(xi−1) (6.1)

where Ŝ(t) is the Kaplan-Meier (KM) estimator given by (1.7). For the case of

comparing two competing risks, i.e. two failure modes only, Kochar et al. [45] dis-

cussed several tests from literature to test whether the difference between the two

corresponding CIFs is different from zero.

In the competing risks literature (e.g. [30, 70]), one often consider a bivariate

random quantity (T,C), where C is an indicator which equals 0 if the observation

is censored and therefore T is the censoring time, or C = j where j represents the

failure mode that caused the failure, in which case T is the failure time due to failure

mode j [30]. NPI has not yet been developed for such bivariate random quantities,

which is an interesting challenge for future research.

6.3 NPI for Competing Risks

For the NPI approach, let the failure time of a future unit be denoted by Xn+1, and

let the corresponding notation for the failure time including indication of the actual

failure mode, say failure mode j, be Xj,n+1 (so Xn+1 corresponds to an observation

T for unit n+1, and Xj,n+1 to Tj , according to the notation in the previous section).

As the different failure modes are assumed to occur independently, the competing
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risk data per failure mode consist of a number of observed failure times for failures

caused by the specific failure mode considered, and right-censoring times for failures

caused by other failure modes. Hence rc-A(n) can be applied per failure mode j,

for inference on Xj,n+1. Let the number of failures caused by failure mode j be uj,

xj,1 < xj,2 < . . . < xj,uj
, and let υj(= n − uj) be the number of the right-censored

observations, cj,1 < cj,2 < . . . < cj,υj , corresponding to failure mode j. Again we

assume that no ties occur, however we deal with ties as discussed in Subsection

1.3.5. For notational convenience, let xj,0 = 0 and xj,uj+1 = ∞. Suppose further

that there are sj,ij right-censored observations in the interval (xj,ij , xj,ij+1), denoted

by c
ij
j,1 < c

ij
j,2 < . . . < c

ij
j,sj,ij

, so
∑uj

ij=0 sj,ij = υj. It should be emphasized that it is not

assumed that each of the n units in the data set actually has failed. If a unit has not

failed then there will be a right-censored observation recorded for this unit for each

failure mode, as it is assumed that the unit will then be withdrawn from the study,

or the study ends, at some point. The random quantity representing the failure time

of the next unit, with all k failure modes considered, is Xn+1 = min
1≤j≤k

Xj,n+1. Before

introducing the NPI lower and upper probabilities for the event of interest, the NPI

M -function values for Xj,n+1 (j = 1, . . . , k) following from Definition 1.2, are given

below.

Definition 6.1. The NPI M -functions for Xj,n+1 (j = 1, . . . , k) are

M j(t
ij
j,i∗j

, xj,ij+1) = MXj,nj+1
(t

ij
j,i∗j

, xj,ij+1) =
1

n+1
(ñ

t
ij

j,i∗
j

)
δ
ij

i∗
j
−1 ∏

{r:cj,r<t
ij

j,i∗
j
}

ñcj,r+1

ñcj,r

(6.2)

where ij = 0, 1, . . . , uj , i
∗
j = 0, 1, . . . , sj,ij and

δ
ij
i∗j
=







1 if i∗j = 0 i.e. t
ij
j,0 = xj,ij (failure time or time 0)

0 if i∗j = 1, . . . , sj,ij i.e. t
ij
j,i∗j

= c
ij
j,i∗j

(censoring time)

Again ñcr and ñ
t
ij

j,i∗
j

are the numbers of units in the risk set just prior to times cr

and t
ij
j,i∗j

, respectively. The corresponding NPI probabilities are

P j(xj,ij , xj,ij+1) = P (Xj,nj+1 ∈ (xj,ij , xj,ij+1)) =
1

n+ 1

∏

{r:cj,r<xj,ij+1}

ñcj,r + 1

ñcj,r

(6.3)

where xj,ij and xj,ij+1 are two consecutive observed failure times caused by failure

mode j (and xj,0 = 0, xj,uj+1 = ∞).
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In this chapter, the main event of interest is that a single future unit, called the

‘next unit’, undergoing the same test or process as the n units for which failure data

are available, fails due to a specific failure mode, say mode l. NPI lower and upper

probabilities for this event are derived, for each l = 1, . . . , k. The following notation

is used for these NPI lower and upper probabilities, respectively, for the event of

interest.

P (l) = P

(

Xl,n+1 = min
1≤j≤k

Xj,n+1

)

= P



Xl,n+1 < min
1≤j≤k

j 6=l

Xj,n+1





P
(l)

= P

(

Xl,n+1 = min
1≤j≤k

Xj,n+1

)

= P



Xl,n+1 < min
1≤j≤k

j 6=l

Xj,n+1





These NPI lower and upper probabilities for the event of interest are presented in

the following theorem.

Theorem 6.1. The NPI lower and upper probabilities for the event that the next

unit will fail due to failure mode l are

P (l) =
∑∑∑∑∑∑

Cl(j, ij , i
∗
j )





ul
∑

il=0

1{xl,il+1< min
1≤j≤k

j 6=l

{tijj,i∗j}}P
l(xl,il , xl,il+1)





k
∏

j=1

j 6=l

M j(t
ij
j,i∗j

, xj,ij+1) (6.4)

P
(l)

=
∑∑∑∑∑∑

Cl(j, ij)





ul
∑

il=0

sl,il
∑

i∗
l
=0

1{till,i∗
l
< min

1≤j≤k

j 6=l

{xj,ij+1}}M l(till,i∗
l
, xl,il+1)





k
∏

j=1

j 6=l

P j(xj,ij , xj,ij+1) (6.5)

where
∑∑∑∑∑∑

Cl(j, ij , i
∗
j )

denotes the sums over all i∗j from 0 to sj,ij and over all ij from 0 to

uj for j = 1, . . . , k but not including j = l. Similarly,
∑∑∑∑∑∑

Cl(j, ij)

denotes the sums over

all ij from 0 to uj for j = 1, . . . , k but not including j = l.

Proof. The NPI lower and upper probabilities (6.4) and (6.5) are derived as the

sharpest bounds, based on the relevant rc-A(n) assumptions, for the probability

P=P



Xl,n+1< min
1≤j≤k

j 6=l

Xj,n+1



=
∑∑∑∑∑∑

Cl(j, ij)

P









Xl,n+1< min
1≤j≤k

j 6=l

{Xj,n+1},
k
⋂

j=1

j 6=l

{

Xj,n+1∈(xj,ij , xj,ij+1)
}
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First consider the lower probability (6.4), which is derived as the sharpest general

lower bound for the above probability P ,

P ≥
∑∑∑∑∑∑

Cl(j, ij , i
∗
j )

P



Xl,n+1 < min
1≤j≤k

j 6=l

{tijj,i∗j}



 .

k
∏

j=1

j 6=l

M j(t
ij
j,i∗j

, xj,ij+1)

≥
∑∑∑∑∑∑

Cl(j, ij , i
∗
j )





ul
∑

il=0

1{xl,il+1 < min
1≤j≤k

j 6=l

{tijj,i∗j}}P
l(xl,il , xl,il+1)





k
∏

j=1

j 6=l

M j(t
ij
j,i∗j

, xj,ij+1)

The first inequality follows by putting all probability masses for each Xj,n+1 (j =

1, . . . , k and j 6= l) assigned to the intervals (t
ij
j,i∗j

, xj,ij+1) (ij = 0, . . . , uj and i∗j =

0, 1, . . . , sj,ij) at the left end points of these intervals, and by using Lemma 1.4 for

the nested intervals. The second inequality follows by putting all probability masses

for Xl,n+1 in each of the intervals (till,i∗
l
, xl,il+1) (il = 0, . . . , ul and i∗l = 0, 1, . . . , sl,il)

at the right end points of these intervals. The upper probability is obtained in a

similar way, but now all probability masses for the random quantities involved are

put at the opposite end points of the respective intervals, when compared to the

derivation of the lower probability which leads to

P ≤
∑∑∑∑∑∑

Cl(j, ij)

P



Xl,n+1 < min
1≤j≤k

j 6=l

{xj,ij+1}





k
∏

j=1

j 6=l

P j(xj,ij , xj,ij+1)

≤
∑∑∑∑∑∑

Cl(j, ij)





ul
∑

il=0

sl,il
∑

i∗
l
=0

1{till,i∗
l
< min

1≤j≤k

j 6=l

{xj,ij+1}}M l(till,i∗
l
, xl,il+1)





k
∏

j=1

j 6=l

P j(xj,ij , xj,ij+1)

6.4 Two competing risks

Before illustrating and discussing this method in examples in Section 6.5, let us

consider the special case of the competing risks problem in which there are only

two failure modes (so k = 2), say modes l and j, and in which each of the n units

considered actually fails due to one of these two failure modes. Therefore, any unit

which fails due to failure mode l leads to a right-censored observation for failure

mode j, and vice versa. In this case, the number of failures due to failure mode l
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(j) is equal to the number of right-censored observations for failure mode j (l), so

υl = uj and υj = ul. Let Rl (Rj) be the set of ranks of all ordered failure times due

to failure mode l (j), so Rl ⊂ {1, 2, . . . , n} and Rj = {1, 2, . . . , n} \ Rl. The NPI

lower and upper probabilities for this scenario are presented in Theorem 6.2.

Theorem 6.2. The NPI lower and upper probabilities (6.4) and (6.5) for the event

that the next unit will fail due to failure mode l, in case of only two failure modes,

l and j, are

P (l) =
1

n+ 1

∑

rl∈Rl

ñxl,(rl)

ñxl,(rl)
+ 1

=
1

n+ 1

∑

rl∈Rl

n+ 1− rl
n+ 2− rl

(6.6)

P
(l)

= 1− 1

n+ 1

∑

rj∈Rj

ñxj,(rj)

ñxj,(rj)
+ 1

= 1− 1

n+ 1

∑

rj∈Rj

n+ 1− rj
n+ 2− rj

(6.7)

Proof. In the case of two competing risks, the NPI lower probability (6.4), i.e. P (l) =

P (Xl,nl+1 < Xj,nj+1), becomes

P (l) =

uj
∑

ij=0

sj,ij
∑

i∗j=0

{

ul
∑

il=0

1{xl,il+1 < t
ij
j,i∗j

}P l(xl,il , xl,il+1)

}

M j(t
ij
j,i∗j

, xj,ij+1) (6.8)

Above we have assumed that all n units considered have actually failed due to one

of these two failure modes. As any failure of a unit due to failure mode l leads to

a right-censored observation for failure mode j for that unit, and vice versa, then

xl,(rl) = cj,(rl) (xj,(rj) = cl,(rj)) for rl ∈ Rl (rj ∈ Rj). Let
∑∑∑∑∑∑

C(ij ,i∗j ,cj,(rl))

denote the sums

over all ij from 0 to uj and over all i∗j from 0 to sj,ij such that t
ij
j,i∗j

≥ cj,(rl). Then

the NPI lower probability (6.8) can be written as

P (l) =
∑

rl∈Rl

P l(xl,(rl−1), xl,(rl))
∑∑∑∑∑∑

C(ij ,i∗j ,cj,(rl))

M j(t
ij
j,i∗j

, xj,ij+1)

=
∑

rl∈Rl

P l(xl,(rl−1), xl,(rl)) SXj,n+1
(cj,(rl))

=
∑

rl∈Rl

(

1

n+ 1

∏

{r:cl,r<xl,(rl)
}

ñcl,r + 1

ñcl,r

)(

1

n+ 1
ñcj,(rl)

∏

{r:cj,r<cj,(rl)}

ñcj,r + 1

ñcj,r

)

=
∑

rl∈Rl

(

1

n+ 1

)2(
n+ 1

n+ 2− rl

)

(n+ 1− rl)

=
1

n+ 1

∑

rl∈Rl

n+ 1− rl
n+ 2− rl

.
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The second equality and the second term in the third equality follow immediately

from the definition of the lower survival function [23] and its simplest closed-form

(1.11) derived in Chapter 1, respectively. The fourth equality in this derivation

results from the fact that, with all units assumed to fail due to one of the two failure

modes considered, and xl,(rl) = cj,(rl) and xj,(rj) = cl,(rj) for all rl ∈ Rl and rj ∈ Rj,

the two product terms combine into a single product over all first rl−1 observations.

This product simplifies to n+1
n+2−rl

, and ñcj,(rl)
= n+1− rl completes the justification

of the fourth equality.

The corresponding NPI upper probability (6.7) can be derived similarly, but it is

easier to do so by use of the conjugacy property, P
(l)

= 1− P (Xl,nl+1 > Xj,nj+1) =

1− P (j) where

P (j) =
1

n+ 1

∑

rj∈Rj

n+ 1− rj
n+ 2− rj

is of course obtained directly from the above expression for P (l).

Furthermore, the imprecision for the event considered here, in this special case of

competing risks with only two failure modes and all n units actually having failed,

does not depend on the number of failures caused by each failure mode nor on their

ordering. This is implied by the following theorem.

Theorem 6.3. The imprecision for the above scenario is equal to

Imprecision = P
(l) − P (l) =

1

n+ 1

n+1
∑

i=1

1

i

Proof. For this situation with two failure modes and all n units failing due to one

of them, the imprecision is

Imprecision = 1−
{

P (l) + P (j)
}

= 1− 1

n+ 1







∑

rl∈Rl

n+ 1− rl
n+ 2− rl

+
∑

rj∈Rj

n+ 1− rj
n+ 2− rj







= 1− 1

n+ 1

n
∑

i=1

n+ 1− i

n+ 2− i

=
1

n+ 1

[

1 +
n
∑

i=1

1

n+ 2− i

]

=
1

n+ 1

n+1
∑

i=1

1

i
.

The second equality follows directly from Theorem 6.2.
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It should be emphasized that these attractive properties of the NPI results in

the case of two competing risks do not generalize to more than two competing risks,

due to the fact that the product terms in the NPI lower and upper probabilities

(6.4) and (6.5) only disappear for this case with two failure modes and all n units

actually having failed.

The formulae (6.6) and (6.7) enable the derivation of some interesting results

of the NPI approach in this specific setting, with only two failure modes and all n

units actually having failed. Consider the following two specific scenarios in detail:

(A) all failures due to failure mode j come first, followed by all failures from failure

mode l, meaning that the uj failure times of failures due to mode j are all smaller

than the ul failure times of failures due to mode l. In this case, the NPI lower and

upper probabilities for the event that the next unit will fail due to failure mode l

are

P (l), A =
1

n+ 1

ul
∑

i=1

i

i+ 1
and P

(l), A
= 1− 1

n+ 1

n
∑

i=ul+1

i

i+ 1

(B) all failures due to failure mode l come first, followed by all failures from failure

mode j, in which case the NPI lower and upper probabilities for the event of interest

are

P (l), B =
1

n+ 1

n
∑

i=uj+1

i

i+ 1
and P

(l), B
= 1− 1

n+ 1

uj
∑

i=1

i

i+ 1

These NPI lower and upper probabilities follow straightforwardly from the general

expressions (6.6) and (6.7) for these two special cases. Because i
i+1

is increasing in

i, these results imply that case (A) leads to the minimal NPI lower and upper prob-

abilities when all possible orderings of uj failures due to mode j and ul failures due

to mode l are considered, while case (B) leads to the maximal NPI lower and upper

probabilities in this setting. More generally, these results imply a nice monotonicity

result, namely that the NPI lower and upper probabilities (6.6) and (6.7) increase

whenever any failure caused by failure mode l would move to an earlier place in the

ordering. This is illustrated in Example 6.1 in Section 6.5.
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6.5 Examples

In this section three examples of NPI for competing risks are presented to illustrate

the method and to discuss some of its properties. Example 6.1 is a small example

which serves to illustrate the results presented in Section 6.4. Examples 6.2 and

6.3 involve a substantial competing risks data set from the literature, with different

groupings of failure modes and also including some units which did not fail at all

during the study, hence leading to right-censored observations for each of the failure

modes considered. This will illustrate a further important aspect of NPI in this

setting, and will also lead to a conjecture.

Example 6.1. Consider an experiment in which five units are subjected to two

failure modes, FM1 and FM2, which are competing risks in the manner discussed

in this chapter. Suppose that all five units are observed to fail, and that three units

fail due to FM1 and two units due to FM2. So the failure times of the three units

failing due to FM1 are right-censored observations for FM2, and the failure times of

the two units which fail due to FM2 are right-censored observations for FM1. As all

five units actually fail during the experiment, no further right-censored observations

occur in this example. Suppose that there had actually been a sixth unit in the

experiment, and this was randomly selected before the start of the experiment as

the unit for which the failure information would not be revealed to us. The method

presented in this chapter provides inferences for the event that this sixth unit fails

due to FM1 or due to FM2 (instead ’will fail’ could be used, if the inferences are

interpreted as involving a future unit undergoing the same experiment, both are

convenient ways to think about the setting and inferences).

In this NPI approach, the actual failure times of the five units are not important,

only their ordering with regard to failure modes is important. Of course, NPI can

also be used for inference on the actual failure time of the sixth unit, for example

by considering the event that this unit will not fail before a specified time, in which

case the failure times of the five units are explicitly used, not only their ordering

with regard to the failure modes, this is briefly illustrated for Examples 6.2 and 6.3

at the end of this section. There are 10 possible orderings for the failure modes FM1
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and FM2, with three units failing due to FM1 and two due to FM2. The NPI lower

and upper probabilities that the sixth unit fails due to FM1, for the ten possible

orderings of the two failure modes, are given in Table 6.1.

FM Orderings P (XFM1
6 < XFM2

6 ) P (XFM1
6 < XFM2

6 )

O1 1 1 1 2 2 0.3972 0.8056

O2 1 1 2 1 2 0.3833 0.7917

O3 1 1 2 2 1 0.3556 0.7639

O4 1 2 1 1 2 0.3750 0.7833

O5 1 2 1 2 1 0.3472 0.7556

O6 1 2 2 1 1 0.3333 0.7417

O7 2 1 1 1 2 0.3694 0.7778

O8 2 1 1 2 1 0.3417 0.7500

O9 2 1 2 1 1 0.3278 0.7361

O10 2 2 1 1 1 0.3194 0.7278

Table 6.1: NPI lower and upper probabilities for the sixth unit to fail due to FM1

Consider the ordering O1, in which the three failures due to FM1 happen before

the two failures caused by FM2, and which corresponds to case (B) discussed in

Section 6.4. The NPI lower and upper probabilities for the event that the sixth unit

fails due to FM1 are, for this ordering O1, greater than the corresponding lower

and upper probabilities for all other orderings of the failure modes. On the other

hand, ordering O10, in which the two failures due to FM2 happen before the three

failures caused by FM1, and which corresponds to case (A) in Section 6.4, leads to

the minimum lower and upper probabilities, over all orderings, for the event that

the sixth unit will fail due to FM1. Table 6.1 also illustrates the monotonicity result

mentioned in Section 6.4, namely that the NPI lower and upper probabilities for

the next unit to fail due to FM1 increase if any failure caused by FM1 moves to an

earlier place in the ordering.

The NPI lower and upper probabilities for the event that the sixth unit fails due

to FM2, for the different orderings of the failure modes for the data, follow from

those for FM1 reported in Table 6.1 by the conjugacy property [1, 76], i.e.

P (XFM2
6 <XFM1

6 )=1−P (XFM1
6 <XFM2

6 ), P (XFM2
6 <XFM1

6 )=1−P (XFM1
6 <XFM2

6 ).
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Consider, for example, the ordering O5, for which the corresponding NPI lower and

upper probabilities that the sixth unit fails due to FM1 are 0.3472 and 0.7556, while

for this unit to fail due to FM2 they are 0.2444 and 0.6528. On the basis of these

NPI lower and upper probabilities alone, one could conclude that there is a weak

indication that failure due to FM1 is more likely than due to FM2, as

P (XFM1
6 < XFM2

6 ) = 0.3472 > 0.2444 = P (XFM2
6 < XFM1

6 )

and

P (XFM1
6 < XFM2

6 ) = 0.7556 > 0.6528 = P (XFM2
6 < XFM1

6 )

One could speak about a strong indication for the event that failure of the sixth

unit will be caused by FM1 if P (XFM1
6 < XFM2

6 ) > P (XFM2
6 < XFM1

6 ), which does

not occur for any of the orderings in this example. Finally, the imprecision in this

example, for all orderings of the two failure modes, is equal to 0.4084, illustrating

the property presented in Theorem 6.3. 4

Example 6.2. In this example and in Example 6.3, a well-known data set from the

literature [48] is used to illustrate some aspects of the NPI method for dealing with

competing risks. The data contain information about 36 units of a new model of a

small electrical appliance which were tested, and where the lifetime observation per

unit consists of the number of completed cycles of use until the unit failed. These

data are presented in Table 6.2, which also includes the specific failure mode (FM)

that caused the unit to fail. In the study, there were 18 different ways in which

an appliance could fail, so 18 failure modes, but to illustrate the NPI method this

number is reduce to two (groups of) failure modes in the current example, while

grouping into three failure modes is considered in Example 6.3, after which the

differences between these examples are discussed. Three units in the test did not

fail before the end of the experiment, so for these units right-censored observations

(2565, 6367 and 13403) are recorded for all failure modes considered, indicated by

‘-’ for the failure mode in Table 6.2.

The two most frequently occurring failure modes in these data are FM9, which

caused 17 units to fail, and FM6 which caused 7 failures. It is considered how likely
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# cycles FM # cycles FM # cycles FM

11 1 1990 9 3034 9

35 15 2223 9 3034 9

49 15 2327 6 3059 6

170 6 2400 9 3112 9

329 6 2451 5 3214 9

381 6 2471 9 3478 9

708 6 2551 9 3504 9

958 10 2565 - 4329 9

1062 5 2568 9 6367 -

1167 9 2702 10 6976 9

1594 2 2761 6 7846 9

1925 9 2831 2 13403 -

Table 6.2: Failure data for electrical appliance test

it is that the next unit, say unit 37, would fail due to FM9, assuming it would

undergo the same test and its number of completed cycles would be exchangeable

with these numbers for the 36 units reported. In this example, all failure modes

other than FM9 are grouped together, and these are jointly considered as a single

failure mode, which enables illustration of the NPI approach with 2 failure modes,

FM9 and, say, ‘other failure mode’ (OFM). There are still three units that do not

fail, and hence for which there are only right-censored observations (RC). For clarity,

the data corresponding to this definition of failure modes are presented in Table 6.3.

FM9 1167 1925 1990 2223 2400 2471 2551 2568 3034 3034

3112 3214 3478 3504 4329 6976 7846

OFM 11 35 49 170 329 381 708 958 1062 1594

2327 2451 2702 2761 2831 3059

RC 2565 6367 13403

Table 6.3: Failure data for electrical appliance test: FM9, OFM and RC

When the theory for NPI for competing risks data was presented in Section 6.3, it

was assumed that there were no ties to avoid notational difficulties. In this example,

however, there are tied observations, as two units have failed after 3034 completed
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cycles, both failed due to FM9. To deal with this, it is assumed that there is a

small difference between these values, such that their ordering does not change with

regard to observations of units in other groups. It is actually assumed that one

of these two units failed after 3035 completed cycles. Implicit in the NPI method

for competing risks data is that a failure time observation caused by one failure

mode is simultaneously a right-censored observation for all other failure modes.

This situation is dealt with in the NPI approach, as is common in many statistical

approaches, by assuming that the right-censoring time is just beyond the failure

time. The three right-censored observations, for units that were not observed to

fail during the experiment, also lead to tied observations for the two failure modes

(FM9 and OFM) considered, as for both the right-censoring times coincide. This is

also dealt with by assuming that for one of the failure modes this event occurred

fractionally later than for the other failure mode, and then the lower and upper

probabilities for the event of interest are calculated by considering the minimum

and maximum of the lower and upper probabilities, respectively, corresponding to

the different possible orderings of these ‘un-tied’ right-censoring times.

The NPI lower and upper probabilities for the event that unit 37 will fail due to

FM9 are

P (XFM9
37 < XOFM

37 ) = 0.4358 , P (XFM9
37 < XOFM

37 ) = 0.5804

while the corresponding NPI lower and upper probabilities for unit 37 to fail due to

OFM are

P (XOFM
37 < XFM9

37 ) = 0.4196 , P (XOFM
37 < XFM9

37 ) = 0.5642

These lower and upper probabilities satisfy the conjugacy property [1, 76], which is

due to the fact that, implicit in our method, it is assumed that the experiment on

unit 37 would actually continue until it fails, and this is assumed to happen with

certainty. On the basis of these NPI lower and upper probabilities, the data could

be considered to contain a weak indication that the event that unit 37 will fail due

to FM9 is a bit more likely than for it to fail due to another failure mode, with all

the other failure modes grouped together as done in this example. 4
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Example 6.3. This example uses the same data as Example 6.2, but the failure

modes are grouped differently. Both FM9 and FM6 are considered separately, with

17 and 7 units that failed due to them, respectively, and all other failure modes are

grouped into one ‘other failure mode’ (OFM). For clarity, the data used here are

given in Table 6.4.

FM9 1167 1925 1990 2223 2400 2471 2551 2568 3034 3034

3112 3214 3478 3504 4329 6976 7846

FM6 170 329 381 708 2327 2761 3059

OFM 11 35 49 958 1062 1594 2451 2702 2831

RC 2565 6367 13403

Table 6.4: Failure data for electrical appliance test: FM9, FM6, OFM and RC

The NPI lower and upper probabilities for the event that unit 37 will fail due to

FM9, due to FM6 or due to OFM, are

P
(

XFM9
37 <min

{

XFM6
37 , XOFM

37

})

=0.3915 , P
(

XFM9
37 <min

{

XFM6
37 , XOFM

37

})

=0.5804

P
(

XFM6
37 <min

{

XFM9
37 , XOFM

37

})

=0.1749 , P
(

XFM6
37 <min

{

XFM9
37 , XOFM

37

})

=0.3279

P
(

XOFM
37 <min

{

XFM6
37 , XFM9

37

})

=0.2265 , P
(

XOFM
37 <min

{

XFM6
37 , XFM9

37

})

=0.3808

Since

P
(

XFM9
37 < min

{

XFM6
37 , XOFM

37

})

> P
(

XFM6
37 < min

{

XFM9
37 , XOFM

37

})

one could interpret the data as providing a strong indication that unit 37 is more

likely to fail due to FM9 than due to FM6, in this setting with all other failure

modes grouped into OFM. For example, if a person were to follow a subjective in-

terpretation of lower and upper probabilities in terms of prices for desirable gambles,

in line with Walley [76], then these lower and upper probabilities would imply that,

for any price between 0.3279 and 0.3915, this person would be willing both to buy

the gamble which pays 1 if unit 37 fails due to FM9 and to sell the gamble which

pays 1 if unit 37 fails due to FM6. A quick look at the data may perhaps lead to

some surprise that FM6 is not the more likely one to lead to failure, as it has caused

relatively many early failures. However, one must not forget that it only caused



6.5. Examples 114

failure of 7 out of the 36 units tested, the comparisons would be very different if the

data were not competing risks data on the same units but completely independent

failure times per group, see Chapter 4. Similarly, a strong indication that unit 37 is

more likely to fail due to FM9 than due to OFM can be claimed because

P
(

XFM9
37 < min

{

XFM6
37 , XOFM

37

})

> P
(

XOFM
37 < min

{

XFM6
37 , XFM9

37

})

It is interesting to compare the results presented in Examples 6.2 and 6.3, as

they illustrate some features that are very different in statistics using lower and up-

per probabilities when compared to methods using precise probabilities. The NPI

lower and upper probabilities for the event that unit 37 will fail due to FM9 are

[0.4358, 0.5804] in Example 6.2, where all other failure modes are grouped together,

and [0.3915, 0.5804] in Example 6.3, where FM6 is taken separately with all further

failure modes grouped together. Hence, in the latter case, there is more imprecision

in these upper and lower probabilities, while data are represented in more detail.

This increase in imprecision, actually the fact that these upper and lower proba-

bilities are nested with more imprecision if data are represented in more detail, is

in line with a fundamental principle of NPI proposed and discussed by Coolen and

Augustin [22] in the context of multinomial data. This leads to the conjecture that,

for such competing risks data, if more failure modes are treated separately instead

of grouped together, then lower and upper probabilities for an event that the next

unit’s failure is caused by a specific failure mode are nested, with imprecision in-

creasing with the number of failure modes used. This conjecture has not been proven

generally, due to the complexity of the expressions involved, but we strongly believe

it to hold and all examples explored are in line with it.

One could also have considered the question whether or not unit 37 will fail due to

FM9 from a basic Bernoulli variables perspective, taking only into account that of 33

observed failures so far (neglecting the 3 units with right-censored lifetimes), 17 failed

due to FM9. NPI for Bernoulli random quantities [20] leads to lower probability

17/34 = 0.5 and upper probability 18/34 = 0.5294 (note also that these bound

the empirical probability 17/33 = 0.5152), which lie inside the intervals created

by the lower and upper probabilities for this event in Examples 6.2 and 6.3. This

is also in line with the observation that a more detailed data representation leads
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Figure 6.1: NPI lower and upper survival functions for unit 37

to increased imprecision in the NPI approach. This Bernoulli data representation

would, of course, not enable any inferences with regard to actual failure time.

The two NPI upper probabilities for the event that unit 37 will fail due to FM9,

for the cases with all other failure modes grouped together (Example 6.2) and with

FM6 separated (Example 6.3), are both equal to 0.5804. This is a consequence

of the fact that this upper probability is realized with the extreme assignments of

probability masses in the intervals created by the data in accordance to the lower

survival function for FM9 and the upper survival function for the other failure

modes. With all failure modes assumed to be independent, the upper survival

function for the other failure modes combined is actually the same, whether or not

FM6 is considered separately, this was discussed by Coolen et al. [23], who presented

individual NPI lower and upper survival functions and also considered the data used

in Examples 6.2 and 6.3, but they did not develop the NPI method for multiple

comparisons that underlies the NPI method for competing risks presented in this

chapter.
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To end discussion of Examples 6.2 and 6.3, it is useful to illustrate the NPI lower

and upper survival functions that have been mentioned in these examples but which

have not yet been presented. We can obtain these lower and upper survival functions

using the simplest closed-form (1.11) and (1.12) derived in Chapter 1. Figure 6.1

shows the NPI lower and upper survival functions for unit 37 for three situations,

for which the upper survival functions are identical hence only the lower survival

functions differ. The lower survival function SX37
results from total neglection of

the information on different failure modes, hence just by applying rc-A(36) [27] with

33 observed failure times and 3 right-censoring times. The lower survival function

S2CR
X37

corresponds to the situation with two (groups of) failure modes in Example

6.2, and is derived by multiplying the lower survival functions which are conditional

on the given failure modes. Similarly, the lower survival function S3CR
X37

corresponds

to the situation with three (groups of) failure modes in Example 6.3. These lower

and upper survival functions show a similar nested structure, related to the level

of detail of the data representation, as was discussed above for the event that FM9

causes the failure of unit 37.

Figure 6.2 shows the NPI lower and upper survival functions for unit 37 condi-

tioned on the specific failure mode, for FM9 and for FM6, corresponding to Example

6.3. For example, SFM9
X37

and S
FM9

X37
are based on rc-A(36) applied with the data set

with the 17 failure times related to failures caused by FM9 treated as actual failure

time observations, and the other 19 observations in the data set as right-censored

data, and similar for FM6. This figure nicely illustrates the effect of the relatively

many early failures due to FM6, and the fact that there are far fewer failures due to

FM6 than due to FM9 is reflected in far greater imprecision (the difference between

corresponding upper and lower survival functions) at larger times. Note that, in the

NPI approach based on rc-A(n), the lower survival function is always equal to zero

beyond the largest observation, no matter if this is an observed failure time or a

right-censored observation, while the upper survival function remains positive, this

is discussed in more detail by Coolen and Yan [27]. 4
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Figure 6.2: NPI lower and upper conditional survival functions for unit 37

6.6 Progressive Type-II censoring

In Chapter 5 we introduced NPI for comparing two groups of lifetime data under

progressive censoring schemes, with careful discussion of different schemes and com-

parison to other frequentist approaches for such data. There we did not consider

progressive censoring combined with competing risks data, which we briefly discuss

in this section, and illustrate in an example which is based on Examples 6.2 and

6.3 in Section 6.5. The progressive censoring scheme considered here is known in

the literature as ‘progressive Type-II censoring’ [3, 47], see also Chapter 5, for other

progressive censoring schemes one can follow the same approach, a flexibility which

is one of the advantages of NPI when compared to the more established frequentist

statistical methods.

In progressive Type-II censoring, at each failure time regardless of the failure

cause, some randomly chosen non-failing units may be removed from the experiment.

Adding such possible censored data to the competing risks scenario presented in
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this chapter, the competing risks data per failure mode can consist of a number

of observed failures caused by the specific failure mode considered, right-censored

observations for failures caused by other failure modes, right-censored observations

resulting from removing some non-failing units at failure times of other units (due

to the progressive censoring scheme), and general right-censored observations due to

unknown failure modes or other reasons, as was also allowed earlier in this chapter.

The key thing here is that right-censored data of any kind are dealt with in the

same manner, per failure mode, in NPI for competing risks, so effectively there is no

difference in the way NPI for competing risks data deals with right-censored data

of the last two types discussed, which are right-censored observations for all failure

modes. In the case of tied observations, we deal with them in the same manner as

discussed in Subsection 1.3.5.

Example 6.4. Suppose that, in the tests of the electrical appliances leading to the

data in Examples 6.2 and 6.3, it had been decided that, in order to learn more

about the physics underlying common failure modes, 3 non-failing units were to be

removed from the experiment as soon as the third failure due to the same failure

mode occurs, enabling detailed comparison of the condition of the failed units with

units that did not yet fail. Assume that the non-failing units withdrawn from the

experiment are selected randomly from those still in the study. At time 381, when

the third failure caused by FM6 occurs, three non-failing units would be withdrawn,

hence leading to three right-censored observations at that time. Assume that the

unit which in the original data (Table 6.2) failed at time 1990 due to FM9 was one of

the three withdrawn at time 381, and that the unit failing at time 2223 is the third

one failing due to FM9. Then a further three units are withdrawn at that moment

to enable detailed study of the processes underlying FM9 through comparison with

non-failed units. Suppose that this process leads to the data presented in Table 6.5,

where as before right-censoring times are indicated by ‘-’ for failure mode.

If, in analogy to Example 6.2, all failure modes other than FM9 are grouped

together and jointly considered as one failure mode OFM, then the NPI lower and
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# cycles FM # cycles FM # cycles FM

11 1 1167 9 2568 9

35 15 1594 2 2761 6

49 15 1925 9 2831 2

170 6 2223 9 3034 9

329 6 2223 - 3034 9

381 6 2223 - 3112 9

381 - 2223 - 3214 9

381 - 2327 6 3504 9

381 - 2400 9 4329 9

708 6 2471 9 6976 9

958 10 2551 9 7846 9

1062 5 2565 - 13403 -

Table 6.5: Failure data for electrical appliance test under progressive censoring

upper probabilities for the event that unit 37 will fail due to FM9 are

P (XFM9
37 < XOFM

37 ) = 0.4658 , P (XFM9
37 < XOFM

37 ) = 0.6258

Note that these NPI lower and upper probabilities are not nested when compared to

those in Example 6.2, which is due to the fact that now the information per failure

mode is really different. If, as in Example 6.3, failure modes FM9 and FM6 are

considered separately, with all the other failure modes grouped as OFM, then the

resulting NPI lower and upper probabilities for the events that unit 37 will fail due

to FM9, due to FM6 or due to OFM, are

P
(

XFM9
37 <min

{

XFM6
37 , XOFM

37

})

=0.4109 , P
(

XFM9
37 <min

{

XFM6
37 , XOFM

37

})

=0.6258

P
(

XFM6
37 <min

{

XFM9
37 , XOFM

37

})

=0.1668 , P
(

XFM6
37 <min

{

XFM9
37 , XOFM

37

})

=0.3349

P
(

XOFM
37 <min

{

XFM6
37 , XFM9

37

})

=0.1906 , P
(

XOFM
37 <min

{

XFM6
37 , XFM9

37

})

=0.3593

These NPI lower and upper probabilities are again not nested in a specific general

way with the NPI lower and upper probabilities in Example 6.3. However, they

show the same nested behaviour as discussed in Example 6.3 with regard to the

NPI lower and upper probabilities for the event XFM9
37 < XOFM

37 in this setting with

OFM including FM6. 4
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6.7 Concluding remarks

In this chapter, NPI for competing risks has been presented, with focus on the

event that the next unit will fail due to a specific failure mode. Some specific

properties and special cases are discussed and illustrated via examples in Section

6.5. As such, NPI is widely applicable and it is usually straightforward to implement

different censoring scenarios, as briefly discussed and illustrated in Section 6.6 for

a specific progressive censoring scheme. Developing NPI to take into account the

dependence between failure modes could be an interesting and challenging topic for

future research.



Chapter 7

Comparison with terminated tails

7.1 Introduction

There are many situations in statistical practice where the information available

consists of precise measurements of real-valued data only within a specific range,

with in addition the numbers of observations to the left and to the right of this range

available. This can be due to many reasons related to experimental design or some

problems with regard to data collection. For example, a lifetime experiment may be

ended before all units have failed in order to save costs and time, see Chapters 2 and

3, or very small measurements may not be available in risk analyses due to limits

of detection of the measurement method. It may also be the case that complete

data are available, but that the statistician choses to disregard the precise values

of very small or very large observations, often called ’outliers’, due to doubt about

the collection or recording of the data. A further possibility is that only a part of

the data range is considered relevant for the inference, as may occur for medical

diagnostics tests.

Coolen and Yan [27] presented the assumption rc-A(n) which is suitable for right-

censored data, see also Subsection 1.3.2. As part of the justification of rc-A(n),

Coolen and Yan [27] introduced and justified what they called the assumption Ã(n),

which follows from A(n) and was suitable for data with the upper tail terminated.

In Section 7.3, we will use this assumption, together with similar arguments for

lower tail termination, to derive the assumption related to A(n) that is suitable and

121
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appropriate for the kind of data considered in this chapter. The assumption rc-

A(n) is suitable for data sets with multiple right-censored observations at different

time points. We do not combine terminated tails with such further right-censorings

within the non-terminated part of the data, doing so would not cause difficulties but

it adds little to the presentation of the main ideas and results in this chapter. An

obvious solution is to develop a software package (e.g. in R) to enable calculation

of the NPI lower and upper probabilities for such a scenario. The R commands for

comparing two groups, provided in the appendix of this thesis, can be used as a

starting point.

For the problem considered in this chapter, namely Nonparametric Predictive

Inference (NPI) for comparison of two groups of real-valued data with terminated

tails, we consider the two groups to be completely independent and apply the suitable

A(n) assumption per group, as the basis of our inference. We present NPI lower and

upper probabilities for the event that the value of a future observation from one

group is less than the value of a future observation from the other group.

In Section 7.2, two classical tests are briefly reviewed. The specific details of

NPI for real-valued data with terminated tails are presented in Section 7.3, followed

by the general results for pairwise comparison with such data in Section 7.4. Some

special cases are discussed in Section 7.5, and an example is provided, in Section

7.6, to illustrate the theory presented in this chapter. Some concluding remarks are

made in Section 7.7.

7.2 Classical methods

There are several robust techniques in the literature for comparing two independent

groups. In this section we briefly review two methods for such comparison, following

[37, 80] in definitions and notation. The so-called Yuen-Welch test [82] is based on

comparing the corresponding sample trimmed means of the two groups, it tests

the null hypothesis that the two groups have equal trimmed means. Suppose nx

and ny are the numbers of observations from group X and Y , respectively. Let γ

be the amount of trimming from both tails, then the remaining observations from
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both groups are hx = nx − 2 bγnxc and hy = ny − 2 bγnyc, where bac is the largest

integer not greater than a. The trimmed means, calculated from these remaining

observations, are denoted by x̄t and ȳt. The Yuen-Welch test statistic is

Tγ =
x̄t − ȳt
√

dx + dy

where dx = (nx− 1)s2wx
/hx(hx− 1) and dy = (ny − 1)s2wy

/hy(hy − 1). The quantities

s2wx
and s2wy

are the Winsorized sample variances, calculated from the sample where

the trimmed observations from the left (right) tail are given the same value as

the smallest (largest) observation from the non-trimmed observations. Under the

null hypothesis, this test statistic Tγ has approximately a t-distribution with the

following degrees of freedom,

υ̂Tγ
= (dx + dy)

2

(

d2x
hx − 1

+
d2y

hy − 1

)−1

One may want to compare the two groups by testing the null hypothesis that

P (X < Y ) = 0.5. The well known Wilcoxon-Mann-Whitney test [51] can be used

for this setting. In the case of unequal variances and with ties occurring, one may

use the modified version of the Wilcoxon-Mann-Whitney test proposed by Brunner

and Munzel [14], in which for tied observations the midranks (the average of their

ranks) are used. Let M i
x (i = 1, . . . , nx) and M j

y (j = 1, . . . , ny) be the midranks of

X and Y within the pooled sample, let M̄x and M̄y be the corresponding means of

these midranks, and let V i
x and V j

y be the midranks of X and Y within each sample.

Then the Brunner-Munzel test statistic is

B = (M̄y − M̄x)/(nx + ny)
√

s2bx/nxn2
y + s2by/n

2
xny

where

s2bx=
1

nx−1

nx
∑

i=1

(

M i
x−V i

x−M̄x +
nx+1

2

)2

, s2by=
1

ny−1

ny
∑

j=1

(

M j
y−V j

y −M̄y +
ny+1

2

)2

The distribution of B is approximately a t-distribution with the following degrees

of freedom,

υ̂B =

(

s2bx
ny

+
s2by
nx

)2(

s4bx
n2
y(nx − 1)

+
s4by

n2
x(ny − 1)

)−1

For more details and for R commands functions, which can be used in calculation,

we refer to [80].
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7.3 NPI with terminated tails

To present NPI for data with terminated tails we need to introduce some notation.

Suppose we have cut points L < U for group X. These cut points divide the n

observations into three parts, where observations which are less than L are not

observed but their number is known, say l = #{xi|xi < L, i = 1, . . . , n}, and

similarly for observations greater than U , with u = #{xi|xi > U, i = 1, . . . , n}. The
observations between L and U (inclusive) are fully available and their number is

r = #{xi|L ≤ xi ≤ U, i = 1, . . . , n}, so l+ r+ u = n. Throughout this chapter, it is

assumed that the values of L and U do not hold any further information about the

observations in the tails. We should emphasize that when we terminate the data via

the two cut points, we do not remove the observations totally from the comparison

but we only delete any information about the actual position or location of the

terminated observations. So all information that we use about the observations on

the left (right) of L (U) is that their observed values are less (greater) than L (U).

We denote the r observations between these cut points by

−∞ < L ≤ x(1) < x(2) < . . . < x(r) ≤ U < ∞

where x(i) is actually the (l + i)th ordered observation of the whole data set. The

data structure is illustrated in Figure 7.1.

−∞
r

x(1)

r

x(2) . . .
r

x(i)

r

x(r). . . ∞
ul

UL

Figure 7.1: Data structure with terminated tails

For ease of notation, let x(0) = −∞ and x(r+1) = ∞, of course these can be set

at any other known bounds for the range of possible values for the observations,

for example x(0) is set to zero when the inferences involve lifetimes. We should

emphasize here that x(r+1) is not the first observation to the right of U . Again, we

present the results assuming no ties in the data, but the method deals easily with

ties as discussed in Subsection 1.3.5. To avoid a further complication, we assume
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throughout this chapter that there are observations in the interval [L,U ], so r > 0.

The following theorem gives an assumption directly related to A(n), and indeed

implied by A(n) taking the specific nature of the reported data into account.

Theorem 7.1 (The assumption Att
(n)). The assumption Att

(n) is that the probability

distribution for a real-valued random quantity Xn+1, on the basis of the data ter-

minated at two cut points L and U as described above, is partially specified by the

following M -function values:

MXn+1(x(i), x(i+1)) =
1

n+ 1
, i = 0, 1, . . . , r

MXn+1(−∞, L) =
l

n+ 1
and MXn+1(U,∞) =

u

n+ 1
.

Proof. The justification of Att
(n) is similar to the justification of Ã(n) given by Coolen

and Yan [26], but that assumption is only for termination of the upper tail of data,

which they then build upon to enable dealing with general right-censored data.

Suppose that we actually had all n observations, and were interested in inference on

Xn+1. Then A(n) would assign probability mass 1/(n+ 1) for Xn+1 to each interval

of the partition of the real-line created by the data. With l observations left of

L, yet without any further assumptions on where these observations are, it is clear

that a probability mass of l/(n+ 1) has to be constrained to (−∞, L). In addition,

there is a probability mass 1/(n+1) between the largest observation to the left of L

and x(1), the smallest observation in the interval [L,U ]. Again, without any further

assumptions, this probability mass can only be assigned to (−∞, x(1)), or, of course,

(x(0), x(1)) if another lower limit, x(0), of the range of possible values for Xn+1 is

known. The arguments for the assignment of probability masses at the upper tail

are identical. For the intervals (x(i), x(i+1)), i = 1, . . . , r−1, which are within [L,U ],

this assignment is fully in line with the regular assumption A(n).

The cut points L and U can arise from practical aspects of the experiments or

data collection, or they can be chosen by the statistical analyst, for example to

guard against influence of outliers which may be due to measurement or recording

errors. It is crucial that they do not hold information on the observations in the

tails, apart from this there are no restrictions on how they are chosen. For example,
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they could be chosen to terminate the data by a certain percentage from either a

single tail or from both tails. One could argue that any combination of cut points

together with explicitly observed values between the cut points may contain some

information about data in the tails, for example related to extreme value theory in

statistics [32], but this would always result from additional assumptions, as is always

the case with such extrapolation. In NPI, we typically try to minimize additional

assumptions, hence we make no assumptions about location of observations in the

terminated tails at all. It should be emphasized that, although by terminating the

tails of the data we are focusing on only a part of the real-line, this is only for

as far as the data are concerned. The inferences for the future observation Xn+1

are explicitly over the whole real-line (or known part of that, e.g. the non-negative

values for lifetimes).

7.4 Comparing two groups with terminated tails

Suppose that X1, . . . , Xnx
, Xnx+1 are exchangeable real-valued random quantities

from group X and Y1, . . . , Yny
, Yny+1 are exchangeable real-valued random quantities

from group Y , with complete independence of the two groups. We use similar

notation as in the previous section, adding an index to indicate the specific group.

Let Lx < Ux be the cut points for group X and Ly < Uy for group Y . For each

group, these cut points divide the data per group into three parts. For group X

(Y ), there are lx (ly) observations which are only known to be less than Lx (Ly),

ux (uy) which are only known to be greater than Ux (Uy), while the rx (ry) ordered

observations between the cut points are fully known and denoted by

−∞ < Lx ≤ x(1) < x(2) < . . . < x(rx) ≤ Ux < ∞

−∞ < Ly ≤ y(1) < y(2) < . . . < y(ry) ≤ Uy < ∞

Let x(0) = y(0) = −∞ and x(rx+1) = y(ry+1) = ∞.

The NPI method for comparison of groupsX and Y is explicitly in terms of future

observations Xnx+1 and Yny+1, for which we assume Att
(nx)

and Att
(ny)

, respectively, so

their M -function values follow from Theorem 7.1. The NPI comparison of these two
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groups is based on the sharpest bounds for the probability for the event Xnx+1 <

Yny+1 that are in agreement with these M -function values, without making any

further assumptions. These bounds are lower and upper probabilities [1, 76, 79],

denoted by P = P (Xnx+1 < Yny+1) and P = P (Xnx+1 < Yny+1), respectively. These

NPI lower and upper probabilities are given in Theorem 7.2.

Theorem 7.2. Based on data with terminated tails as discussed above, the NPI

lower and upper probabilities for the event Xnx+1 < Yny+1 are

P = A

[

ry
∑

j=1

{

lx 1{Lx < y(j)}+
rx
∑

i=1

1{x(i) < y(j)}
}

+

uy

{

lx 1{Lx < Uy}+
rx
∑

i=1

1{x(i) < Uy}
}

]

(7.1)

P = A

[

ry
∑

j=1

{

ux 1{Ux < y(j)}+
rx
∑

i=1

1{x(i) < y(j)}
}

+ ly

{

ux 1{Ux < Ly} +

rx
∑

i=1

1{x(i) < Ly}
}

+ (lx + 1)(ly + ry) + (uy + 1)(nx + 1)

]

(7.2)

where A = ((nx + 1)(ny + 1))−1.

Proof. The M -function values for Xnx+1 and Yny+1, based on the assumptions Att
(nx)

and Att
(ny)

, respectively, together with the nx (ny) observations for group X (Y ), are,

according to Theorem 7.1,

MXnx+1(x(i), x(i+1)) =
1

nx + 1
, i = 0, 1, . . . , rx

MXnx+1(−∞, Lx) =
lx

nx + 1
and MXnx+1(Ux,∞) =

ux

nx + 1

MYny+1(y(j), y(j+1)) =
1

ny + 1
, j = 0, 1, . . . , ry

MYny+1(−∞, Ly) =
ly

ny + 1
and MYny+1(Uy,∞) =

uy

ny + 1

The probability for the event Xnx+1 < Yny+1, i.e. P = P (Xnx+1 < Yny+1), can be

written as

P = P
(

Xnx+1 < Yny+1, Yny+1 ∈ (−∞, Ly)
)

+ P
(

Xnx+1 < Yny+1, Yny+1 ∈ (Uy,∞)
)

+

ry
∑

j=0

P
(

Xnx+1 < Yny+1, Yny+1 ∈ (y(j), y(j+1))
)



7.4. Comparing two groups with terminated tails 128

The NPI lower probability for the event Xnx+1 < Yny+1 is obtained as follows:

P ≥ P (Xnx+1 < −∞)
ly

ny + 1
+

ry
∑

j=0

P (Xnx+1 < y(j))
1

ny + 1
+ P (Xnx+1 < Uy)

uy

ny + 1

≥ A

[

ry
∑

j=0

{

lx 1{Lx < y(j)}+
rx
∑

i=0

1{x(i+1) < y(j)}+ ux 1{∞ < y(j)}
}

+

uy

{

lx 1{Lx < Uy}+
rx
∑

i=0

1{x(i+1) < Uy}+ ux 1{∞ < Uy}
}]

= A

[

ry
∑

j=1

{

lx 1{Lx<y(j)}+
rx
∑

i=1

1{x(i)<y(j)}
}

+uy

{

lx 1{Lx<Uy}+
rx
∑

i=1

1{x(i)<Uy}
}]

The first inequality follows by putting all probability masses for Yny+1 corresponding

to the intervals (−∞, Ly), (y(j), y(j+1)) (j = 0, . . . , ry) and (Uy,∞) to the left end

points of these intervals, and by using Lemma 1.4 for the nested intervals. The

second inequality follows by putting all probability masses for Xnx+1 corresponding

to the intervals (−∞, Lx), (x(i), x(i+1)) (i = 0, . . . , rx) and (Ux,∞) to the right end

points of these intervals. The upper probability is obtained in a similar way, but now

all M -function masses for the random quantities involved are put at the opposite

end points of the respective intervals, which leads to

P ≤ P (Xnx+1 < Ly)
ly

ny + 1
+

ry
∑

j=0

P (Xnx+1 < y(j+1))
1

ny + 1
+ P (Xnx+1 < ∞)

uy

ny + 1

= P (Xnx+1 < Ly)
ly

ny + 1
+

ry
∑

j=1

P (Xnx+1 < y(j))
1

ny + 1
+

uy + 1

ny + 1

≤ A

[

ly

{

lx 1{−∞ < Ly}+
rx
∑

i=0

1{x(i) < Ly}+ ux 1{Ux < Ly}
}

+

ry
∑

j=1

{

lx 1{−∞< y(j)}+
rx
∑

i=0

1{x(i)< y(j)}+ ux 1{Ux< y(j)}
}

+(uy+1)(nx+1)

]

= A

[

ly

{

rx
∑

i=1

1{x(i) < Ly}+ ux 1{Ux < Ly}
}

+

ry
∑

j=1

{

rx
∑

i=1

1{x(i) < y(j)} +

ux 1{Ux < y(j)}
}

+ (lx + 1)(ly + ry) + (uy + 1)(nx + 1)

]

It is straightforward to show that these NPI lower and upper probabilities satisfy

the conjugacy property. These NPI lower and upper probabilities are the most
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conservative lower and upper bounds that correspond to all possible orderings of

the data in the terminated tails. Hence, if Lx or Ly increases, or Ux or Uy decreases,

the number of data in the terminated tails can increase (it cannot decrease), which

could lead to decrease (but not increase) of the lower probability (7.1) and to increase

(but not decrease) of the upper probability (7.2).

7.5 Special cases

An advantage of presenting the general result of this chapter, in Section 7.4, is that

many important inferential problems are special cases of such comparisons with

terminated tails, hence the NPI comparison methods for such special cases follow

immediately from Theorem 7.2. In this section, we briefly discuss four special cases.

1. Equal lower and upper tails termination.

If Lx = Ly = L and Ux = Uy = U , then the NPI lower probability (7.1) and

upper probability (7.2) are

P = A

[

ry
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ lx(ry + uy) + rxuy

]

P = A

[

ry
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ (lx + 1)(ly + ry) + (uy + 1)(nx + 1)

]

This situation enables a straightforward analysis of the numbers of observations in

the two groups for which the exact information could be deleted by terminating

the tails, whilst still achieving P > 0.5, which might be interpreted as a strong

indication that Xnx+1 < Yny+1. Such a study can be relevant from the perspective

of robust inference, this is briefly discussed in Section 7.7. Suppose that nx = ny = n,

and that the data within the interval [L,U ] are maximally supportive for the event

Xnx+1 < Yny+1, meaning that the corresponding NPI lower and upper probabilities

P and P are maximal over all possible configurations of the data for groups X

and Y over this interval. It is easily seen and verified that this holds if all xi’s in

[L,U ] are less than all yj’s in this interval. For this situation, P > 0.5 if and only if

(n−ux)(n− ly) > 0.5(n+1)2. For example, this implies that for n = 20 observations

from each group, one could have P > 0.5 if ly = 5 and ux = 5, if the xi’s in the
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interval [L,U ] were all less than the yj’s in that interval, but if either ly or ux were

greater than 5, this would not be possible anymore. A further special case of interest

is if the tails were cut off in this manner, with also ux = ly = c. Then the above

necessary and sufficient condition for P > 0.5 to be possible (for the maximally

supportive data) reduces to c < (1−
√
0.5)n−

√
0.5 = c(n). Although this is only a

rather weak result, it does provide some insight into the amount of data that can be

cut in the manner studied in this chapter, in order to still possibly get a strong result

for the comparison of the two groups. Stated differently, if the tails termination leads

to the exact information for more observations to be discarded than c(n) from both

tails of both groups, then a strong indication of preference for one group over the

other (P > 0.5) cannot follow anymore within the NPI framework. Of course, in

most situations the data within the interval [L,U ] will not be maximally supportive

for the event Xnx+1 < Yny+1 in the way considered here, and generally the number

of observations that can be deleted by terminating the tails without affecting the

inference of interest must be separately studied for each specific data set.

2. No lower tails termination, equal upper tails termination.

If there is no lower tail termination for both groups, so Lx = Ly = −∞ and hence

lx = ly = 0, while the upper cut points for both groups are equal, Ux = Uy = U ,

so with ux = nx − rx and uy = ny − ry, then the NPI lower and upper probabilities

(7.1) and (7.2) are coincide with those obtained in Chapter 2 (Theorem 2.2) for the

application of NPI for the comparison of two groups based on precedence testing.

3. No upper tails termination, equal lower tails termination.

If there is no upper tail termination for both groups, so Ux = Uy = ∞ and

ux = uy = 0, while the lower cut points for both groups are equal, Lx = Ly = L, so

with lx = nx− rx and ly = ny − ry, then the NPI lower and upper probabilities (7.1)

and (7.2) are

P = A

[

ry
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ ry lx

]

P = A

[

ry
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ (lx + 1)ny + (nx + 1)

]
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This case is important in situations where exact values in the lower tails cannot be

determined, which particularly occurs if measurement equipment has a lower limit

of detection. For example, this frequently occurs in risk assessment with regard to,

for example, food safety and environmental impact of chemicals, where small traces

of chemicals may not be detectable but should still be considered, in particular

in situations of exposure to multiple chemicals. A first study into the use of NPI

in such risk assessments, focusing on a basic exposure model and also considering

combination of NPI for some random quantities with Bayesian methods for others,

has recently been presented by Montgomery [62].

4. Tails termination for one group.

Suppose that the lower and upper tails are terminated for one group, say X,

whilst for the other group, Y , tails are not terminated so all observations from

group Y are available and Ly = −∞, Uy = ∞, ly = uy = 0 and ry = ny. Then the

NPI lower and upper probabilities (7.1) and (7.2) are

P = A

[

ny
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ lx

ny
∑

j=1

1{Lx < y(j)}
]

P = A

[

ny
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ ux

ny
∑

j=1

1{Ux < y(j)}+ ny(lx + 1) + (nx + 1)

]

Moreover, if for group X only the lower tail is terminated, so Ux = ∞, ux = 0 and

lx = nx − rx, then these NPI lower and upper probabilities become

P = A

[

ny
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ (nx − rx)

ny
∑

j=1

1{Lx < y(j)}
]

P = A

[

ny
∑

j=1

rx
∑

i=1

1{x(i) < y(j)}+ ny(nx − rx + 1) + (nx + 1)

]

An important example from medical statistics where this case occurs is inference

involving a partial area under the Receiver Operating Characteristic (ROC) curve,

which is used to evaluate the accuracy of a diagnostic test which yields ordinal or

continuous test results [34, 69]. The ROC curve can also be used to compare the

accuracy of two or more continuous diagnostic tests. The use of ROC curves for

diagnostic tests can also be considered within the NPI framework, where focus on a
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partial area under the ROC curve relates to the methods in this chapter with tails

termination for one group. Work on this topic is ongoing and we aim to present the

results soon elsewhere.

To end this section, it is worth mentioning the situation without tails termina-

tion, so with complete data for both groups, as presented by Coolen [19]. This is

also a, rather trivial, special case of the general results presented in this chapter,

with Lx = Ly = −∞, Ux = Uy = ∞, lx = ux = ly = uy = 0, rx = nx and ry = ny,

for which the NPI lower and upper probabilities (7.1) and (7.2) are reduced to the

formulae (1.1) and (1.2), in Chapter 1, respectively.

7.6 Example

The following example is used to illustrate the presented NPI approach for compar-

ison of two groups with terminated tails and to discuss the special cases mentioned

above.

Example 7.1. We consider a data set used by Nelson [64, p.462], which gives the

breakdown times of units from 6 different groups. In this example, only the first

two groups are used to illustrate the NPI method for pairwise comparison with tails

termination. The data for these groups are presented in Table 7.1 and Figure 7.2.

Both groups consist of 10 observations, so nx = ny = 10. The first unit of group X

has a reported breakdown time of 0.00, we interpret this as a very small but positive

breakdown time.

X 0.00 0.18 0.55 0.66 0.71 1.30 1.63 2.17 2.75 10.60

Y 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 9.99

Table 7.1: Breakdown times of units from groups X and Y

Figure 7.2 shows that there are 4 observations (1 in groupX, 3 in group Y ) which

may be considered as outliers, using the established rule-of-thumb to highlight ob-

servations as possible outliers if they are more than 1.5 times the interquartile range

below (above) the first (third) quartile of the data. The NPI approach presented

in this chapter considers the lower and upper probabilities for the event that the
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Figure 7.2: Breakdown times of units from groups X and Y

breakdown time of a future unit from group X, say X11, is less than the breakdown

time Y11 of a future unit from group Y . For both groups the inferences are based

on the assumption Att
(10) in combination with the respective data per group, and of

course the breakdown times are non-negative.

If we consider the complete data without any tails termination, then the NPI

lower and upper probabilities [19] are

P (X11 < Y11) = 0.5372, P (X11 < Y11) = 0.7273

If one instead considers the event Y11 < X11, then the NPI lower and upper proba-

bilities are

P (Y11 < X11) = 0.2727, P (Y11 < X11) = 0.4628

which is in line with the conjugacy property for lower and upper probabilities [76].

The fact that P (X11 < Y11) > 0.5 can be interpreted as a strong indication that

group Y is better, in the sense of leading to longer breakdown times, than group X.

This data set contains two pairs of tied observations, at 0.66 and 2.17. To deal with

this, we follow the argument mentioned in Subsection 1.3.5.

Let us consider termination of these data by setting cut points Ly = 0.5, Uy = 9

and Ux = 10, so we terminate one observation from the upper tail from each group

and one observation from the lower tail from group Y . This just means that for these
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observations the exact value is not taken into account, which might have happened

if indeed the measurements in these tails were not available, or for example if one

would have severe doubts about the accuracy of observations in these tails. The

corresponding NPI lower and upper probabilities are

P (X11 < Y11) = 0.5207, P (X11 < Y11) = 0.7355

Now suppose that we want to exclude the effect of the 4 possible outliers as

discussed above, which can for example be achieved by cut points Ly = 0.5, Uy = 4

and Ux = 10, This leads to NPI lower and upper probabilities

P (X11 < Y11) = 0.5207, P (X11 < Y11) = 0.7438

Compared to the situation discussed above with Uy = 9 and the other cut points the

same, one more observation is now terminated from the upper tail of group Y . The

effect of this is that the NPI lower probability for the event X11 < Y11 remains the

same, but the NPI upper probability increases, so the imprecision (P −P ) increases

due to more observations being terminated. Again, there is a strong indication that

group Y is better than group X.

If all units were put simultaneously on the lifetime experiment and this is ter-

minated at time 4, so Uy = Ux = 4 with no termination of the lower tails, then for

all units with observations greater than 4 the actual observations would not have

been available, instead we would only have right-censored observations at time 4 for

these units. The corresponding NPI lower and upper probabilities are

P (X11 < Y11) = 0.5372, P (X11 < Y11) = 0.7438

This lower probability exceeds 0.5, hence one may reach the same conclusion as

discussed above for the case that the experiment had not been terminated. By

terminating the experiment at time 4, 3 units have not broken down and could

possibly be used for other purposes, and, possibly more importantly, reducing the

time of the experiment may lead to cost savings. Actually, we could have ended the

experiment earlier while still getting the lower probability greater than 0.5 (and this

could not decrease by running the experiment longer), as e.g. ending the experiment
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at time 2.18, so with Uy = Ux = 2.18, would lead to 5 units not having broken down

and NPI lower and upper probabilities

P (X11 < Y11) = 0.5207, P (X11 < Y11) = 0.7603

If the experiment had been ended before time 2.17, the NPI lower probability for

the event X11 < Y11 would be less than 0.5. For example, with Uy = Ux = 2.16 the

NPI lower and upper probabilities are

P (X11 < Y11) = 0.4959, P (X11 < Y11) = 0.7769

If we terminate both tails of the data at the same cut points for both groups,

for example with Ly = Lx = 0.5 and Uy = Ux = 4, then two units would have been

terminated from the lower tail of group X and one unit from its upper tail, while

for group Y one unit would have been terminated from its lower tail and two units

from its upper tail. Then the corresponding NPI lower and upper probabilities are

P (X11 < Y11) = 0.5207, P (X11 < Y11) = 0.7438

These discussed cases illustrate that, as discussed at the end of Section 7.4,

the NPI lower (upper) probability is maximal (minimal) when all observations are

exactly included in the comparison, while deleting some of the exact information

leads to increased imprecision. This example also makes clear that varying the cut

points may have no, or only a very small effect on the actual inference. Clearly,

the lower and upper probabilities considered can only change if a change in cut

point is such that it leads to more or fewer observations in the terminated tails. For

example, for any specific cut point Ux between 2.75 and 10.60 in this example it does

not matter that the actual largest observation of group X was 10.60, the inferences

would have been the same if it were any larger value.

Before ending this example it is interesting to report some results of the classical

methods presented in Section 7.2. For the Yuen-Welch test, T0.20 = 1.67 and T0.10 =

1.24 with corresponding p-values 0.141 and 0.235, respectively, so at 5% significance

level we do not reject the null hypothesis that the trimmed means of the two groups

are equal. The same conclusion is obtained from the Brunner-Munzel test where

B = 1.21 and the p-value is 0.244. 4
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7.7 Concluding remarks

In this chapter we have introduced NPI for comparison of two groups of real-valued

data with tails termination, which brings together a number of important applica-

tions of statistics. The main contribution of this chapter is in simultaneously dealing

with possible termination of the lower and upper tails, which was not considered

from the NPI perspective before, and which enables several important special cases

to be brought together as shown in Section 7.5. We have kept presentation relatively

basic, there are several generalizations which are important for statistical practice,

and which are relatively straightforward but which require far more complicated

notation. For example, the NPI approach presented here can quite easily be gen-

eralized to comparison of more than two groups, and it is also conceptually easy

to deal with further right-censored observations within the data by using the more

general M -functions following from rc-A(n) [27].

The problem considered in this chapter could be considered as a special case of

pairwise comparison based on interval-censored data, such that each observation is

only known to belong to an interval (which may be a single point or open-ended).

The NPI approach for this general problem is not straightforward, and provides an

exciting challenge for future research. The main problem is that the assumption

rc-A(n) does not have a straightforward generalization to deal with finite upper

bounds for the interval-censored data nor for dealing with (partially) overlapping

intervals corresponding to different observations. One could derive bounds for the

probabilities of interest by assuming that the data for one group are as large as

possible and for the other group as small as possible, and then apply the method of

Coolen [19] for such specifically assumed data, but that would lead to wide bounds

as it would neglect the exchangeability of censored data with other observations

from the same group.

There are interesting links between NPI and methods from the robust statistics

literature (see e.g. [10, 39, 43]). The NPI method for pairwise comparisons for real-

valued data presented in this chapter only takes the ranks of the non-terminated

observations into account, and as such it is insensitive to outliers even without tails

being terminated. By terminating the tails, the focus shifts explicitly to the informa-
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tion in the non-terminated part of the data, which has some conceptual similarities

to robust statistics procedures such as trimmed means. However, our method does

not disregard the fact that there are observations in the terminated tails and it takes

the numbers of such observations into account, making such tails termination differ-

ent from truncation of the tails, which refers to situations where such numbers are

not available. As illustrated in Example 7.1, one can study how many observations

can be in the terminated tails in order to still get similar inferences, in particular

we considered the NPI lower probability for the event of interest to still exceed 0.5.



Chapter 8

Conclusions

In this thesis we have presented Nonparametric Predictive Inference (NPI) for several

comparisons problems. We introduced NPI for comparison of multiple groups of data

including right-censored observations. Different right-censoring schemes discussed

are early termination of an experiment, progressive censoring and competing risks.

Several selection events of interest are considered including selecting the best group,

the subset of best groups, and the subset including the best group. We also discussed

the situation when only a part of the data range is considered relevant for the

inference, with in addition the numbers of observations to the left and to the right

of this range available. In the appendix, we have included the R commands that have

been used for calculating NPI lower and upper probabilities for different multiple

comparison problems.

NPI is a fully nonparametric statistical approach, which explicitly does not use

any information or assumptions about the random quantities of interest other than

the relevant A(n) or rc-A(n) assumptions per group. These inferences have a frequen-

tist justification, but explicitly use the available data and do not require the use of

counterfactual data (i.e. data that could have occurred, under a specific experimen-

tal set-up, but which did not occur), which for example happens in many frequentist

methods for hypothesis testing.

Our method has the advantage that the comparison is not based on testing the

hypothesis of equality of the distributions, which, although a well established ap-

proach in classical statistics, is a somewhat surprising starting point as the reasons

138
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for making a comparison of different groups may make it very unlikely that ob-

servations from all groups would actually have identical distributions. In addition,

in both cases of rejection or not of such a hypothesis, it is not clear what such a

conclusion implies for the next future observation. Application of our method leads

to lower and upper probabilities for certain events of interest, which enables con-

servative decisions by basing these on the worst possible situation for the event of

interest.

A further advantage is related to the similar general advantage of statistical

methods that adhere to the likelihood principle, for which stopping rules tend not

to affect the inferences, and is a direct consequence of the fact that no hypotheses

are being tested, hence no counterfactual data play any role. Of course, one must

be happy to accept the assumptions, related to exchangeability, underlying NPI. In

addition, one does not have to restrict attention to specific censoring schemes as

presented in this thesis, as censoring can take place at any time without causing

problems for the NPI approach, as long as the censoring mechanism is independent

of the lifetime random quantities, and as long as one can reasonably assume complete

independence of the groups being compared.

As for any new statistical method, it is important to consider how it can be

applied. Of course, the assumption A(n) per group is crucial, if for example the data

or knowledge about underlying processes are such that one does not consider the

exchangeability assumption, implicit to A(n), to be appropriate, then this method

should not be applied. All classical nonparametric methods in such applications tend

to agree with this exchangeability assumption, but require additional assumptions

(e.g. similarities in the probability distribution functions corresponding to different

groups). One may well think that, in most applications, there is knowledge about the

process and groups considered that can or should be taken into account, which NPI

does not take on board. However, in all cases NPI can be considered to be a ‘base-

line method’, it provides inferences without further assumptions or information, and

this enables, for example, useful study of the outcomes of other statistical methods.

If other methods lead to conclusions which differ substantially from those following

from the NPI approach, then this will be due to the assumptions underlying the
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other method, which may often not have been made under complete awareness but

more for mathematical convenience. Also, it is important to be aware of the fact

that problems which appear to be identical are often formulated in substantially

different manners in different statistical methods, with each method affected by

specific features of the data. As such, we would strongly recommend the use of

several statistical methods for a problem of interest, followed by careful study of the

resulting inferences. If these all point in the same direction, then one can have great

confidence in the inferences, but if not the value of such an extensive study may

well be even greater, as detailed understanding of the different outcomes is likely to

provide more insight in the data and the actual inferential problem, as well as in

the different methods used.

The results presented in this thesis show how NPI can be applied to a variety

of problems which have been considered in the literature, mostly from classical

frequentist perspective and which are of great relevance in many applications. Most

of these problems involve multiple comparisons, and generally NPI provides exciting

opportunities for such problems via explicit focus on the next future observation per

group.

In addition to applications to a wider variety of problems, there are many re-

search challenges for the further development of NPI. These include the option to

base inferences on more than one future observation per group, which is conceptu-

ally easy although one must not forget to take account of the fact that these future

observations are inter-dependent. An interesting challenge is the requirement to

formulate appropriate predictive events of interest for a variety of inferential prob-

lems, which in this thesis was a rather straightforward comparison of the single next

observations per group. Often, however, such predictive inferences may be more

in line with intuition than established statistical methods such as hypothesis test-

ing. More generally, development of NPI for multivariate situations, including data

with covariates, is a key challenge that promises exciting research opportunities, the

results of which are strongly needed to enhance wide applicability of NPI.



Appendix A

An illustrative example of rc-A(n)

The following example is provided to illustrate the assumption rc-A(n), the full

theory is presented by Coolen and Yan [27].

First, suppose we have n = 5 observations which create 6 intervals, and all

5 observations are failure times. Then the assumption A(5) implies that the next

observation X6 will fall in any one of these intervals with probability 1/6.

Now suppose that one of these observations is right-censored at time c, so we

have 4 failure times, then A(5) cannot be used directly but we can use rc-A(5),

which is explained in detail in Figure A.1. As first step, shown in Figure A.1(a),

the probability masses for the intervals created by the 4 failure times are equal

to 1/6. There is also a probability mass 1/6 spread over the interval (c,∞) since

all we know, without making any further assumptions, that the lifetime of this

observation will be at any point beyond c (see Ã(n) assumption in [27, p. 32]). We

assume non-informative censoring, which means that the residual lifetime of this

censored observation is independent of the censoring process. Therefore, one can

apply A(2) but with the starting point shifted from 0 to the censoring time c, see

Figure A.1(b) (see shifted-Ã(n) assumption in [27, p. 33]). This gives 3 equally likely

possibilities for the actual lifetime of the censored observation, say xc, see Figures

A.1(b.1-b.3). In the case of Figure A.1(b.1), for example, this censored observation

falls somewhere between (c, x3), so the probability mass for X6 that was assigned to

the interval (x2, x3) (in Figures A.1(a-b)) would now be reassigned to the interval

(x2, xc) instead. Moreover, the probability mass that was carried forward by the

141
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censored observation, c, would now be assigned to the interval (xc, x3). Without

further assumptions, xc is in (c, x3) with probability 1/3, so a probability mass

equal to 1/18 will be assigned for X6 to belong to the interval (c, x3). For the case

where the censored observation falls between (x3, x4), Figure A.1(b.2), or between

(x4,∞), Figure A.1(b.3), the explanation is the same. So the rc-A(5) assumption

results by combining these probabilities per interval as shown in Figure A.1(c).
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Figure A.1: rc-A(5) with one censored observation

Let us now consider the case with two censored observations and 3 failures.

Using the same first argument as above (i.e. the Ã(5) assumption) leads to Figure

A.2(a). That is each censored observation carries forward probability mass 1/6.
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Figure A.2: rc-A(5) with two censored observations

Again by applying the shifted-Ã(5) assumption, the probability mass corresponding

to the first censored observation, c1, is divided equally to the intervals to the right

of c1. And since there is another censored observation, c2, and all we know about

the lifetime corresponding to this censored observation is that it will be at any

time beyond c2, then this probability mass resulting from c1 will be assigned to the

interval (c2,∞), see Figure A.2(b). Now there is a total probability mass 1/6+1/18

assigned to the interval (c2,∞). Again by applying the shifted-Ã(5) assumption, this

probability mass will be divided equally to the sub-intervals in (c2,∞), see Figure

A.2(c). Then by using the same argument as above (i.e. Figure A.1), the rc-A(5)

assumption results by combining these mass probabilities per interval as shown in

Figure A.2(d). This can also be interpreted along the same lines as the probability

redistribution algorithm for right-censored data as introduced by Efron [35] and also

discussed by Coolen and Yan [27].
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R programs

B.1 NPI for multiple comparison of lifetime data

# NPI for comparing several groups (complete data, right censoring, precedence,

# progressive, competing risks).

# Data consist of a list of groups, X11, X22,..., each of them is a matrix where

# the first column is the lifetime and the second column is the state of this

# observation;1 if failure & 0 if censored.

# S is the set of best group(s) or that includes the best group, e.g. S<-c(1,2,3).

# The length of S is three groups however one can easily extended, i.e. repeat

# the related commands.

# data<-list(X11,X22, ...)

best.select <-

function (data, S)

{

k <- length(data)

jk <- 1:k

NS <- jk[-S]

ls <- length(S)

lns <- length(NS)

X.c <- function(X) { # to get the censored data

ifelse(length(X[X[, 2] == 0, ]) > 2, x1 <- X[X[, 2] ==

0, ][, 1], x1 <- X[X[, 2] == 0, ][1])

return(x1)

}
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X.u <- function(X) { # to get the failure data

ifelse(sum(X[, 2] == 1) == 1, x1 <- X[X[, 2] == 1, ][1],

x1 <- X[X[, 2] == 1, ][, 1])

return(x1)

}

Xu1 <- function(X) { # all censored, no failure occurs

ifelse(sum(X[, 2] == 1) == 0, Y <- Inf, Y <- c(X.u(X),

Inf))

return(Y)

}

Xt0 <- function(X) {

Y <- c(0, X[, 1])

return(Y)

}

data0 <- lapply(data, Xt0) # add zero to the lifetime t0

data.u <- lapply(data, Xu1) # to get failure data

m2 <- function(data) { # create all possible values

XX <- NULL

for (i1 in 1:length(data[[1]])) {

for (i2 in 1:length(data[[2]])) {

XX <- rbind(XX, c(data[[1]][i1], data[[2]][i2]))

}

}

return(XX)

}

m3 <- function(data) {

XX <- NULL

for (i1 in 1:length(data[[1]])) {

for (i2 in 1:length(data[[2]])) {

for (i3 in 1:length(data[[3]])) {

XX <- rbind(XX, c(data[[1]][i1], data[[2]][i2],

data[[3]][i3]))

}

}

}

return(XX)

}
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# calculate the product terms to use later for Mfun and prob

cond <- function(X, y) {

P1 <- NULL

n <- nrow(X)

Xc <- X.c(X)

ncc <- function(X, cr) { # calculate the term in the product term

(sum(X[, 1] >= cr) + 1)/sum(X[, 1] >= cr)

}

cr.obs <- Xc[Xc < y]

n.cr.obs <- length(cr.obs) # calculate the condition under the product term

ifelse(n.cr.obs == 0 | sum(X[, 2] == 0) == 0, P1 <- 1,

for (j in 1:n.cr.obs) {

P1[j] <- ncc(X, cr.obs[j])

})

P3 <- prod(P1)/(n + 1)

return(P3)

}

# calculate Mfun and prob

Mfun <- function(X) {

Y <- rbind(c(0, 1), X)

ny <- nrow(Y)

Mu <- NULL

for (i in 1:ny) {

Mu[i] <- (sum(X[, 1] >= Y[, 1][i]))^(Y[, 2][i] -

1) * cond(X, Y[, 1][i])

}

return(Mu)

}

Prob <- function(X) {

Y <- Xu1(X)

ny <- length(Y)

P4 <- NULL

for (i in 1:ny) {

P4[i] <- cond(X, Y[i])

}

return(P4)

}
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# To calculate X<Y times M-function or Prob

fun1 <- function(X, Y, MP) {

d <- matrix(0, length(X), length(Y))

for (i in 1:length(Y)) {

for (j in 1:length(X)) {

d[j, i] <- sum(X[j] < Y[i])

}

}

d1 <- MP %*% d

return(d1)

}

MM <- lapply(data, Mfun)

PP <- lapply(data, Prob)

# m=1

if (ls == 1)

XL <- unlist(data0[S])

if (ls == 1)

XU <- unlist(data.u[S])

if (ls == 1)

MMS <- unlist(MM[S])

if (ls == 1)

PPS <- unlist(PP[S])

# m=2

if (ls == 2)

XL <- m2(data0[S])

if (ls == 2)

XU <- m2(data.u[S])

if (ls == 2)

MMS <- m2(MM[S])

if (ls == 2)

PPS <- m2(PP[S])

# m=3

if (ls == 3)

XL <- m3(data0[S])

if (ls == 3)

XU <- m3(data.u[S])

if (ls == 3)
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MMS <- m3(MM[S])

if (ls == 3)

PPS <- m3(PP[S])

ifelse(ls == 1, prod.M <- MMS, prod.M <- apply(MMS, 1, prod))

ifelse(ls == 1, prod.P <- PPS, prod.P <- apply(PPS, 1, prod))

# compute the minmum in subset best case

ifelse(ls == 1, Min.XL <- XL, Min.XL <- apply(XL, 1, min))

ifelse(ls == 1, Min.XU <- XU, Min.XU <- apply(XU, 1, min))

# compute the maximum in subset include the best case

ifelse(ls > 1, Max.XL <- apply(XL, 1, max), Max.XL <- XL)

ifelse(ls > 1, Max.XU <- apply(XU, 1, max), Max.XU <- XU)

# Select the best groups & the subset include the best

Lprob <- function(y) {

s1 <- NULL

ifelse(lns == 1, s1 <- fun1(unlist(data.u[NS]), y, unlist(PP[NS])),

for (j in 1:lns) {

s1 <- rbind(s1, fun1(data.u[NS][[j]], y, PP[NS][[j]]))

})

ifelse(lns > 1, Z <- sum(apply(s1, 2, prod) * prod.M),

Z <- sum(s1 * prod.M))

return(Z)

}

Uprob <- function(y) {

s2 <- NULL

ifelse(lns == 1, s2 <- fun1(unlist(data0[NS]), y, unlist(MM[NS])),

for (j in 1:lns) {

s2 <- rbind(s2, fun1(data0[NS][[j]], y, MM[NS][[j]]))

})

ifelse(lns > 1, Z <- sum(apply(s2, 2, prod) * prod.P),

Z <- sum(s2 * prod.P))

return(Z)

}

print(c("Lprob.best", "Uprob.best", "Lprob.include", "Uprob.include"))

return(round(c(Lprob(Min.XL), Uprob(Min.XU), Lprob(Max.XL),

Uprob(Max.XU)), 4))

}

### END ###
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B.2 NPI for comparing two groups with termi-

nated tails

# NPI for comparing two groups, Terminated tails (Y is the best group)

ttfun <-

function (X, Y, Lx, Ux, Ly, Uy)

{ # Data & choose the cut points

nx <- length(X)

ny <- length(Y)

nly <- sum(Y < Ly)

nuy <- sum(Y > Uy)

nry <- sum(Y >= Ly & Y <= Uy)

nlx <- sum(X < Lx)

nux <- sum(X > Ux)

nrx <- sum(X >= Lx & X <= Ux)

Yr <- Y[Y >= Ly & Y <= Uy]

Xr <- X[X >= Lx & X <= Ux]

Mlx <- nlx/(nx + 1)

Mrx <- rep(1, nrx)/(nx + 1)

Mux <- nux/(nx + 1)

Mly <- nly/(ny + 1)

Mry <- rep(1, nry)/(ny + 1)

Muy <- nuy/(ny + 1)

fun1 <- function(X, Y, MP) { # To calculate X<Y times M-function

d <- matrix(0, length(X), length(Y))

for (i in 1:length(Y)) {

for (j in 1:length(X)) {

d[j, i] <- sum(X[j] < Y[i])

}

}

d1 <- MP %*% d

return(d1)

}

# Lower and Upper prob. that Y is the best

YU <- c(Yr, Uy)

XL <- c(Lx, Xr)
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YL <- c(Ly, Yr)

XU <- c(Xr, Ux)

Lprob <- sum(fun1(XL, YU, c(Mlx, Mrx)) * c(Mry, Muy))

Uprob <- sum(fun1(XU, YL, c(Mrx, Mux)) * c(Mly, Mry)) + ((nx +

1) * (ny + 1))^(-1) * ((nlx + 1) * (nly + nry) + (nuy +

1) * (nx + 1))

return(round(c(Lprob, Uprob), 4))

}

### END ###
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