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Abstract

Resilience of systems to failures during functioning is of great practical impor-

tance. One of the strategies that might be considered to enhance reliability and

resilience of a system is swapping components when a component fails, thus replac-

ing it by another component from the system that is still functioning. This thesis

studies this scenario, particularly with the use of the survival signature concept to

quantify system reliability, where it is assumed that such a swap of components re-

quires these components to be of the same type. We examine the effect of swapping

components on a reliability importance measure for the specific components, and

we also consider the joint reliability importance of two components. Such swapping

of components may be an attractive means toward more resilient systems and could

be an alternative to adding more components to achieve redundancy of repair and

replacement activities.

Swapping components, if possible, is likely to incur some costs, for example for

the actual swap or to prepare components to be able to take over functionality of an-

other component. In this thesis we also consider the cost effectiveness of component

swapping over a fixed period of time. It is assumed that a system needs to function

for a given period of time, where failure to achieve this incurs a penalty cost. The

expected costs when the different swap scenarios are applicable are compared with

the option not to enable swaps. We also study the cost effectiveness of component

swapping over an unlimited time horizon from the perspective of renewal theory.

We assume that the system is entirely renewed upon failure, at a known cost, and
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we compare different swapping scenarios. The effect of components swapping on

preventive replacement actions is also considered.

In addition, we extend the approach of component swapping and the cost effec-

tiveness analysis of component swapping to phased mission system. We consider

two scenarios of swapping possibilities, namely, assuming that the possibilities of

component swapping can occur at any time during the mission or only at transition

of phases.
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Chapter 1

Introduction

With the need for highly reliable systems, there are many possibilities to make a

basic system more reliable or more resilient to possible faults. It may be possible

to add component redundancy or make individual components more reliable. In

addition, one may be able to repair failed components or replace them with new

ones. In this thesis, we consider a quite straightforward way in which some systems

may become more reliable and resilient to component failure, namely, the possibility

to replace a failed component by another component in the system that has not yet

failed, in effect swapping components. This is logically restricted to components

which are of the same type, hence it is likely that only some swapping opportunities

exist in a system. It seems that the increase in system reliability through such

component swapping has not received much attention in the literature, yet in some

scenarios it can be an attractive opportunity to prevent a system from failing. In

practice, this could enable preparation of substantial repair activities, or it may be

deemed to leave the system reliable enough to complete its mission.

Scenarios where swapping of components may be an option can include the fol-

lowing examples. Aerospace systems with multiple computers on board, where some

computers tasked with minor functions can be prepared to take over crucial functions

in case another computer fails. Lighting systems, where multiple locations must be

provided with light under contract but where partial lighting at any location may

be sufficient to meet the contractual requirements. Transport systems, where parts

of one mode of transport can be used to keep another one running. Organizations,

2



Chapter 1. Introduction 3

where employees can be trained to take over some functioning of others in case of

unexpected absence.

It should be emphasized that swapping a component, upon failure, with another

component from the system, differs from the well-studied scenarios of using cold or

warm standby components or adding components in parallel to achieve increased

reliability [25, 33, 61, 71]. When we replace a failed component with a functioning

component that was already in the system, the subsystem, in which the later compo-

nent was originally placed, becomes less reliable. One can also compare the kind of

component swapping studied in this thesis to a minimal repair [60], in that the fail-

ure time distribution of the component does not change, but this is combined with

a change in the overall structure of the system due to the functioning component

being removed elsewhere.

In this thesis we consider the effect of defined component swap possibilities on the

total system reliability. We also consider the importance of individual components,

which can be strongly affected by opportunities to swap them and the joint reliability

importance (JRI) of two components. The survival signature concept is used to

derive the corresponding system reliability [18].

A system is usually designed and installed for completing a specific function. If

a system fails, it can cause losses such as loss of lives, damage to health, release

of hazardous materials, or economic losses including repair or replacement of any

damaged structures. These losses incur costs. It would be attractive if the cost that

is associated with system failure could be reduced by increasing system reliability

through component swapping. The operation of swapping components is likely to

incur some costs, for example for the actual swap or to prepare components to be

able to take over functionality of another component. This thesis also consider the

cost effectiveness of component swapping to increase system reliability. The cost

aspects is studied under the assumption that a system would need to function for a

given period of time, where failure to achieve this incurs a penalty cost. We compare

different swap scenarios with the option not to enable swaps, focusing on minimum

expected costs over the given period. We also consider the cost effectiveness of

component swapping from the perspective of renewal theory, so effectively over an
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unlimited time horizon. We assume that the system is entirely renewed upon fail-

ure, at a known cost, and we compare different swapping scenarios. The effect of

components swapping on preventive replacement actions is also considered [64].

A phased mission system (PMS) is one that performs several different tasks or

functions in sequence. In order to accomplish the mission successfully, the system in

every phase has to be completed without failure. Therefore, it is often difficult for a

PMS to work with high reliability. Generally, there are mainly two approaches that

can be used to improve the reliability of the PMS. The first way is increasing the

component reliability (reliability allocation), and the other way is using redundant

components in parallel (redundancy allocation) e.g. [3,23,43,50]. As an alternative

to these approaches, in this thesis we introduce the approach of component swapping

to enhance the reliability of phased mission system and to make it more resilient to

component failure. This approach is attractive since the reliability and the number of

the components do not need to be increased to improve the system reliability as the

other approaches. We consider two strategies of components swapping to improve

the reliability of PMS, namely, swapping components upon failure and swapping

components according to structure importance. The effect of both strategies on the

reliability of the PMS is studied under two scenarios of swapping possibilities. First,

it is assumed that the swap between components can be done at any time during

the mission. Second, it is assumed that the swap between components can be done

only at transition of phases. In this thesis we also study the effectiveness of the cost

of component swapping in reducing the expected costs of the failure of the PMS.

The expected costs when the two different scenarios of swapping possibilities are

applicable are compared with the option not to enable swaps, focusing on minimum

expected costs over the given period.

This introductory chapter is organized as follows. Section 1.1 introduces the

concept of resilience. Section 1.2 briefly reviews the concepts related to system reli-

ability and its measurement. Section 1.3 provides a brief introduction to reliability

importance. Section 1.4 introduces the concept of survival signature. Section 1.5

illustrates the aim and objectives of this research. A detailed outline of this thesis

is given in Section 1.6, with details of related publications.



1.1. Resilience 5

1.1 Resilience

The concept of resilience originated in the field of ecology. It is defined in this

field as the speed with which an ecosystem returns to the equilibrium state after a

perturbation [24]. After it emerged in the field of ecology, this concept is gradually

developed into different research fields. Despite an increase in the usage of the term

resilience, there is no universal agreement on its definition. It is defined variously

in different research fields such as social [1], organizational [30] and economical [56]

fields. In each research field the term has taken more specific meaning depending on

the field that it is introduced in. Although the concept of resilience has been around

for a long time, this concept is relatively new in the field of systems engineering [39].

Various definitions of the term resilience in the field of systems engineering have

been reviewed by [36]. In this thesis, resilience is defined to be the ability of systems

to recover quickly from failures.

In engineering systems redundancy is embedded in system design in order to

make the system resilient to possible faults. This strategy causes increase in the cost

of the system and does not always yield competitive results [69]. As an alternative

to this strategy, component swapping that is introduced in this thesis could be

embedded in system design, precisely, systems could be designed to be resilient

through allowing its components to be swapped. This would ensure that the system

returns to function quickly. In a more resilient system, the design of the system

would allow for component swaps to be beneficial in practice.

1.2 System reliability

In this thesis we assume that the term system is used to describe the collection of

components when connected to each other in some way to create the whole system.

We might consider any electronic devices as an example of a system. In this section

we briefly introduce the notation and concepts related to system reliability and its

measurement. In Section 1.2.1, we present the theory of structure function and we

briefly discuss related concepts. In Section 1.2.2, we discuss reliability measurement

based on the structure function.
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1.2.1 Structure function

The main characteristic of any systems in this thesis is that the functioning state

of the whole system is dependent on the functioning states of its components. To

quantify if the system is functioning or failed, it is assumed that the system and each

component are binary, which means that they are only in one of two possible states:

functioning or failed. We use the indicator 1 to denote the system or component

functions, and 0 to denote that the system or component fails.

Definition 1.2.1 For a system with m components, the state vector is a vector

x = (x1, x2, ..., xm) ∈ {0, 1}m, where xi is a binary variable indicating the functioning

state of the component i, for each i, so xi = 1 if the ith component functions and

xi = 0 if the ith component fails [42]. The labelling of the components is arbitrary

but must be fixed to define x.

It is assumed that the state of the system is completely determined by the states

of its components. A mapping called the structure function determines whether or

not the system is functioning when its components are in specific states.

Definition 1.2.2 Consider the space {0, 1}m of all possible state vectors for an

m-component system [42]. The structure function φ : {0, 1}m −→ {0, 1} is a

mapping that associates those state vectors x for which the system functions with

the value 1 and those state vectors x for which the system does not function with

the value 0.

The quantification of the structure function φ is dependent on the structure of a

system. The structure of a system shows how its components are connected to

each other. The connection between components represents how functioning of the

components influences the functioning of the system. A system is called coherent, if

its structural function is non-decreasing and each its component is relevant [42]. In

this thesis we consider only coherent systems. The following examples demonstrate

the structure of some simple systems and their structure functions φ.
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CA B

Figure 1.1: A series system with three components

B

A 

C

Figure 1.2: A parallel system with three components

Example 1.2.1 (Series systems)

In a series system the components are connected to each other in series [2]. All

the components in a series system must function for the system to function. Figure

1.1 shows an example of a series system consisting of 3 components. The structure

function of a series system consisting of m components is

φ(x) =
m∏
i=1

xi (1.2.1)

Example 1.2.2 (Parallel systems) In a parallel system, the components are con-

nected to each other in parallel [2]. A parallel system functions, if at least one of its

components functions. For the system to be failed, all of its components must be

failed. Figure 1.2 shows an example of a parallel system consisting of 3 components.

The structure function of a parallel system consisting of m components is

φ(x) = 1−
m∏
i=1

(1− xi) (1.2.2)

Example 1.2.3 (Series-parallel and parallel-series systems) Series-parallel and parallel-

series systems consist of only combinations of subsystems in series or parallel con-

figuration [2]. A series-parallel system consists of parallel subsystems which are

connected to each other in series. A parallel-series systems consists of series subsys-

tems which are connected to each other in parallel. The structure functions of these
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Figure 1.3: A series-parallel system with three components
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A

Figure 1.4: A parallel-series system with three components

types of systems can be calculated using a combination of Formula (1.2.1) for series

systems and (1.2.2) for parallel systems. Figure 1.3 shows a series-parallel system

consisting of 3 components. The structure function φ for this system is given by

φ(x) = x1(1− (1− x2)(1− x3)) (1.2.3)

Figure 1.4 shows a parallel-series system consisting of 3 components. The first

series subsystems consists of the components A and B, and the second one consists

of the component C. The structure function φ for the overall system is

φ(x) = 1− (1− x1x2)(1− x3) (1.2.4)

Example 1.2.4 (k-out-of-m systems) A system with m components which func-

tions if and only if at least k of the m components function, for 1 ≤ k ≤ m, is called

a k-out-of-m:G system [72]. The structure function for a k-out-of-m:G system is

φ(x) =

1 if
∑m

i=1 xi > k

0 if
∑m

i=1 xi < k

(1.2.5)

A system with m components that fails if and only if at least k of the m com-

ponents fail, for 1 ≤ k ≤ m, is called a k-out-of-m:F system [72]. Based on the

definitions of a k-out-of-m:G system and a k-out-of-m:F system, a k-out-of-m:G
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system is equivalent to an (m − k + 1)-out-of-m:F system. The structure function

of a k-out-of-m:F system is

φ(x) =

1 if
∑m

i=1 xi > m− k + 1

0 if
∑m

i=1 xi < m− k + 1

(1.2.6)

The term k-out-of-m system is often used to refer to either a G system or a

F system or both. Series systems and parallel systems are special cases of k-out-

of-m systems. A series system is equivalent to an m-out-of-m:G system, and to a

1-out-of-m:F system. A parallel system is equivalent to a 1-out-of-m:G and to an

m-out-of-m:F system.

1.2.2 Reliability measurement

The reliability of a system is defined as the probability that the system functions

properly at a time t, and is denoted by R. To calculate the system reliability at a

fixed time t, we consider a system with m components. Let Xi be a random variable,

and

Xi =

1 if component i functions

0 if component i fails

(1.2.7)

Let pi = P (Xi = 1) be the probability that component i functions. Assuming

that Xi, i = 1, 2, ...,m are mutually statistically independent, and introducing no-

tation X = (X1, X2, ..., Xm) and p = (p1, p2, ..., pm), the reliability of a system is a

function of the reliability of its components and can be computed from the structure

function of the system [42],

R = P (φ(X) = 1) = R(p) (1.2.8)

The following example demonstrates reliability of some simple systems based on

their structure functions [42].

Example 1.2.5 The reliability of a series system consisting of m components, so

with structure function φ(x) =
∏m

i=1 xi, is given by

R(p) =
m∏
i=1

pi (1.2.9)
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The reliability of a parallel system consisting of m components, with structure

function φ(x) = 1−
∏m

i=1(1− xi), is given by

R(p) = 1−
m∏
i=1

(1− pi) (1.2.10)

If we assume that the random quantities Xi which represent the function of

the system components, are independent and identically distributed (i.i.d.), so if

p1 = p2 = ... = pm = p, then the reliability of a k-out-of-m:G systems with structure

function φ(x) = 1 if
∑m

i=1 xi > k, is given by

R(p) =
m∑
i=k

(
m

i

)
pi(1− p)m−i (1.2.11)

In the i.i.d. case, the reliability of m-component series and parallel systems are

given by R(p) = pm and R(p) = 1− (1− p)m, respectively.

The reliability measure defined above deals with time as implicit and fixed be-

cause of this the time t doesn’t appear in the previous reliability equations. For

example, in the case of a 3-component series system, the system reliability is given

by R(p) = p1p2p3. The values of p1, p2 and p3 are given for a common time and

the reliability of the system is calculated for that time. However, in many real life

applications no specific time is specified in advance. In this situation, the time could

be considered as a variable in the reliability measure [42]. Let

Xi(t) =

1 if component i functions at time t

0 if component i fails at time t

(1.2.12)

Let random variable Ti ≥ 0 be the failure time of component i, i = 1, 2, ...,m.

The component failure characteristics can be described by probability distributions.

Assuming that component i has an absolutely continuous failure time distribution

with cumulative distribution function(CDF) Fi(t) and with probability density func-

tion (pdf)fi(t), then Fi(t) represents the probability that component i fails before

or at time t,

Fi(t) = P (Ti ≤ t) (1.2.13)

The reliability function of component i at time t is the probability that a com-

ponent i still functions at time t, R(t) = P (Ti > t). Since a component i either fails
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by time t, or survives at time t, we have

1− Fi(t) = P (Ti > t) = P (Xi(t) = 1) (1.2.14)

If we consider the 3-components series system in Figure 1.2.1, the reliability of the

system can be rewritten as P (TS > t) = [1−F1(t)][1−F2(t)][1−F3(t)]. In the case

that if the system components are i.i.d., Fi(t) = F (t) for i = 1, 2, 3, the reliability

of the system is be given by P (TS > t) = [1− F (t)]3. What is important and needs

to be emphasized is that, in this thesis, both the system and its components are

assumed to be non-repairable, so if a component is failed, it cannot work again, so

there are no repair activities.

1.3 Reliability importance

One of the important purposes of a reliability and risk analysis is to study the

component importance. Component importance measures are frequently used as

tools to evaluate and rank the impact of components on the system reliability [52].

The most important (critical) component for the system reliability should be given

priority with respect to improvements or maintenance. There are many applications

of importance measures in probabilistic risk analysis [12,29,34].

The first importance measure concept is introduced by Birnbaum in 1969 [11].

Birnbaum categorises the importance measures into three categories based on the

knowledge needed for determining them, namely, structure importance measures,

reliability importance measures and lifetime importance measures [11]. Structure

importance measures assume that the system structure is known and it measures

the relative importance of various components with respect to their positions in

a system. It is relevant to system design when several components with different

reliabilities can be arbitrarily assigned to several locations in the system. One would

like to assign more relible components to positions with higher structure importance.

Reliability importance measures depend on both the structure of the system and

reliability of components. It measures the change in the system reliability with

respect to the change in reliability of a specific component. The lifetime importance
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measures, depends on both the structure of the system and component lifetime

distribution [4].

Birnbaum reliability importance measure is defind as the rate at which the system

reliability changes with respect to changes in the reliability of a given component. It

is also defined as marginal reliability importance [32,38]. It is obtained for a binary

coherent system, by partial differentiation of the system reliability with respect to

the given component reliability. The reliability importance of component i when

the mission time of a system is implicit and fixed is given by

RIi =
∂R(p)

∂pi
(1.3.15)

where pi is the reliability of the ith component, p = (p1, p2, ..., pm) is the vector

of components reliability and R is the reliability of the system. The Birnbaum

reliability importance of component i can be rewritten in the form

RIi = R(1i, p
i)−R(0i, p

i) (1.3.16)

where pi represents the vector of components reliability with pi removed, (1i, p
i) and

(0i, p
i) represents the component reliability vector when component i is in state 1

and 0, respectively.

In the case that the mission time of a system is not fixed, the reliability impor-

tance of component i is defined as

RIi(t) = P (TS > t|Ti > t)− P (TS > t|Ti ≤ t) (1.3.17)

where TS is the random system failure time and Ti the random failure time of

component i, i = 1, 2, ...,m.

If it is assumed that all components are equally reliable and the reliability of each

component pj = 1/2, for all j 6= i, the Birnbaum reliability importance measure

reduces to Birnbaum structural importance measure, denoted by SIi,

SIi = SIi(i, 1/2, · · · , 1/2) =
1

2m−1

∑
xi

[
φ(1i, x

i)− φ(0i, x
i)
]

(1.3.18)

where xi represents the component state vector with xi removed, (1i, x
i) and

(0i, x
i) represents the component vector when component i is in state 1 and 0,



1.3. Reliability importance 13

respectively, φ is the structure function of the system and 2m−1 represents the total

number of different state vectors with m− 1 in it [11].

Since Birnbaum reliability importance measure is introduced, there have been

quite many different importance measures introduced in the literature. Some of

them are based on the three categories defind by Birnbaum such as Fussell-Vesely

measure of importance [65] and the criticality importance measure [41], and there

are others which are apart from the three categories, such as the risk achievement

worth and the risk reduction worth [15, 16]. Feng et al [31] introduce component

importance measure based on survival signature to analyse systems with multiple

types of components.

The joint importance of two components for the system reliability has attracted

considerable attention in the reliability literature. Hong and Lie [35] defined the

the joint reliability importance (JRI) as a measure of how two components in a

system interact in contributing to system reliability. For a system with statistically

independent component reliabilities, the JRI of component i and j is defined as

JRIi,j =
∂2R(p)

∂pi∂pj
(1.3.19)

This can be simplified as [8],

JRIi,j = R(1i, 1j, p
i,j)−R(1i, 0j, p

i,j)−R(0i, 1j, p
i,j) +R(0i, 0j, p

i,j) (1.3.20)

where pi,j represents the vector of components reliability with pi and pj removed,

1i and 0i represents the state when component i functions and doesn’t function,

respectively, and 1j and 0j represents the state when component j functions and

doesn’t function, respectively.

In the case that the mission time of a system is not fixed, the JRI of component

i and j is given by

JRIi,j(t) = P (TS > t|Ti > t, Tj > t)− P (TS > t|Ti > t, Tj ≤ t)

− P (TS > t|Ti ≤ t, Tj > t) + P (TS > t|Ti ≤ t, Tj ≤ t) (1.3.21)

where TS is the random system failure time, Ti the random failure time of com-

ponent i, Tj the random failure time of component j. This definition was extended
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in several ways. For example, Armstrong [8] presents a joint importance measure

for dealing with the statistical dependence between components and Wu [67] gen-

eralized JRI to multistate systems. Recently, Eryilmaz et al [27] have presented

general results on marginal and JRI for components with dependent failure time

distributions; they also used the concept of survival function.

The importance of a component and the joint importance of two components are

defined through their functions in a system, hence, we can expect that the ability to

swap components can have a strong effect on them. In Chapter 2 we examine the

effect of swapping components on the importance of individual components and on

the joint reliability importance (JRI) of two components.

In this thesis we introduce the strategy of swapping components according to

the structural importance. In this strategy the structural importance is used to

measure the importance level of the components of the same type in contributing to

system reliability. After the components are prioritized by structural importance,

the swapping rules are defined upon this prioritization. This is explained in more

detail in Chapter 4.

1.4 The survival signature

Quantification of system reliability has traditionally been based on the structure

function [5, 72]. Samaniego [57] introduced the system signature as a tool for relia-

bility assessment for systems consisting of components of a single type, which means

that their failure time distributions are exchangeable [44,48]. Samaniego’s signature

can be regarded as a summary of the structure function that is sufficient to derive

the system reliability function if the failure times of all the system’s components are

exchangeable, so in the case that all the system’s components are of one type.

Consider a coherent system of m components with independent identically dis-

tributed failure times. Let TS be the random failure time for the system, and Ti

be the random failure time of component i, i = 1, 2, ...,m. Tj:m is the jth order

statistic of the m random component failure times giving the jth smallest compo-

nent lifetime, which is the time of the jth component failure, for j = 1, 2, ...,m. The



1.4. The survival signature 15

system’s signature is defined to be the m-dimensional probability vector s, where

its jth element sj is the probability that the jth component failure causes system

failure [58],

sj = P (TS = Tj:m) (1.4.22)

The value of an element sj of the system signature for j = 1, 2, ...,m can be

computed by implementing combinatorics and order statistic. The signature s is a

probability vector, so,
∑m

j=1 sj = 1 and sj ≥ 1 for all j. The reliability of the system

R(t) = P (TS > t) is

R(t) =
m∑
j=1

sjP (Tj:m > t) (1.4.23)

If the failure time distribution for the components is known and has cumulative

distribution function (CDF) F (t), then

R(t) =
m∑
j=1

sj

j−1∑
i=0

(
m

i

)
[F (t)]i[1− F (t)]m−i (1.4.24)

In the previous equation the reliability of the system is expressed as a function

of s and F (t) alone. It is clear that the main attraction of this signature is that

it enables separation of aspects of the system structure and the components failure

times distribution, which simplifies a range of reliability related problems such as

stochastic comparison of different system structures and inference on the system

reliability from component failure data.

The major drawback of Samaniego’s signature is that it can only be applied to

systems with single type of components, which is quite rare for real-world systems

and prevents the method to be used for analysis of networks [7]. To overcome this

limitation, Coolen and Coolen-Maturi [18] introduced the survival signature as an

alternative tool for system reliability quantification. This is also a summary of the

system structure function that is sufficient for a range of reliability computations

and inferences, including derivation of the system reliability function, and crucially,

it can be used for systems with multiple types of components. The only requirement

is that failure times of components of the same type are exchangeable. Components

of different types can be dependent. Of course, any such dependence must be mod-

eled, for example, through the use of copulas [47] or the use of multivariate failure
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time models including dependence [27, 28]. In this thesis, to present the swapping

opportunities without further complications, we throughout assume that the ran-

dom failure time of components of different types have independent failure times,

and in addition, we assume that the random failure times of components of the same

type are conditionally independent and identically distributed. These assumptions

can be relaxed without difficulty, such relaxation can of course alter the effect of

enabled swaps on the overall system reliability.

For a coherent system consisting of m components that are all of the same

type, the survival signature, denoted by Φ (l), for l = 1, ...,m, is defined as

the probability that the system functions, given that precisely l of its components

function [18]. Since in this thesis we considered only a coherent system Φ(l) is an

increasing function of l, with Φ(0) = 0 and Φ(m) = 1. If exactly l of the components

function, this means that there are
(
m
l

)
state vectors x with precisely l components

xi = 1, so with
∑m

i=1 xi = l, and all remaining xi = 0. Let Sl denote the set of

these state vectors, so |Sl| =
(
m
l

)
. Since we assume that all of the components are of

the same type, which means that they have exchangeable failure times, these state

vectors are equally likely to occur, hence

Φ(l) =

(
m

l

)−1∑
x∈Sl

φ (x) (1.4.25)

Let Ct ∈ {0, 1, ...,m} denote the number of components in the system that

function at time t > 0. Let the probability distribution of the component failure time

to have CDF F (t). F (t) gives the probability that a component is not functioning

at time t. If we assume that there are exactly l components functioning, then the

remaining m− l components must not function. Thus, for l ∈ {0, 1, ...,m}

P (C(t) = l) =

(
m

l

)
[F (t)]m−l[1− F (t)]l (1.4.26)

By using the partition theorem, the probability that the system functions at time

t can be derived easily by

P (TS > t) =
m∑
l=0

Φ(l)P (C(t) = l) (1.4.27)

It is clear from Equation (1.4.27) that the system structure is taken into account



1.4. The survival signature 17

through the survival signature Φ(l), while the term P (C(t) = l) takes the random

failure times of the components into account.

Generalization of the signature to multiple types of components is quite compli-

cated [18]. However, the survival signature can be easily generalized for systems with

multiple types of components. Consider a system that consists of m components of

K ≥ 2 types, with mk components of type k ∈ {1, 2, ..., K} and
∑K

k=1mk = m [18].

Assume that the random failure times of components of the same type are exchange-

able, while full independence is assumed for the random failure times of components

of different types. Let the state vector xk =
(
xk1, x

k
2, ..., x

k
mk

)
∈ {0, 1}mk be the state

vector representing the state of the system components of type k, with xki = 1 if the

ith component of type k functions and xki = 0 if not. The labeling of the components

is arbitrary but must be fixed to define xk. Let x =
(
x1, x2, ..., xK

)
∈ {0, 1}m be the

state vector for the overall system. The structure function φ : {0, 1}m → {0, 1}, de-

fined for all possible x, takes the value 1 for a particular state vector x if the system

functions and 0 if the system does not function for the state vector x. The survival

signature is denoted by Φ (l1, l2, ...lK) and represents the probability that the system

functions, given that exactly lk of type k components function, for lk = 0, 1, ...,mk,

for each k = 1, 2, ..., K.

There are
(
mk
lk

)
state vectors xk with exactly lk of its mk components xki = 1,

so with
∑mk

i=1 x
k
i = lk. We denote the set of these state vectors for components of

type k by Skl . Let Sl1,...,lK denote the set of all state vectors for the whole system for

which
∑mk

i=1 x
k
i = lk, for k = 1, 2, ..., K. Because of the assumption that the failure

times of mk components of type k are exchangeable, all the state vectors xk ∈ Skl
are equally likely to occur, Thus, Φ (l1, l2, ...lK) can be calculated by

Φ (l1, l2, ...lK) =

(
K∏
k=1

(
mk

lk

)−1)
×

∑
x∈Sl1,...,lK

φ (x) (1.4.28)

Let Ck
t ∈ {0, 1, ...,mk} denote the number of type k components in the system

that function at time t > 0. Using the assumed independence of failure times of

components of different types, the reliability of the system R(t) = P (TS > t) is

R(t) =

m1∑
l1=0

...

mK∑
lK=0

[
Φ(l1, ...lK)

K∏
k=1

P (Ck
t = lk)

]
(1.4.29)



1.5. Research aim and objectives 18

Note that if one would not assume independence of the failure times of compo-

nents of different types, then the product of the marginal probabilities for individual

events Ck
t = lk in this formula would be replaced by the joint probability of these

events, from which point a model must be assumed for this joint probability. Hence-

forth we assume, in addition to exchangeability of failure times of components of

the same type, that these failure times are conditionally independent and identically

distributed, with the probability distribution for the failure time of components of

type k specified by the cumulative distribution function (CDF) Fk(t). This leads to

R(t) =

m1∑
l1=0

...

mK∑
lK=0

[
Φ(l1, ...lK)

K∏
k=1

((
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]lk
)]

(1.4.30)

The survival signature is closely linked to Samaniego’s system signature for sys-

tems with a single type of components, and it is particularly useful for larger systems

with only a few different types of components. Recently, the survival signature has

attracted considerable interest from researchers in reliability, who have considered

both mathematical properties and aspects of application, including statistical infer-

ence [7, 19], comparison of different systems [59], and fast simulation methods [49].

Feng et al. [31] demonstrates a methodology to include explicitly the imprecision,

which leads to upper and lower bounds of the survival function of the system. An

efficient algorithm for computing exact system and survival signatures has been in-

troduced by [54, 55]. Aslett [6] has created a function in the statistical software

R to compute the survival signature, given a graphical presentation of the system

structure.

1.5 Research aim and objectives

The possibility to replace a failed component by another component in the system

that has not yet failed, swapping components, could be considered as a new approach

to enhance reliability and resilience of a system. In this thesis we aim to introduce

and study this approach.

The research objectives are:

1. Quantifying the reliability of a system if its components can be swapped.
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2. Examining the effect of swapping components on the total system reliability

and reliability importance.

3. Analysing the cost effectiveness of component swapping.

4. Extending the approach of component swapping and the cost effectiveness

analysis of component swapping to phased mission systems.

1.6 Outline of the thesis

This thesis is organized as follows. In Chapter 2, the survival signature concept

is implemented to study the effect of component swapping on the total system

reliability. We also consider the effect of component swapping on the importance

of individual components and the joint reliability importance of two components.

A paper presenting the results of Chapter 2 has already been published in Applied

Stochastic Models in Business and Industry [46]. Some results in this chapter have

been presented at Research Students Conference in Probability and Statistics in

Durham in April 2017 and at the training school for Uncertainty Treatment and

Optimisation in Aerospace Engineering in 2018 at Durham University. It also been

presented at several seminars.

In Chapter 3, we study the cost effectiveness of component swapping to increase

system reliability over a fixed period of time. We also study the cost effectiveness of

component swapping over an unlimited time horizon from the perspective of renewal

theory. The effect of components swapping on preventive replacement actions is also

studied in this chapter. Some results in this chapter have been presented at 10th

IMA International Conference on Modelling in Industrial Maintenance and Relia-

bility in Manchester in June 2018 and a short paper has appeared in the conference

proceeding [45]. A paper based on this chapter has been submitted to the 29th edi-

tion European Safety and Reliability Conference (ESREL 2019) in Hannover that

will be held in September 2019. This chapter has also been presented at several

seminars.

In Chapter 4, we extend the strategy of swapping components upon failure that is
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introduced in Chapter 2, to improve the reliability of phased mission system (PMS)

and to make it more resilient to component failure. We also in this chapter intro-

duce another strategy that could be used to improve the reliability of PMS which

is swapping components according to the structural importance. In this chapter we

also extend the cost effectiveness analysis of component swapping that is introduced

in Chapter 3 to PMS. The strategy of swapping components according to the struc-

tural importance and the analysis related to it has been done in the collaboration

with Professor Xianzhen Huang (School of Mechanical Engineering and Automation,

Northeastern University, China) during his research visit to Durham University. A

paper based on this chapter is being prepared for submission to an international

peer-reviewed journal. We summarize our results with some concluding remarks in

Chapter 5. Part of this thesis will also be presented at 1st UK Reliability Meeting

in Durham in April 2019. All figures in this thesis were obtained using R. The R

codes are available from the author upon request.



Chapter 2

System reliability and component

importance when components can

be swapped upon failure

2.1 Introduction

In Chapter 1, we introduced an attractive strategy in which some systems may

become more reliable and resilient to component failure, namely, swapping com-

ponents. In this chapter we aim to use the survival signature concept that was

introduced in Section 1.4 to examine the effect of resilience through components

swapping on the reliability of systems with multiple types of components. Actually,

throughout this thesis we assume that there are fixed swapping rules, which pre-

scribe upon failure of a component precisely which other component takes over its

role in the system, if possible and if the other component is still functioning. The

objective of component swapping in this chapter is to increase the system reliability

by making the system more resilient to possible fault, so we further assume here

that such a swap of components can be done only when the system cannot function

with the existing components in place. Also, we assume that such a swap of compo-

nents takes neglectable time and does not affect the functioning of the component

that changes its role in the system nor its remaining time until failure. Under these

assumptions, in this chapter we analyse the effect of swapping components upon fail-

21
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ure on the total system reliability and reliability importance. Section 2.2, considers

the effect of swapping components on the total system reliability. We consider the

impact of possible component swapping on a reliability importance measure for an

individual component in Section 2.3, followed in Section 2.4 by attention to joint re-

liability importance of two components. In each section, we illustrate our approach

via examples. We end the chapter with some concluding remarks.

2.2 Swapping components

As we introduced in Section 1.4, the reliability of a system with m components of

K different types can be obtained by the use of the partition theorem involving

the survival signature of the system Φ (l1, l2, ...lK) and the probabilities that given

the numbers of components of each type will be functioning as given in Equation

(1.4.29). The survival signature takes into account the structure of the system,

and this information is separated from the failure time distributions of the system

components. We are able to quantify the reliability of the system if some components

can be swapped by two approaches. The effect of a regime of specified swaps can

be reflected through the system structure function, and hence, it can be taken into

account for computation of the system reliability through the survival signature.

Alternatively, the component can be defined based on its location, then, the effect

of the regime of specified swaps can be taken into account for computation of the

system reliability through the failure times of specific locations. The time at which

a specific location in the system will contain a failed component, might depend

on whether other specific locations contain a failed or functioning component. We

explain this approach in more detail later in Section 2.2.1, after we introduce the

first approach.

For a regime of specified swaps that will occur if specific components fail, let

φw (x) denote the system structure function given the defined swap in place. Com-

pared to the system’s structure function without swapping opportunities, φ (x), φw

will typically be equal to 1 for some x for which φ was equal to 0, reflecting the ben-

efit from swapping components upon failure, so φw (x) ≥ φ (x). Let Φw (l1, l2, ...lK)



2.2. Swapping components 23

denote the survival signature given the defined swapping regime is in place, so

Φw (l1, l2, ...lK) =

(
K∏
k=1

(
mk

lk

)−1)
×

∑
x∈Sl1,...,lK

φw (x) . (2.2.1)

Let Tw denote the random system failure time with the specified swapping regime

in place. Therefore, the reliability of the system with the specified swapping regime

in place Rw(t) = P (Tw > t) is

Rw(t) =

m1∑
l1=0

...

mK∑
lK=0

[
Φw(l1, ...lK)

K∏
k=1

((
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]lk
)]

(2.2.2)

It is important to notice here that the swapping regime is entirely reflected in the

system survival signature. Crucially, the components have kept the same failure time

distributions and the same assumptions apply, that is failure times of components of

the same type remain independent and identically distributed, and failure times of

components of different types remain independent. The increase in reliability caused

by the swapping regime, when compared to the system without possible swapping,

is given by

Rw(t)−R(t) =

m1∑
l1=0

...

mK∑
lK=0

[
{Φw(l1, ...lK)− Φ(l1, ...lK)}

K∏
k=1

((
mk

lk

)
[Fk(t)]

mk−lk [1− Fk(t)]lk
)]

(2.2.3)

Hence, as long as a swapping regime leads to an increase of the survival signature,

for at least one of its values, it will be of benefit for the overall system reliability.

It is also obvious that a series system can never benefit from such swapping, simply

because it only functions if all of its components function. This is reflected by

the fact that for a series system, the two survival signatures considered here are

always equal. The above result for the difference of the reliability of the system

with and without possible swapping, ensures that some relevant computations, for

example, for importance measures as presented in Sections 2.3 and 2.4, are quite

straightforward. To illustrate the above way to reflect the effect of a component

swapping regime, we present the following two examples.

Example 2.2.1 Consider the system in Figure 2.1, which consists of four compo-

nents of two types, so m1 = m2 = 2. We want to examine the reliability of this

system in the case that components A and B can be swapped. Of course, this
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A 

D

C

B

1

1

2

2

Figure 2.1: System with four components of two types

l1 l2 Φ Φw

0 0 0 0

0 1 0 0

0 2 0 0

1 0 0 0

1 1 1/2 1

1 2 1/2 1

2 0 1 1

2 1 1 1

2 2 1 1

Table 2.1: Survival signatures for the system in Figure 2.1

swap only has a positive effect on the system reliability if component A fails while

component B still functions and at least one of components C or D also still func-

tions. So, the system’s structure function with this swap applied if needed, changes

from value 0 to 1 for three values of the state vector x (with entries alphabetically

ordered): (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), as in these cases the failed component A

will be replaced by component B which is functioning, and indeed at least one more

component functions. The corresponding survival signatures, Φ (l1, l2) for the sys-

tem without the swap, and Φw (l1, l2) with this specific swap applied if needed, are

given in Table 2.2 for all l1, l2 ∈ {0, 1, 2}.

The reliability of the system without the swap being possible, and the reliability

of the system with the swap applied if needed, is obtained by multiplying Φ (l1, l2)
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Figure 2.2: Reliability of system in Figure 2.1

and Φw (l1, l2) by the probability that the number of components of each type will

be functioning, assuming independence of failure time of components of different

types. Let the CDFs of the failure times of the Type 1 and Type 2 components be

F1(t) and F2(t), respectively. Then the reliability R(t) of the system without the

swap being possible, and the reliability Rw(t) of the system with the swap applied

if needed are

R(t) = [F1(t)][1− F1(t)][1− [F2(t)]
2] + [1− F1(t)]

2

Rw(t) = 2[F1(t)][1− F1(t)][1− [F2(t)]
2] + [1− F1(t)]

2 (2.2.4)

Figure 2.2 presents R(t) and Rw(t) if the failure times of Type 1 components

have a Weibull distribution with shape parameter 2 and scale parameter 1, that

is with CDF F1(t) = 1 − e−t
2
, and the failure times of Type 2 components have

an Exponential distribution with expected value 1, so with CDF F2(t) = 1 − e−t.

This figure clearly presents the gain in reliability of the system due to the possible

component swap.
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Figure 2.3: System with five components of two types

Example 2.2.2 Consider the system in Figure 2.3, which consists of five com-

ponents m = 5 with two types K = 2, so m1 = 2 and m2 = 3. We want to

examine the reliability of this system in the case that components A and B can

be swapped. The system can benefit from this swap if components A and C are

functioning while components B, D and E are failed and if components A and C

are failed while component B and at least one of components D and E are function-

ing. So, the system’s structure function with this swap applied, changes from value

0 to 1 for four values of the state vector x (with entries alphabetically ordered):

(1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 1). The survival signature, Φ (l1, l2)

for the system without the swap, and Φw (l1, l2) with the swap applied, are given in

Table 2.2 for all l1 ∈ {0, 1, 2} and l2 ∈ {0, 1, 2, 3}.

Let the probability distribution of the Type 1 components failure time have CDF

F1(t) and the probability distribution of the Type 2 components failure time have

CDF F2(t). Then the reliability of the system R(t) without the swap being possible,

and the reliability Rw(t) of the system with the swap applied if needed are

R(t) =[F1(t)]
2
[
2[F2(t)][1− F2(t)]

2 + [1− F2(t)]
3
]

+ [F1(t)][1− F1(t)][
3[F2(t)]

2[1− F2(t)] + 5[F2(t)][1− F2(t)]
2 + 2[1− F2(t)]

3
]

+ [1− F1(t)]
2.

Rw(t) =[F1(t)]
2
[
2[F2(t)][1− F2(t)]

2 + [1− F2(t)]
3
]

+ 2[F1(t)][1− F1(t)][
1− [F2(t)]

3
]

+ [1− F1(t)]
2. (2.2.5)
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l1 l2 Φ Φw

0 0 0 0

0 1 0 0

0 2 2/3 2/3

0 3 1 1

1 0 0 0

1 1 1/2 1

1 2 5/6 1

1 3 1 1

2 0 1 1

2 1 1 1

2 2 1 1

2 3 1 1

Table 2.2: Survival signatures for the system in Figure 2.3

If we keep the same scenario for the failure times of Type 1 and Type 2 com-

ponents as in Example 2.2.1, we can see in Figure 2.4 how the system’s reliability

change over time before and after the possible component swaps. It is clear that

there would be a good improvement in the system’s reliability if the system is de-

signed in the way that we could implement the defined swap.

It is clear from the previous example that the effect the swap between components

A and B is fully taken into account through the system structure function, and hence

the survival signature. This has the important advantage that each components

remains of the same type when compared to the system without swaps being possible.

This is not the case in the alternative approach as we will see.

2.2.1 Alternative approach

In this approach we consider the change that might happen in reliability of a system

if its components can be swapped upon failure in the failure times of the specific

locations that the system’s components fixed on. For example, for the system in

Figure 2.1, let us assume that LA, LB, LC and LD denote the locations in the

system that components A, B, C and D are fixed on, respectively. If a swap could

take place as considered in Example 2.2.1, then location LA would have as failure
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Figure 2.4: Reliability of the system in Figure 2.3

time the maximum of the failure times of components A and B, and location LB

would have as failure time the minimum of the failure times of components A and B.

Hence, LA and LB would not have exchangeable failure times anymore, and hence

they would not be of the same type, so the swap breaks down these locations into

two different types.

In order to consider the change that might happen in reliability in the failure

times of the specific locations, we define the survival signature according to the

specific locations. Consider a system with m components. Let L1, L2, · · · , Lm rep-

resent different locations in the system that the components might be fixed on. TLj

denote the failure time of location Lj, j ∈ {1, 2, · · · ,m} and it represents the time

at which this location will contain a failed component. The survival signature of

specific locations gives the probability that system functions if there is exactly Yb of

type b locations functioning. Assuming that the random failure times of locations of

the same type are exchangeable, while full independence is assumed for the random

failure times of locations of different types. If we have B ≥ 2 types of locations with

mb locations of type b ∈ {1, 2, · · · , B} and
∑B

b=1mb = m, abj is used to donate the
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functioning states of the j location of type b. abj = 1 if jth location of type b function

and abj = 0 if it fails. ab =
(
ab1, a

b
2, · · · , abmb

)
is a state vector that represents the

state of type b locations and a =
(
a1, a2, · · · , aB

)
is the state vector for the overall

system. The structure function that gives the overall state of the system according

to the functioning status of specific locations is denoted by φL (a).

There are
(
mb
Yb

)
state vectors ab with exactly Yb of its mb locations abj = 1, so

with
∑mb

j=1 a
b
j = Yb. We denote the set of these state vectors for locations of type

b by SbY . Let SY1,...,YB denote the set of all state vectors for the whole system for

which
∑mb

j=1 a
b
j = Yb, for b = 1, 2, ..., B. Because of the assumption that the failure

times of mb locations of type b are exchangeable, all the state vectors ab ∈ SbY are

equally likely to occur. The survival signature of specific locations is denoted by

ΦL (Y1, Y2, · · · , YB), and is given as follows:

ΦL (Y1, Y2, · · · , YB) =

(
B∏
b=1

(
mb

Yb

)−1)
×

∑
a∈SY1,··· ,YB

φ (a) . (2.2.6)

To find the reliability of the system Rw(t) that considers a defined swap, we

find ΦL (Y1, Y2, · · · , YB) , then we multiply it by the probability that the number of

specific locations of each type will be functioning, taking into account the defined

swap in the failure time of specific locations. Let N b
t ∈ {0, 1, ...,mb} denote the

number of type b locations in the system that function at time t > 0. To find

P (N1
t = Y1, N

2
t = Y2, · · · , NB

t = YB), we need to find the joint probability that

consider the dependency that occurred between specific locations as a result of the

defined swap.

Rw(t) =

m1∑
Y1=0

...

mB∑
YB=0

[
ΦL (Y1, Y2, · · · , YB)P (N1

t = Y1, N
2
t = Y2, · · · , NB

t = YB)
]

(2.2.7)

This approach is illustrated in more detail through the following two examples.

Example 2.2.3 Consider the same system in Figure 2.1 and the same swapping

possibility between components A and B as discussed in Example 2.2.1. The time

at which location LA fails, TLA , is dependent on the time at which location LB fails,

TLB . TLA = max(TA, TB) and TLB = min(TA, TB) where TA is the failure time of

component A with disregard to its location and TB is the failure time of component
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Y1 Y2 Y3 ΦL Y1 Y2 Y3 ΦL

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 1

0 0 2 0 1 0 2 1

0 1 0 0 1 1 0 1

0 1 1 0 1 1 1 1

0 1 2 0 1 1 2 1

Table 2.3: Survival signature ΦL of system in Figure 2.1

B with disregard to its location. It is clear that under the defined swap, LA and

LB represent two different types of locations. We have Y1 ∈ {0, 1} corresponding

to location LA and we have Y2 ∈ {0, 1} corresponding to location LB. The defined

swap does not change the locations of Type 2 components, so all of the locations of

Type 2 components still have the same type as its components we denote this Type

3 and we have Y3 ∈ {0, 1, 2}.

In order to find the reliability of the system, we calculate ΦL (Y1, Y2, Y3) with

disregard to the structure of components in the system. For example, in the situ-

ation that if location LA fails while locations LB, LC and LD are still functioning,

the structure function in this situation is φL (a11 = 0, a21 = 1, a31 = 1, a32 = 1) = 0,

comparing to the structure function φ(x11 = 0, x12 = 1, x21 = 1, x22 = 1) = 0 for the

original system, φL breaks down the system locations to different types according to

the change that happens in their failure times as a result of the defined swap. Table

2.3 demonstrates ΦL for all Y1, Y2 ∈ {0, 1} and Y3 ∈ {0, 1, 2}.

To find P (N1
t = Y1, N

2
t = Y2, N

3
t = Y3) for all Y1, Y2 ∈ {0, 1} and Y3 ∈ {0, 1, 2}.

We need to find the joint probability of P (N1
t = Y1, N

2
t = Y2) for all Y1, Y2 ∈ {0, 1}

then multiply it by the probability that the number of locations of type 3 will be

functioning P (N3
t = Y3) because under the defined swap, N3

t is still independent of

N1
t and N2

t .

Components A and B are of the same type. So, TA and TB are identically

distributed TA, TB ∼ F1(t) where F1(t) is CDF of the failure time of Type 1 com-

ponent. Under the defined swap, the probability that the two locations LA and
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LB are functioning together at time t > 0 is P (N1
t = 1, N2

t = 1) = [1 − F1(t)]
2

and the probability that these two locations are not functioning at time t > 0 is

P (N1
t = 0, N2

t = 0) = [F1(t)]
2. The event that location LA functions while location

LB is failed will occur when location LA contains functioning component A and

location LB contains a failed component B or when component A fails at location

LA and it was swapped with functioning component B. The probability of this event

is P (N1
t = 1, N2

t = 0) = 2[F1(t)][1 − F1(t)]. Also, it is impossible that location LB

functions while location LA fails. So, P (N1
t = 0, N2

t = 1) = 0. If we substitute the

values of ΦL and the joint probability in Equation (2.2.7), we can find that

Rw(t) = 2[F1(t)][1− F1(t)][1− [F2(t)]
2] + [1− F1(t)]

2 (2.2.8)

Comparing the results in Equations (2.2.4) and (2.2.8), we can clearly see that

we arrived at the same result by implementing the two different approaches.

Example 2.2.4 Consider again the system in Figure 2.3 and the same swapping

possibility between the components A and B as discussed in Example 2.2.5. The

defined swap will only change the failure time of locations LA and LB in the

situations when the location LC functions while the locations LD and LE fail,

TLA = min(TA, TB) and TLB = max(TA, TB), and in the situation that the location

LC fails while at least one of the locations LD and LE function, TLA = max(TA, TB)

and TLB = min(TA, TB). In the situation that the location LC , LD and LE are func-

tioning together or failed together, the swap will not influence the failure time of

locations LA and LB. Thus, they still have their original failure times in this situa-

tion, TLA = TA and TLB = TB. It clear that the failure time TLA is not exchangeable

with the failure time TLB . So, the locations LA and LB represent two different types

namely Type 1 and Type 2 locations and we have Y1 ∈ {0, 1} corresponding to the

number of Type 1 locations functioning and we have Y2 ∈ {0, 1} corresponding to

the number of Type 2 locations functioning. Since TLA and TLB dependent on TLC

and either one of TLD and TLE , we breakdown the location of Type 3 components

into two types, namely Type 3 location represents the location LC and Type 4 rep-

resents the location LD and LE. So, we have Y3 ∈ {0, 1} and Y4 ∈ {0, 1, 2}. Table

2.4 demonstrates ΦL (Y1, Y2, Y3, Y4) for all Y1, Y2, Y3 ∈ {0, 1} and Y4 ∈ {0, 1, 2}.
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Y1 Y2 Y3 Y4 ΦL Y1 Y2 Y3 Y4 ΦL

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 1 1

0 0 0 2 0 1 0 0 2 1

0 1 0 0 0 1 1 0 0 1

0 1 0 1 0 1 1 0 1 1

0 1 0 2 0 1 1 0 2 1

0 0 1 0 0 1 0 1 0 0

0 0 1 1 1 1 0 1 1 1

0 0 1 2 1 1 0 1 2 1

0 1 1 0 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1

0 1 1 2 1 1 1 1 2 1

Table 2.4: Survival signature ΦL of system in Figure 2.3

Components A and B are of the same type. So, TA and TB are identically dis-

tributed TA, TB ∼ F1(t) where F1(t) is CDF of the failure time of Type 1 components.

Components C, D and E are of the same type. So, TC , TD and TE are identically dis-

tributed TC , TD, TE ∼ F2(t) where F2(t) is CDF of the failure time of Type 2 compo-

nents. It is clear that the joint probability P (N1
t = Y1, N

2
t = Y2, N

3
t = Y3, N

4
t = Y4)

would be different than the joint probability for the original system only in the

situations when N1
t = 1 and N2

t = 0 or when N1
t = 0 and N2

t = 1. For example,

P (N1
t = 1, N2

t = 0, N3
t = 0, N4

t = 1) = 4[1 − F1(t)][F1(t)][1 − F2(t)][F2(t)]
2 because

the event that LA and one of LD or LE function while LB and LC are failed will

occur in 4 situations namely, when LA contains functioning component A and LD

contains functioning component D and LB, LC and LE contain failed components,

or when LA contains functioning component A and LE contains functioning compo-

nent E and LB, LC and LD contain failed components, or when component A fails at

LA and it is swapped by the functioning component B and LD contains functioning

component D and LB, LC and LE contain failed components, or when component

A fails at location LA and it is swapped by the functioning component B and LE
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Y1 Y2 Y3 Y4 P (N1
t = Y1, N

2
t = Y2, N

3
t = Y3, N

4
t = Y4)

1 0 0 0 [1− F1(t)][F1(t)][F2(t)]
3

1 0 0 1 4[1− F1(t)][F1(t)][1− F2(t)][F2(t)]
2

1 0 0 2 2[1− F1(t)][F1(t)][1− F2(t)]
2[F2(t)]

1 0 1 0 0

1 0 1 1 2[1− F1(t)][F1(t)][1− F2(t)]
2[F2(t)]

1 0 1 2 [1− F1(t)][F1(t)][F2(t)]
3

0 1 0 0 [1− F1(t)][F1(t)][F2(t)]
3

0 1 0 1 0

0 1 0 2 0

0 1 1 0 2[1− F1(t)][F1(t)][1− F2(t)][F2(t)]
2

0 1 1 1 2[1− F1(t)][F1(t)][1− F2(t)]
2[F2(t)]

0 1 1 2 [1− F1(t)][F1(t)][F2(t)]
3

Table 2.5: The probability in the cases when N1
t = 1 and N2

t = 0 and in the cases

when N1
t = 0 and N2

t = 1 in Example 2.2.4

contains functioning component C and LB, LC and LD contain failed component.

Table 2.5 shows P (N1
t = Y1, N

2
t = Y2, N

3
t = Y3, N

4
t = Y4) in the cases when N1

t = 1

and N2
t = 0 and in the cases when N1

t = 0 and N2
t = 1 , for all Y3 ∈ {0, 1} and

Y4 ∈ {0, 1, 2}.

By substituting the values of ΦL (Y1, Y2, Y3, Y4) and P (N1
t = Y1, N

2
t = Y2, N

3
t =

Y3, N
4
t = Y4) for all Y1, Y2, Y3 ∈ {0, 1} and Y4 ∈ {0, 1, 2} in Equation(2.2.7), we can

find that

Rw(t) =[F1(t)]
2
[
2[F2(t)][1− F2(t)]

2 + [1− F2(t)]
3
]

+ 2[F1(t)][1− F1(t)][
1− [F2(t)]

3
]

+ [1− F1(t)]
2. (2.2.9)

Therefore, we arrived at the same result as in Example 2.2.2. It clear from

the previous examples that while we arrived at the same result by implementing

the two different approaches. The first approach in which the effect of a defined

swapping regime is fully taken into account through the system structure function,
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Figure 2.5: System with 8 components of 3 types; C,F,H form a 2-out-of-3 subsystem

and hence the survival signature is more attractive than the second one, since it has

continued with the same advantage of survival signature by modeling the structure

of systems and separating it from the random failure time of components. However,

in the second approach in which the effect of such a component swap is taken into

account through the failure times of specific locations, the lifetime distributions

become extremely complex and may not be feasible if one has a variety of swapping

opportunities. This thesis considers only the first approach for reliability assessment

when system components can be swapped.

The following extensive example is comparing the change that might happen in

the reliability as a result of different swapping opportunities. We can see through

this example how the reliability of the system can be obtained easily by considering

the first approach, however it would be quite difficult to obtain it by the second

approach.

Example 2.2.5 The system in Figure 2.5 consists of 8 components of 3 types,

m = 8 and K = 3, m1 = 3, m2 = 3 and m3 = 2. The letters A to H represent

the specific components, the numbers 1 to 3 represent the component types. This

system consist of three subsystems in series configuration. The first subsystem is

a parallel system consisting of components A and D, the second subsystem is a

parallel system consisting of components B, E and G, and the third subsystem is a

2-out-of-3 system consisting of components C, F and H.

The reliability of this system might be enhanced by a variety of swapping op-

portunities, we compare 7 swapping cases. In Case 1, we assume that we are able

to swap only Type 1 components, in Case 2, we assume that we are able to swap
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only Type 2 components, in Case 3, we assume that we are able to swap only Type

3 components, in Case 4, we assume that we are able to swap both Type 1 and

Type 2 components, in Case 5, we assume that we are able to swap both Type 1

and Type 3 components, in Case 6, we assume that we are able to swap both Type

2 and Type 3 components, in Case 7, we assume that we are able to swap Type 1,

Type 2 and Type 3 components. In each case the swap can be done in any way

when needed to keep the system functioning.

The survival signatures are given in Table 2.6, where Φ is the survival signature

for the original system and Φw, w ∈ {1, 2, 3, 4, 5, 6, 7} are the survival signatures in

Cases 1, 2, 3, 4, 5, 6 and 7. In this table we present only nonzero values. The zero

values represent the situations when the system has only 3 functioning components

or less, because the system needs at least 4 components to function. In Case 7, all

nonzero values are equal to 1, because in this case we can swap components of all

types, so the system just needs four functioning components of any type in order to

function.

In order to see the change to the system’s reliability as a result of each of swap-

ping case, we assume that the failure times of Type 1 components have a Weibull

distribution with shape parameter 2 and scale parameter 1, the failure times of

Type 2 components have an Exponential distribution with expected value 1 and the

failure times of Type 3 components have an Exponential distribution with expected

value 2, so F1(t) = 1 − e−t2 , F2(t) = 1 − e−t and F3(t) = 1 − e−t/2. The reliability

functions of the system in Cases 1, 2, 3, 4, 5, 6 and 7 are given in Figure 2.6. Case

0 in this figure represents the reliability function for the original system. Clearly,

while all swap cases would enhance the system reliability, Cases 7 and 4 provide the

best improvement, which is mainly due to the fact that in Case 7 all the components

are involved in the swaps and in Case 4, six components are involved in the swaps,

including the two components in the first subsystem.



2.2. Swapping components 36

l1 l2 l3 Φ Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

0 2 2 1/3 1/3 1 1/3 1 1/3 1 1

0 3 1 1/2 1/2 1/2 1 1/2 1 1 1

0 3 2 1 1 1 1 1 1 1 1

1 1 2 2/9 2/3 2/3 2/9 1 2/3 2/3 1

1 2 1 2/9 2/3 2/3 4/9 1 1 1 1

1 2 2 5/9 1 1 5/9 1 1 1 1

1 3 0 1/3 1 1/3 1/3 1 1 1/3 1

1 3 1 2/3 1 2/3 1 1 1 1 1

1 3 2 1 1 1 1 1 1 1 1

2 0 2 1/3 1 1/3 1/3 1 1 1/3 1

2 1 1 2/9 2/3 2/3 4/9 1 1 1 1

2 1 2 5/9 1 1 5/9 1 1 1 1

2 2 0 1/3 2/3 2/3 1/3 1 2/3 2/3 1

2 2 1 1/2 5/6 5/6 7/9 1 1 1 1

2 2 2 7/9 1 1 7/9 1 1 1 1

2 3 0 2/3 1 2/3 2/3 1 1 2/3 1

2 3 1 5/6 1 5/6 1 1 1 1 1

2 3 2 1 1 1 1 1 1 1 1

3 0 1 1/2 1/2 1/2 1 1/2 1 1 1

3 0 2 1 1 1 1 1 1 1 1

3 1 0 1/3 1/3 1 1/3 1 1/3 1 1

3 1 1 2/3 2/3 1 1 1 1 1 1

3 1 2 1 1 1 1 1 1 1 1

3 2 0 2/3 2/3 1 2/3 1 2/3 1 1

3 2 1 5/6 5/6 1 1 1 1 1 1

3 2 2 1 1 1 1 1 1 1 1

3 3 0 1 1 1 1 1 1 1 1

3 3 1 1 1 1 1 1 1 1 1

3 3 2 1 1 1 1 1 1 1 1

Table 2.6: The survival signatures of system in Figure 2.5
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Figure 2.6: Reliability of the system in Figure 2.5

2.3 Component reliability importance

We examine the reliability importance of a specific component if we assume that

some components in the system can be swapped. We consider the relative im-

portance index RIi(t) as introduced by [31], which is the difference between the

probability that the system functions at time t given that component i functions at

time t, and the probability that the system functions at time t given that component

i is not functioning at time t, so

RIi(t) = P (TS > t|Ti > t)− P (TS > t|Ti < t)

The conditional survival functions P (TS > t|Ti > t) and P (TS > t|Ti < t) can

be obtained quite easily by deriving the survival signatures corresponding to the

two possible states of component i. We can compute this for the system without

swapping being possible as well as for specific swapping regimes, and it is of interest

to consider the change in importance of specific components resulting from the

swapping possibilities. We illustrate this using the same systems and swapping
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A B C, D

l1 l2 Φ̃1 Φ̃0 Φ̃1 Φ̃0 l1 l2 Φ̃1 Φ̃0

0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 1 0 0

0 2 1 0 0 0 1 0 1/2 0

1 0 1 0 1 0 1 1 1/2 1/2

1 1 1 0 1 1 2 0 1 1

1 2 1 0 1 1 2 1 1 1

Table 2.7: Φ̃1 and Φ̃0 for components A, B, C, D

regimes considered in Examples 2.2.1 and 2.2.5.

Example 2.3.1 Consider again the system in Figure 2.1 and the same swapping

possibility as discussed in Example 2.2.1. We refer to the original case of the system

when there is no swapping possible between components as Case 0. We refer to

the case when components A and B can be swapped as Case 1. To calculate the

relative importance indices in Case 0, we first calculate the survival signature of

the system conditional on the component of interest functioning, which we denote

by Φ̃1 (l1, l2), where it should be noted that either l1 or l2 (corresponding to the

type of the component of interest) now only takes values in {0, . . . ,mk − 1} for

k = 1 or k = 2, as it only reflects the number of the other components of the

same type that are functioning. Similarly, we calculate the survival signature of the

system conditional on the component of interest not functioning, which we denote

by Φ̃0 (l1, l2). The survival signatures Φ̃1 (l1, l2) and Φ̃0 (l1, l2) are given in Table 2.7

for all components, note of course that these are identical for components C and D.

The relative importance index for component A, RIA(t), is derived by

RIA(t) =
1∑

l1=0

2∑
l2=0

[
Φ̃1 (l1, l2)− Φ̃0 (l1, l2)

] 2∏
k=1

P (Ck
t = lk)

leading to

RIA(t) = [F1(t)]
[
1− [F2(t)]

2
]

+ [1− F1(t)]
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A B C, D

l1 l2 Φ̃1
1 Φ̃1

0 Φ̃1
1 Φ̃1

0 l1 l2 Φ̃1
1 Φ̃1

0

0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 1 0 0

0 2 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 1 1 1

1 1 1 1 1 1 2 0 1 1

1 2 1 1 1 1 2 1 1 1

Table 2.8: Φ̃1
1 and Φ̃1

0 for components A, B, C, D

Similarly, we derive

RIB(t) = [1− F1(t)][F2(t)]
2

RIC(t) = RID(t) = [F1(t)][1− F1(t)][F2(t)]

We aim to determine the differences that might occur in RIA(t), RIB(t), RIC(t)

and RID(t) in Case 1, in which we assume that components A and B can be swapped.

To calculate the relative importance indices in Case 1, Φ̃1
1 (l1, l2) represents the

survival signature with the swap enabled, if the component of interest functions, and

Φ̃1
0 (l1, l2) if the component does not function. We denote the relative importance

index of component i if the Case 1 swap is possible by RI1i (t). Table 2.8 presents

Φ̃1
1 and Φ̃1

0 for all the components in Case 1.

The relative importance index for component A, RI1A(t), is derived by

RI1A(t) =
1∑

l1=0

2∑
l2=0

[
Φ̃1

1 (l1, l2)− Φ̃1
0 (l1, l2)

] 2∏
k=1

P (Ck
t = lk)

leading to

RI1A(t) = [F1(t)]
[
1− [F2(t)]

2
]

+ [1− F1(t)][F2(t)]
2

Similarly we derive

RI1B(t) = [F1(t)]
[
1− [F2(t)]

2
]

+ [1− F1(t)][F2(t)]
2

RI1C(t) = RI1D(t) = 2[F1(t)][1− F1(t)][F2(t)]
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To compare the relative importance indices of the system’s components in Cases

0 and 1, we use the same failure time distributions for Type 1 and Type 2 components

as in Example 2.2.1. Figure 2.7 (a) and (b) show the relative importance indices of

the system’s components in Cases 0 and 1, respectively. These figures show that in

Case 0, component A is clearly the most important, yet with the swapping possible

between components A and B in Case 1 these two components become equally

important.

Example 2.3.2 We consider the component importance for the system in Figure

2.5, under the same swapping possibilities that we introduced in Example 2.2.5,

namely in Case 1, we assume that we are able to swap only Type 1 components, in

Case 2, we assume that we are able to swap only Type 2 components, in Case 3,

we assume that we are able to swap only Type 3 components, in Case 4, we assume

that we are able to swap both Type 1 and Type 2 components, in Case 5, we assume

that we are able to swap both Type 1 and Type 3 components, in Case 6, we assume

that we are able to swap both Type 2 and Type 3 components, in Case 7, we assume

that we are able to swap Type 1, Type 2 and Type 3 components. We refer to the

original Case, in which there is no swap option as Case 0. We also assume the same

component failure time distributions as in Example 2.2.5.

The survival signatures for all components of Type 1 are given in Table 2.9, the

survival signatures for all components of Type 2 are given in Table 2.10 and the

survival signatures for all components of Type 3 are given in Table 2.11. In these

tables Φ̃1 and Φ̃0 are the survival signatures for the components in Case 0 and Φ̃w
1

and Φ̃w
0 , w ∈ {1, 2, 3, 4, 5, 6, 7} are the survival signatures for the components in

Cases 1, 2, 3, 4, 5, 6 and 7. In these tables we present only non zero values.

Figures 2.8(a)-(h) show the relative importance indices of the components in

these cases. These figures show that due to the ability of swapping between compo-

nents, in Case 1, the components of Type 1 become equally important and, in Case

2, the components of Type 2 become equally important and, in Case 3, the compo-

nents of Type 3 become equally important, in Case 4, the components of Type 1

become equally important and the components of Type 2 become equally important,

in Case 5, the components of Type 1 become equally important and the components
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Figure 2.7: The relative importance indices of components in Figure 2.1
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of Type 3 become equally important, in Case 6, the components of Type 2 become

equally important and the components of Type 3 become equally important and in

Case 7, the components of Type 1 become equally important, the components of

Type 2 become equally important and the components of Type 3 become equally

important for system reliability.

The importance of specific components dependents on the swapping cases that

would be allowed as well as the component failure time distributions. If we consider

only the period of time from t = 0 to t = 0.4, for example, then we can see that in

this period, in Cases 0, 1 and 4, component H is the most important component, in

Case 2 and 6, component C is the most important component, in Case 3, compo-

nent A is the most important component, in Case 5, components G and H are the

most important components, and in Case 7, components A, B and C are the most

important components for system reliability.
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A B C A, B, C A B C A

l1 l2 l3 Φ̃1 Φ̃0 Φ̃1 Φ̃0 Φ̃1 Φ̃0 Φ̃1
1 Φ̃1

0 Φ̃1
1 Φ̃1

0 Φ̃1
1 Φ̃1

0 Φ̃2
1 Φ̃2

0 Φ̃3
1 Φ̃3

0
0 1 2 1/3 0 0 0 1/3 0 2/3 0 1 0 0 0 1 0 1/3 0
0 2 1 1/6 0 1/6 0 1/3 0 2/3 0 1/3 0 1/2 0 1 0 1/3 0
0 2 2 2/3 1/3 1/3 1/3 2/3 1/3 1 1/3 1 1 1 1 1 1 2/3 1/3
0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 3 1 1/2 1/2 1/2 1/2 1 1/2 1 1/2 1/2 1/2 1/2 1/2 1 1/2 1 1
0 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 2 1/2 0 1/2 0 1/2 0 1 0 1/2 0 1/2 0 1/2 0 1/2 0
1 1 1 1/6 0 1/6 0 1/3 0 2/3 0 3/4 0 1/2 0 3/4 0 1/2 0
1 1 2 2/3 1/6 1/3 1/3 2/3 1/3 1 2/3 1 1/2 1 1 1 1/2 2/3 1/6
1 2 0 1/6 0 1/6 0 1/6 0 2/3 0 1/2 0 1/2 0 1 0 1/6 0
1 2 1 1/2 1/4 5/12 1/3 7/12 1/6 5/6 2/3 3/4 3/4 3/4 3/4 1 1/2 5/6 1/2
1 2 2 5/6 1/2 2/3 2/3 5/6 1/2 1 1 1 1 1 1 1 1 5/6 1/2
1 3 0 1/2 1/2 1/2 1/2 1 0 1 1 1/2 1/2 1/2 1/2 1 0 1/2 1/2
1 3 1 3/4 3/4 3/4 3/4 1 2/4 1 1 3/4 3/4 3/4 3/4 1 1/2 1 1
1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1 0
2 0 2 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0
2 1 0 1/3 0 1/3 0 1/3 0 1/3 0 1 0 1 0 1 0 1/3 0
2 1 1 5/6 1/2 2/3 1/3 2/3 1/3 5/6 2/3 1 1/2 1 1 1 1/2 1 1/3
2 1 2 1 1/3 1 1 1 1 1 1 1 1 1 1 1 1 1 1/3
2 2 0 2/3 1/3 2/3 1/3 2/3 0 2/3 2/3 1 1 1 1 1 0 2/3 1/3
2 2 1 5/6 1/2 5/6 2/3 5/6 1/3 5/6 5/6 1 1 1 1 1 1/2 1 2/3
2 2 2 1 2/3 1 1 1 1 1 1 1 1 1 1 1 1 1 2/3
2 3 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1
2 3 1 1 1 1 1 1 1/2 1 1 1 1 1 1 1 1/2 1 1
2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B C A, B, C A, B, C A B C A, B, C

l1 l2 l3 Φ̃3
1 Φ̃3

0 Φ̃3
1 Φ̃3

0 Φ̃4
1 Φ̃4

0 Φ̃5
1 Φ̃5

0 Φ̃5
1 Φ̃5

0 Φ̃5
1 Φ̃5

0 Φ̃6
1 Φ̃6

0 Φ̃7
1 Φ̃7

0
0 1 2 0 0 1/3 0 1 0 2/3 0 1 0 0 0 1 0 1 0
0 2 1 1/3 0 2/3 0 1 0 1 0 1 0 1 0 1 0 1 0
0 2 2 1/3 1/3 2/3 1/3 1 1 1 1/3 1 1 1 1 1 1 1 1
0 3 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0
0 3 1 1 1 1 1 1 1/2 1 1 1 1 1 1 1 1 1 1
0 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 2 1/2 0 1/2 0 1 0 1 0 1/2 0 1/2 0 1/2 0 1 0
1 1 1 1/3 0 1/2 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 2 1/3 1/3 2/3 1/3 1 1 1 2/3 1 1/2 1 1 1 1/2 1 1
1 2 0 1/6 0 1/6 0 1 0 2/3 0 1/2 0 1/2 0 1 0 1 0
1 2 1 2/3 1/2 5/6 1/3 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2/3 2/3 5/6 1/2 1 1 1 1 1 1 1 1 1 1 1 1
1 3 0 1/2 1/2 1 0 1 1 1 1 1/2 1/2 1/2 1/2 1 0 1 1
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1 0 1 0 1/2 0 1 0 1 0 1 0 1 0 1 0
2 0 2 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1
2 1 0 1/3 0 1/3 0 1 0 1/3 0 1 0 1 0 1 0 1 0
2 1 1 1 2/3 1 1/3 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 0 2/3 1/3 2/3 1/3 1 1 2/3 2/3 1 1 1 1 1 0 1 1
2 2 1 1 1 1 2/3 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2.9: The survival signatures of component of Type 1 in Case 0, 1, 2, 3, 4, 5,

6 and 7
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D E F D E F D, E, F D

l1 l2 l3 Φ̃1 Φ̃0 Φ̃1 Φ̃0 Φ̃1 Φ̃0 Φ̃1
1 Φ̃1

0 Φ̃1
1 Φ̃1

0 Φ̃1
1 Φ̃1

0 Φ̃2
1 Φ̃2

0 Φ̃3
1 Φ̃3

0
0 1 2 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1 0 1/2 0
0 2 1 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1 0
0 2 2 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0
1 0 2 1/3 0 0 0 1/3 0 1 0 0 0 1 0 2/3 0 1/3 0
1 1 1 1/6 0 1/6 0 1/3 0 3/4 0 1/2 0 3/4 0 2/3 0 1/2 0
1 1 2 4/6 1/6 1/3 1/3 2/3 1/3 1 1/2 1 1 1 1/2 1 2/3 2/3 1/6
1 2 0 1/3 0 1/3 0 1/3 0 1 0 1 0 1 0 1/3 0 1/3 0
1 2 1 5/6 3/6 2/3 1/3 2/3 1/3 1 1/2 1 1 1 1/2 5/6 2/3 1 1/3
1 2 2 1 1/3 1 1 1 1 1 1 1 1 1 1 1 1 1 1/3
2 0 1 1/6 0 1/6 0 1/3 0 1/3 0 1/2 0 1 0 2/3 0 1/3 0
2 0 2 2/3 1/3 1/3 1/3 2/3 1/3 1 1 1 1 1 1 1 1/3 2/3 1/3
2 1 0 1/6 0 1/6 0 1/6 0 1/2 0 1/2 0 1 0 2/3 0 1/6 0
2 1 1 6/12 3/12 5/12 4/12 7/12 2/12 3/4 3/4 3/4 3/4 1 1/2 5/6 2/3 5/6 1/2
2 1 2 5/6 3/6 4/6 4/6 5/6 3/6 1 1 1 1 1 1 1 1 5/6 3/6
2 2 0 2/3 1/3 2/3 1/3 2/3 1/3 1 1 1 1 1 0 2/3 2/3 2/3 1/3
2 2 1 5/6 3/6 5/6 4/6 5/6 2/6 1 1 1 1 1 1/2 5/6 5/6 1 2/3
2 2 2 1 2/3 1 1 1 1 1 1 1 1 1 1 1 1 1 2/3
3 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
3 0 1 1/2 1/2 1/2 1/2 1 1/2 1/2 1/2 1/2 1/2 1 1/2 1 1/2 1 1
3 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 0 1/2 1/2 1/2 1/2 1 0 1/2 1/2 1/2 1/2 1 0 1 1 1/2 1/2
3 1 1 3/4 3/4 3/4 3/4 1 2/4 3/4 3/4 3/4 3/4 1 2/4 1 1 1 1
3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1
3 2 1 1 1 1 1 1 1/2 1 1 1 1 1 1/2 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E F D, E, F D E F D, E, F D, E, F

l1 l2 l3 Φ̃3
1 Φ̃3

0 Φ̃3
1 Φ̃3

0 Φ̃4
1 Φ̃4

0 Φ̃5
1 Φ̃5

0 Φ̃5
1 Φ̃5

0 Φ̃5
1 Φ̃5

0 Φ̃6
1 Φ̃6

0 Φ̃7
1 Φ̃7

0
0 1 2 1/2 0 1/2 0 1 0 1/2 0 1/2 0 1/2 0 1 0 1 0
0 2 1 1 0 1 0 1/2 0 1 0 1 0 1 0 1 0 1 0
0 2 2 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1
1 0 2 0 0 1/3 0 1 0 1 0 0 0 1 0 2/3 0 1 0
1 1 1 1/3 0 1/2 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 2 1/3 1/3 2/3 1/3 1 1 1 1/2 1 1 1 1/2 1 2/3 1 1
1 2 0 1/3 0 1/3 0 1 0 1 0 1 0 1 0 1/3 0 1 0
1 2 1 1 2/3 1 1/3 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1/3 0 2/3 0 1 0 1 0 1 0 1 0 1 0 1 0
2 0 2 1/3 1/3 2/3 1/3 1 1 1 1 1 1 1 1 1 1/3 1 1
2 1 0 1/6 0 1/6 0 1 0 1/2 0 1/2 0 1 0 2/3 0 1 0
2 1 1 2/3 1/2 5/6 1/3 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4/6 4/6 5/6 3/6 1 1 1 1 1 1 1 1 1 1 1 1
2 2 0 2/3 1/3 2/3 1/3 1 1 1 1 1 1 1 0 2/3 2/3 1 1
2 2 1 1 1 1 2/3 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0
3 0 1 1 1 1 1 1 1/2 1 1 1 1 1 1 1 1 1 1
3 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 0 1/2 1/2 1 0 1 1 1/2 1/2 1/2 1/2 1 0 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2.10: The survival signatures of component of Type 2 in Case 0, 1, 2, 3, 4, 5,

6 and 7
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G H G H G H

l1 l2 l3 Φ̃1 Φ̃0 Φ̃1 Φ̃0 Φ̃1
1 Φ̃1

0 Φ̃1
1 Φ̃1

0 Φ̃2
1 Φ̃2

0 Φ̃2
1 Φ̃2

0
0 2 1 1/3 0 1/3 0 1/3 0 1/3 0 1 0 1 0
0 3 0 0 0 1 0 0 0 1 0 0 0 1 0
0 3 1 1 1 1 0 1 1 1 0 1 1 1 0
1 1 1 2/9 0 2/9 0 2/3 0 2/3 0 2/3 0 2/3 0
1 2 0 1/9 0 1/9 0 1/3 0 1 0 1/3 0 1 0
1 2 1 5/9 3/9 5/9 1/9 1 1 1 1/3 1 1 1 1/3
1 3 0 1/3 1/3 1 1/3 1 1 1 1 1/3 1/3 1 1/3
1 3 1 1 1 1 1/3 1 1 1 1 1 1 1 1/3
2 0 1 1/3 0 1/3 0 1 0 1 0 1/3 0 1/3 0
2 1 0 1/9 0 1/9 0 1/3 0 1 0 1/3 0 1 0
2 1 1 5/9 3/9 5/9 1/9 1 1 1 1/3 1 1 1 1/3
2 2 0 3/9 2/9 6/9 2/9 2/3 2/3 1 2/3 2/3 2/3 1 2/3
2 2 1 7/9 6/9 7/9 3/9 1 1 1 2/3 1 1 1 2/3
2 3 0 2/3 2/3 1 2/3 1 1 1 1 2/3 2/3 1 2/3
2 3 1 1 1 1 2/3 1 1 1 1 1 1 1 2/3
3 0 0 0 0 1 0 0 0 1 0 0 0 1 0
3 0 1 1 1 1 0 1 1 1 0 1 1 1 0
3 1 0 1/3 1/3 1 1/3 1/3 1/3 1 1/3 1 1 1 1
3 1 1 1 1 1 1/3 1 1 1 1/3 1 1 1 1
3 2 0 2/3 2/3 1 2/3 2/3 2/3 1 2/3 1 1 1 1
3 2 1 1 1 1 2/3 1 1 1 2/3 1 1 1 1
3 3 0 1 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1

G, H G H G, H G, H G, H

l1 l2 l3 Φ̃3
1 Φ̃3

0 Φ̃4
1 Φ̃4

0 Φ̃4
1 Φ̃4

0 Φ̃5
1 Φ̃5

0 Φ̃6
1 Φ̃6

0 Φ̃7
1 Φ̃7

0
0 2 1 1/3 0 1 0 1 0 1/3 0 1 0 1 0
0 3 0 1 0 0 0 1 0 1 0 1 0 1 0
0 3 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 2/9 0 1 0 1 0 2/3 0 2/3 0 1 0
1 2 0 4/9 0 1 0 1 0 1 0 1 0 1 0
1 2 1 5/9 4/9 1 1 1 1 1 1 1 1 1 1
1 3 0 1 1/3 1 1 1 1 1 1 1 1/3 1 1
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 1/3 0 1 0 1 0 1 0 1/3 0 1 0
2 1 0 4/9 0 1 0 1 0 1 0 1 0 1 0
2 1 1 5/9 4/9 1 1 1 1 1 1 1 1 1 1
2 2 0 7/9 2/9 1 1 1 1 1 2/3 1 2/3 1 1
2 2 1 7/9 7/9 1 1 1 1 1 1 1 1 1 1
2 3 0 1 2/3 1 1 1 1 1 1 1 2/3 1 1
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 1 0 0 0 1 0 1 0 1 0 1 0
3 0 1 1 1 1 1 1 0 1 1 1 1 1 1
3 1 0 1 1/3 1 1 1 1 1 1/3 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 0 1 2/3 1 1 1 1 1 2/3 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 0 1 1 1 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2.11: The survival signatures of component of Type 3 in Case 0, 1, 2, 3, 4, 5,

6 and 7
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(d) Case 3

0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Time

R
I4

A, B and C

 D, E and F

 G 

 H 

(e) Case 4
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(g) Case 6
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Figure 2.8: The relative importance indices of components in Figure 2.5
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2.4 Joint reliability importance (JRI)

We consider the joint reliability importance index JRI of components i and j, given

by the following equation:

JRIi,j(t) = P (TS > t|Ti > t, Tj > t)− P (TS > t|Ti > t, Tj ≤ t)

− P (TS > t|Ti ≤ t, Tj > t) + P (TS > t|Ti ≤ t, Tj ≤ t)

for t > 0 [8]. The joint reliability importance JRI is a measure of interaction

of the two components in a system with regard to their contribution to the system

reliability. The value of JRI indicates that one component is more or less important,

or has the same importance, when the other is functioning. If JRI > 0 then one

component becomes more important when the other is functioning (so they can be

regarded as ‘complements’). If JRI < 0 then one component becomes less important

when the other is functioning (‘substitutes’), while if JRI = 0 then one component’s

importance is unchanged by the functioning of the other [8]. We consider again the

influence of possible swaps on the joint reliability importance of components. The

importance measure and the approach considered in this section can be generalized

quite straightforwardly to joint importance of more than two components, but this

tends to be of less practical relevance. Computing the conditional survival functions

given the states of two components is again quite straightforward, and requires the

computation of the corresponding survival signatures. We illustrate this using the

same two systems and scenarios considered in Examples 2.2.1 and 2.2.5, and also in

Examples 2.3.1 and 2.3.2.

Example 2.4.1 We consider the JRI of each pair of components in Figure 2.1 for

the same swapping case introduced in Example 2.2.1. The joint reliability impor-

tance of components A and B in Case 0, in which there is no swapping possible, is

denoted by JRIA,B. Note that, given the states of these two components, the only

variable left is the number of functioning components of Type 2, so components C

and D, hence we can represent the survival signatures given the states of components

A and B as a function of only l2, the number of functioning components of Type 2.

Table 2.12 presents the survival signatures Φ̃1,1 (l2), Φ̃1,0 (l2), Φ̃0,1 (l2) and Φ̃0,0 (l2)
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l2 Φ̃1,1 Φ̃1,0 Φ̃0,1 Φ̃0,0

0 1 0 0 0

1 1 1 0 0

2 1 1 0 0

Table 2.12: Survival signatures given states of components A and B

in Case 0, where the first subscript represents the state of component A and the

second the state of component B.

The JRI for components A and B can be derived by

JRIA,B(t) =
2∑

l2=0

[
Φ1,1 (l2)− Φ̃1,0 (l2)− Φ̃0,1 (l2) + Φ̃0,0 (l2)

]
P (C2

t = l2)

leading to

JRIA,B(t) = [F2(t)]
2

By the same method we derive

JRIA,C(t) = JRIA,D(t) = [F1(t)][F2(t)]

JRIB,C(t) = JRIB,D(t) = −[1− F1(t)][F2(t)]

JRID,C(t) = −[F1(t)][1− F1(t)]

These joint reliability indices are presented in Figure 2.9(a), where the same

component failure time distributions have been assumed as in Example 2.2.1. These

joint reliability indices will be compared to the similar indices in the case of compo-

nent swaps being possible later in this example.

We now consider the same possible component swap as in Example 2.2.1, that is

component B can take over the role of component A if needed. Let JRI1i,j(t) denote

the joint reliability importance of components i and j in Case 1, so with this swap

being possible. To calculate JRI1i,j(t), we first compute the four survival signatures

corresponding to this swap in Case 1 and conditioned on the respective states for
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Figure 2.9: JRI of each pair of components in Figure 2.1
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components i, j. This leads to the following results

JRI1A,B(t) =
[
2[F2(t)]

2
]
− 1

JRI1A,C(t) = JRI1A,D(t) = JRI1B,C(t) = JRI1B,D(t) = [2F1(t)− 1][F2(t)]

JRI1D,C(t) = −2[F1(t)][1− F1(t)]

Figure 2.9(b) illustrate the JRI in Case 1. We can see that in Case 0, the pairs of

components (A,B), (A,C) and (A,D) are each complementary, while (B,C), (B,D)

and (D,C) are substitutes. It is clear by comparing these figures that the interaction

of each pair of components with regard to their contribution to the system reliability

is impacted by component swapping being possible. In particular, not all pairs are

complements or substitutes for all t anymore, where particularly the joint reliability

importance of the pair (A,B) is much affected by the swapping opportunity.

Example 2.4.2 For the system in Figure 2.5, discussed in Examples 2.2.5 and 2.3.2,

there are 28 pairs of components. We only briefly illustrate joint reliability impor-

tance for this system, by considering the JRI for components G and H in Cases 0,

2 and 3 considered before, namely Case 0 of no swaps being possible, Case 2 where

components D, E, F (Type 2) can be swapped, and Case 3 where components G and

H (Type 3) can be swapped. With the same component failure time distributions

assumed as in Example 2.2.5, Figure 2.10 presents these three JRIs. In Case 0 the

components G and H are complementary. The possible swapping in Case 2 has the

effect that components G and H become reliability substitutes. In Case 3, in which

we can swap these two components with each other, they become reliability comple-

ments until a specific time point and they become reliability substitutes after that

time, of course the precise times involved depends on the failure time distributions

of all components.

2.5 Concluding remarks

In this chapter, we have considered quantification of system reliability if some com-

ponents can be swapped upon failure. Based on the survival signature concept that
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Figure 2.10: JRI for components G and H in Figure 2.5

was introduced by [18], we introduced two different approaches to quantify the re-

liability of the system if its components can be swapped upon failure. In the first

approach the effect of a defined swapping regime is fully taken into account through

the system structure function, and hence the survival signature. In the second ap-

proach, the effect of such a component swap is taken into account through the failure

times of specific locations. While the same reliability information can be obtained

by both approaches, the first one is more attractive than the second one, since it has

continued with the same advantage of survival signature by modeling the structure

of systems and separating it from the random failure time of components. However,

in the second approach the lifetime distributions become extremely complex and

may not be feasible if one has a variety of swapping opportunities. This thesis con-

siders only the first approach for reliability assessment if some components can be

swapped. We considered component importance, which was particularly simplified
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by the use of the survival signature.

The approach of increasing system reliability through swapping components

upon failure that is proposed in this chapter is quite interesting since it makes

the system resilient to possible faults and it will not increase the weight and vol-

ume of the system. This approach can be used in the systems that are not easily

accessible for repair and replacements and it could enable preparation of substantial

repair activities. What is more important and needs to be emphasized is that, in

the proposed approach, the reliability and number of the components don’t need to

be increased to improve the reliability of the system.

A further interesting topic for future research is the possibility to swap compo-

nents when they are all still functioning. This could be attractive if one has the

opportunity to swap components of different types where a critical component may,

while still functioning, be swapped with another component at a certain time if they

have different hazard rates over time. For example, a component with increasing

hazard rate may be best to use in a critical part of the system in early stages, to

then be swapped by a component with decreasing hazard rate to improve system re-

liability at later stages. Further research also is to study the contribution that swaps

can make to system resilience in comparison to other activities, including more in-

built redundancy, standby components,or maintenance and replacement activities.

It could also consider other importance measures.

The effect of the swapping of components is entirely reflected through the change

in the survival signature. It may be of interest to investigate whether or not this

change can also be reflected by a distortion of the component reliabilities [59], which

may provide a further tool for comparison of different systems and different swapping

routines. It has been shown that very efficient simulation methods can be based on

the survival signature [49]. The same simulation method can perhaps also be used

to only learn about difference in reliability for two swapping regimes.

The approach presented in this thesis requires repeated calculation of survival

signatures. Aslett [6] has created a function in the statistical software R to com-

pute the survival signature, given a graphical presentation of the system structure.

This will be necessary for our work for systems that are not very small, and it will
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be of interest to create a tool that can automatically compute all the survival sig-

natures required in case of a substantial system with many component swapping

opportunities.



Chapter 3

Cost effective component

swapping to increase system

reliability

3.1 Introduction

In Chapter 2, we have used the concept of survival signature to quantify the re-

liability of systems when there is a possibility to swap components upon failure.

Swapping components, if possible, is likely to incur some costs, for example for the

actual swap or to prepare components to be able to take over functionality of an-

other component. In this chapter, we consider the cost effectiveness of component

swapping over a fixed period of time, and also over an unlimited time horizon from

the perspective of renewal theory [64]. In Section 3.2, we consider the cost effec-

tiveness of component swapping under the assumption that a system would need to

function for a given period of time, where failure to achieve this incurs a penalty

cost. The expected penalty costs of system failure when the different swap scenar-

ios are applicable are compared with the option not to enable swaps. In Section

3.3, we study the cost effectiveness of component swapping from the perspective of

renewal theory. We assume that the system is entirely renewed upon failure, at a

known cost, and we compare different swapping scenarios. We also study the effect

of components swapping on possible preventive replacement actions. We end this

54
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chapter with some concluding remarks in Section 3.4.

3.2 Penalty costs for system failure with compo-

nent swapping

In this section, we consider the cost effectiveness of component swapping over a

fixed period of time under the assumption that a system would need to function

for a given period of time, where failure to achieve this incurs a penalty cost. We

consider time independent penalty costs in Section 3.2.1 and time dependent penalty

cost in Section 3.2.2.

3.2.1 Time independent penalty costs

Suppose that we have a system which needs to function for a fixed period of time

[0, τ ]. If the system fails at any time t before the fixed time τ , a penalty cost needs

to be paid. This penalty cost is fixed, independent of the failure time, and denoted

by cp. Let TS denote the random failure time of the system, so R(τ) = P (TS ≥ τ),

is the probability that the system functions, and 1 − R(τ) = P (TS < τ) is the

probability that the system fails before τ . We refer to the situation in which there

is no swapping opportunity as Case 0. Let C(τ) denote the expected cost of failure

of system in Case 0, then

C(τ) = cp(1−R(τ)) (3.2.1)

We assume that the system can benefit from different swapping opportunities if

it fails before τ . An upfront cost may need to be paid out to enable each swapping

opportunity. Let cw denote the cost to enable swap Case w. We need to consider

up front which opportunity of swapping cases will minimize the expected cost. The

probability that the system survives until τ if a specified swapping regime is applica-

ble defined by Rw(τ). Let Cw(τ) denote the expected cost if the specified swapping

regime is applicable, then

Cw(τ) = cw + cp(1−Rw(τ)) (3.2.2)



3.2. Penalty costs for system failure with component swapping 56

3.2.2 Time dependent penalty costs

In this section we assume that the penalty costs that need to be paid if the system

fails before a fixed time τ is dependent on the failure time. Let cu represents the cost

per unit of time if the system does not function in the period [0, τ ]. If the system

fails at time TS ∈ [0, τ ], then the downtime is τ −TS and the downtime cost is equal

to cu(τ −TS). Let C(τ) denote the expected cost in Case 0, so, C(τ) = cuE(τ −TS).

We assume that F (0) = 0, so the system functions at t = 0. We have

E(τ − TS) =

∫ τ

0

(τ − t)f(t)dt = τ [F (τ)− F (0)]−
∫ τ

0

tf(t)dt (3.2.3)

To find
∫ τ
0
tf(t)dt, let us substitute t =

∫ t
0
du, so,

∫ τ

0

tf(t)dt =

∫ τ

0

∫ t

0

f(t)dudt =

∫ τ

0

∫ τ

u

f(t)dtdu =∫ τ

0

F (τ)− F (u)du =

∫ τ

0

(F (τ)− 1)du+

∫ τ

0

(1− F (u))du =

τF (τ)− τ +

∫ τ

0

R(u)du (3.2.4)

Substituting the result from Equation (3.2.4) to Equation (3.2.3), we get

E(τ − TS) = τ −
∫ τ

0

R(u)du

Therefore, the expected cost in Case 0 is

C(τ) = cu

[
τ −

∫ τ

0

R(t)dt
]

(3.2.5)

If the system can benefit from different swapping cases if it fails at any time before

τ , with an upfront cost cw to enable the specified swaps, the expected cost with the

specified swaps in place, Cw(τ), is equal to

Cw(τ) = cw + cu

[
τ −

∫ τ

0

Rw(t)dt
]

(3.2.6)

where Rw(τ) is the reliability of the system if the specified swaps is applicable.

Example 3.2.1 Consider again the system in Figure 2.1 and the same swapping

possibility as discussed in Example 2.2.1. We refer to the original case of the system
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Figure 3.1: Cost with fixed penalty for the system in Figure 2.1

when there is no swapping possible between components as in Case 0. We refer to

the case when components A and B can be swapped as Case 1. We use the same

failure time distributions for Type 1 and Type 2 components as in Example 2.2.1,

so the system has the same reliability in Cases 0 and 1 as in Example 2.2.1. Assume

that the system needs to continue functioning for the period of time [0, 0.5], if the

system fails in this period, a fixed penalty cost cp = 200 needs to be paid. Let the

cost to enable the swap in Case 1 be c1 = 8. We want to compare the expected cost

in Cases 0 and 1. The expected cost in Case 0 is C(0.5) = 49.57 and the expected

cost in Case 1 is C1(0.5) = 28.45, which means that when τ = 0.5, it is good to

take the opportunity of the swap in Case 1. Figure 3.1 illustrates how the expected

cost in Cases 0 and 1, change depending on the value of τ . The opportunity of the

swap in Case 1, minimizes the expected cost only if 0.21 < τ < 1.48, because if τ is

small, failure is unlikely and if τ is large, failure is very likely even with the swap in

Case 1.

Now assume that the penalty cost depends on the system failure time, and the

cost per unit of time is cu = 100. In this case, the cost in Case 0 is C(0.5) = 4.20,
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Figure 3.2: Cost with time dependent penalty for the system in Figure 2.1

and the cost in Case 1 is C1(0.5) = 9.17, which means that when τ = 0.5, the

opportunity of the swap in Case 1 will increase the expected cost. However, when

τ = 1, we have C(1) = 28.91 and C1(1) = 25.63, which means that the expected cost

has decreased with the opportunity of the swap, so it is good to enable the swap.

Figure 3.2 illustrates how the expected cost in Cases 0 and 1 changes, depending

on the value of τ . It clear that if τ is small, the system is unlikely to fail, while for

large τ the system is likely to fail but the swapping case delayed the failure time,

leading to lower penalty costs.

Example 3.2.2 For the system in Figure 2.5, 7 possible swap cases are discussed

in Example 2.2.5. In this example, we only consider the swap Cases 0, 2, 3 and 5,

namely Case 0 of no swaps being possible, Case 2 where components D, E, F (Type

2) can be swapped, Case 3 where components G and H (Type 3) can be swapped,

and in Case 5 where both Type 2 and Type 3 components can be swapped. In each

case the swap can be done only between components of the same type. With the

same component failure time distributions assumed as in Example 2.2.5, the system

reliability in Cases 0, 2, 3 and 5 are given in Example 2.2.5.
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Figure 3.3: Cost with fixed penalty for the system in Figure 2.5

Assume that, if the system fails before the fixed time τ = 1, the penalty cost is

fixed and is cp = 200. The costs to enable swapping Cases 2, 3 and 5 are c2 = 10,

c3 = 5 and c5 = 15, respectively. The expected cost in Case 0 is C(1) = 157.53,

and the expected cost in Cases 2, 3 and 5 are C2(1) = 142.00, C3(1) = 152.98 and

C5(1) = 130.30, respectively, which means that the opportunity of swapping Case

5 should be taken to minimize the expected cost. We plot C(τ), C2(τ), C3(τ) and

C5(τ) as functions of τ in Figure 3.3. It is clear from this figure that for values of

τ it is either optimal not to prepare for any swaps (τ < 0.24 or τ > 1.37), or to

prepare for swap Case 5 (0.29 < τ < 1.37), this is explained by the same reason as

discussed in Example 3.2.1.

Let cu = 100. If τ = 1, the expected costs in Cases 0, 2, 3 and 5 are C(1) = 31.54,

C2(2) = 30.24, C3(1) = 31.59, and C5(1) = 30.37, respectively. Thus, to minimize

the expected cost is better to take the opportunity of the swap Case 2. If τ = 2,

the expected cost in Case 0 is C(1) = 126.06, and the expected cost in Cases 2,

3 and 5 are C2(2) = 120.72, C3(2) = 124.77 and C5(2) = 117.96, respectively, so

to minimize the expected cost in this case we should prepare for swapping Case 5.
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Figure 3.4: Cost with time dependent penalty for the system in Figure 2.5

Figure 3.4 illustrates how the expected cost in cases 0, 2, 3 and 5 would change

depending on the value of τ .

3.3 Optimal swapping based on renewal theory

In the previous section we considered the cost effectiveness of component swapping

over a fixed period of time. In this section we consider the cost effectiveness of

component swapping over an unlimited time horizon from the perspective of renewal

theory.

Renewal theory is a well-known theory that has a wide application in the lit-

erature of Operational Research and Reliability see e.g. [20–22, 51, 66]. Renewal

theory deals with successive occurrences of events in terms of random variables. A

typical application of renewal theory is in failure or maintenance models. A system

is installed at time 0. If it failed at some random time T1 > 0, it is replaced by

a new system. The new system lasts for a second random time T2, with the same

distribution as T1 > 0. The same process goes on for an undefined length of time.

This replacement process might be considered in general either because the system
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is not accessible for repair or the cost of repairs are higher than the cost of replace-

ment. An example of the system may be something simple like a light-bulb, or it

may be something more complicated like a hard disk for an internet server or a GPS

satellite.

Many applications of renewal theory involve rewards or cost. The optimal reward

or cost per unit of time over a very long period of time is derived by renewal reward

theory [9], assuming that the same process goes on for infinity or undefined length

of time. In practice, although one acknowledges the fact that assuming such a long

period for the same process may not be realistic, renewal reward theory is still often

considered attractive and reasonable since it provides a mathematically convenient

way to compute the optimal costs per unit of time.

Here are some mathematical definitions. Suppose that the same process goes

on for infinity or undefined length of time. This process is assumed to consist of

consecutive cycles which are stochastic copies of each other. T1, T2, T3, · · · is a

sequence of independently and identically distributed random variable representing

the length of the cycles. Ti represents the length of the cycle i, 0 ≤ Ti ≤ ∞ and

it indicates the time between the occurrence of the (i − 1)th and the ith events

(renewals). It is assumed that these random variables have a known probability

distribution, with CDF F (t) = P (Ti 6 t), t > 0, i = 1, 2, · · · , probability density

function (pdf) f(t), reliability function R(t) = P (Ti > t) and expected value 0 <

E(Ti) < ∞. The time to the ith renewal, denoted by Si, is Si =
∑i

k=1 Ti. The

number of renewals up to time t is denoted by the random variable N(t) and is

equal to the largest integer i > 0 for which Si 6 t. N(t) is called a renewal counting

process [64].

Let Wi be a random cost associated with i cycle. It is assumed that the sequence

of random variable W1,W2, · · · are i.i.d, but dependence of Wi on Ti is possible. The

accumulative costs up to time t are denoted by W (t), so W (t) =
∑N(t)

i=1 Wi and W (t)

is called a renewal reward process. The long run average reward cost per unit of

time, g, for a renewal reward process is given by the reward reward theory [64],

g = lim
t→∞

W (t)

t
=
E[Wi]

E[Ti]
(3.3.7)
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Assume that we have a system that is entirely renewed upon failure for a long

period of time. The reliability of this system might be enhanced by component

swapping. Some components that are tasked with minor functions can be prepared

to take over crucial functions in case another component fails. Let T denote the

system random failure time. If the system is entirely renewed upon failure, the

length between renewals is equal to the random failure time of the system T . R(t) =

P (T > t) is the reliability of the system. The expected failure time of the system is

E[T ] =
∫∞
0
tf(t)dt =

∫∞
0
R(t)dt. If this system is entirely renewed upon failure at

a known cost cf , then the expected renewal cost is E[W ] = cf . Therefore, the long

run average cost per unit of time, g, for the renewal system, is given by

g =
cf∫∞

0
R(t)dt

(3.3.8)

If we assume that the system can benefit upon failure of its components from

a defined component swap. Tw is the random failure time of the system when the

defined swap is applicable. Tw represents the length of time between renewals when

the defined swap is applicable. The reliability of the system if the defined swap is

applicable is Rw(t) = P (Tw > t). Let cw be an upfront cost needed to be paid to

enable the defined swap. The long run average cost per unit of time for the renewal

system if the defined swap is applicable is denoted by gw, and is given by

gw =
cf + cw∫∞

0
Rw(t)dt

(3.3.9)

3.3.1 Preventive Replacement

A well known application of renewal reward theory is age replacement [64]. Age

replacement requires a system to be renewed when it reaches a specified age Ar > 0

(preventive replacement) or if it fails prior the specified age Ar (corrective replace-

ment), in a manner that is most cost-effective. The optimal preventive replacement

age is the one that leads to the minimum expected costs per unit of time and is

derived from applying the renewal reward theory [9].

Assume that the system is entirely renewed upon reaching a specified age Ar at

a known cost cr > 0, or upon failure at a known cost cf > cr. The cost per renewal
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is cr with probability R(Ar) and cf with probability [1 − R(Ar)], so the expected

renewal cost E[W ] = crR(Ar)+cf [1−R(Ar)]. The length between renewals is equal

to min(TS, Ar). Thus, the expected length between renewal is E[min(TS, Ar)] =∫∞
0

min(t, Ar)f(t)dt =
∫ Ar
0

tf(t)dt+Ar
∫∞
Ar
f(t)dt =

∫ Ar
0

R(t)dt. Thus, the long run

average cost per unit of time, g(Ar), is given by

g(Ar) =
crR(Ar) + cf [1−R(Ar)]∫ Ar

0
R(t)dt

(3.3.10)

If we assume that upon failure the system components can be swapped, then

the expected length between renewals is E[min(Tw, Ar)] =
∫ Ar
0

Rw(t)dt and the

expected renewal costs are E[W ] = crR
w(Ar) + cf [1−Rw(Ar)]. If the cost to enable

a defined swap is cw per cycle, then the long run average cost per unit of time for

strategy Ar if the defined swap is applicable, gw(Ar), is given by

gw(Ar) =
crR

w(Ar) + cf [1−Rw(Ar)] + cw∫ Ar
0

Rw(t)dt
(3.3.11)

It is clear from Equations (3.3.10) and (3.3.11) that the expected costs per unit

of time depend on the renewal time, so we can find the optimal renewal time for the

system in case there is no swap possible by setting
dg(Ar)

dAr
= 0, and in the case of

possible swap by setting
dgw(Ar)

dAr
= 0.

Example 3.3.1 Consider again the system in Figure 2.1 and the same swapping

possibility as discussed in Example 2.2.1. We refer to original case of the system

when there is no swapping possible between components as Case 0. We refer to the

case when components A and B can be swapped as Case 1. We use the same failure

time distributions for Type 1 and Type 2 components as in Example 2.2.1, so the

system has the same reliability in Cases 0 and 1 as Example 2.2.1. We assume that

the system is entirely renewed upon failure at the cost cf = 200. The long run

average cost per unit of time of the original system is g = 253.01, and in Case 1 is

g1 = 217.96. Therefore, taking the opportunity of Case 1 swapping will minimize

the expected cost per unit of time for the renewal system. In Figure 3.7, we plot the

long run average cost per unit of time as a function of renewal cost, cf . It is clear
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Figure 3.5: The long run average cost for the system in Figure 2.1

from this figure that if cf > 38.60, it is good to take the opportunity of the swap

but if cf ≤ 38.60, it is good not to take the swap opportunity.

Assume that preventive replacement is possible on this system when it is reaching

a specified age Ar at cost cr = 30, and if the system fails before Ar then the renewal

cost upon failure is cf = 200. Figure 3.8 presents the expected costs per unit of

time in Cases 0 and 1, depending on the value of Ar. The points in this figure show

the optimal renewal times. The optimal renewal time in Case 0 is Ar = 0.38 with

corresponding minimum cost g = 151.70. In Case 1 the optimal renewal time is

Ar = 0.48 with corresponding minimum cost g1 = 113.31. It clear that enabling

this swap delays the optimal renewal time and reduces the costs.

Example 3.3.2 For the system in Figure 2.5, we again, consider as in Example

3.2.2 consider only the swap Cases 0, 2, 3 and 5 which we discussed in Example

2.2.5. Assume the same component failure time distributions as in Example 2.2.5,

so the system reliabilities in Cases 0, 2, 3 and 5 are the same as in Example 2.2.5.

Assume that the system is entirely renewed upon failure at the cost cf = 200. The

long run average cost per unit of time in Cases 0, 2, 3, and 5 are g = 270.06,
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Figure 3.6: The cost with the preventive replacement for the system in Figure 2.1

g2 = 234.50, g3 = 255.09, and g5 = 220.85, respectively. It is clear that if cf = 200,

taking the opportunity of any of the swap cases would minimize the cost, however,

the maximum reduction in the cost is obtained by swap Case 5 followed by Case 2

then Case 3. In Figure 3.7, we present the long run average cost per unit of time

as a function of cf . We can see that if cf ≤ 47.69, is better not to prepare for any

swaps, but if cf > 47.69 is good to prepare for the swap Case 5.

Assume now that the preventive replacement cost is cr = 30 and the corrective

replacement cost cf = 200. Figure 3.8 illustrates how the expected costs per unit of

time in Cases 0, 2, 3 and 5 depends on the value of Ar. The points in this figure show

the optimal renewal times. The optimal renewal times in Cases 0, 2, 3 and 5 are

Ar = 0.3443592, Ar = 0.4660438, Ar = 0.3952356 and Ar = 0.529294, respectively,

and the minimum costs associated with these renewal times are g = 151.9113,

g2 = 122.3783, g3 = 139.5121 and g5 = 113.3712. Thus, enabling swapping Case 5

minimizes the expected costs and delays the optimal replacement time.
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Figure 3.7: The long run average cost for the system in Figure 2.5

3.4 Concluding remarks

In this chapter we have discussed the cost effectiveness of component swapping over a

fixed period of time. We derive two models (time independent and time dependent)

of penalty costs of a system, in order to compare the expected costs for the system

when there is a possibility to swap components with the option not to enable swaps.

The cost effectiveness of component swapping over an unlimited time horizon

is also discussed from the perspective of renewal theory. It is assumed that the

system is entirely renewed upon failure, at a known cost. The expected cost per

unit of time for the renewal system when there are different swapping scenarios

are compared with the option not to enable swaps, focusing on minimum expected

costs. In addition, we discussed the meaningful effect that component swapping

might have on the preventive replacement actions.

The results in this chapter show that although an upfront cost might need to be

paid to enable each swapping scenario, the operation of component swapping might

contribute significantly in reducing the expected cost of the system. The indicators

in this chapter are useful in security assessment and risk management under the
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Figure 3.8: The cost with the preventive replacement for the system in Figure 2.5

constraint of cost.

Further interesting topics for future research are different cost structures and

consideration of choice between swapping components, standby, spares and mainte-

nance activities based on corresponding costs. It may also consider the possibility

to combine components swapping with inspection models [10].



Chapter 4

Phased mission systems with

components swapping

4.1 Introduction

A phased mission system (PMS) is defined as a system which performs a series of

tasks in consecutive and non-overlapping periods (phases). In order for this system

to accomplish its mission successfully, each phase has to be completed without any

failure [68]. Therefore, the reliability of a PMS is the probability that the system

functions in all phases.

An example of such a system is an aircraft flight which can be divided into

three phases, namely take-off phase, cruise phase and landing phase. Each of these

phases has completely different reliability requirements and behaviour. A distinct

feature of a PMS is that the system configuration varies between phases while the

component failures in different phases are mutually dependent. This feature makes

the reliability analysis of PMS more complex than the reliability analysis of a single

phase system.

Over the past few decades, there has been extensive research to analyse the relia-

bility of a PMS. Some researchers focus on modelling the dependence among system

components using state-based approaches, which are based on Markov models or

Petri nets [13, 17, 26, 40]. Other approaches are based on combinatorial methods,

such as binary decision diagram (BDD) or multi-valued decision diagram (MDD)

68
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based models [53, 62, 63, 70]. Recently, a new combinatorial analytical approach

providing a new survival signature methodology for reliability analysis of PMSs has

been introduced [37]. This method has similar computational complexity to BDD

methods, but for the first time brings all the advantages associated with the compact

representation of a system provided by the survival signature to PMS. This method

shows that the survival signature can be used for reliability analysis of PMS with

similar types of components in each phase. It keeps the attractive survival signature

property of separating the system structure from the component lifetime distribu-

tions, simplifying computation of insight into, and inference for system reliability.

It is often difficult for a PMS to work with high reliability. Generally, there are

mainly two approaches that can be used to improve the reliability of the PMS and

to prevent them from failure. The first way is increasing the component reliability

(reliability allocation), and the other way is using redundant components in parallel

(redundancy allocation) e.g. [3,23,43,50]. Unfortunately, these two approaches will

increase the cost of the PMS and do not always yield competitive results.

In this chapter, we extend the strategy of swapping components upon failure

that was introduced in Chapter 2, to improve the reliability of PMS and to make

them more resilient to component failure. We assume that if a component fails, it

can be swapped by another one which is still functioning in order to prevent the

PMS from failing. In addition, in this chapter we discuss another strategy that could

be used to improve the reliability of PMS, which is swapping components according

to structure importance. The structure importance is first used to measure the

importance level of the components in contributing to system reliability, then when

a component with high importance fails, it is swapped by another component in

the system with lower importance which has not yet failed. In the strategy where

if the components are swapped according to the structure importance, the swap

will take place with disregard to whether the system can continue to function with

the existing components in place or not, depending on the level of the importance

of the component that is failed. However, in the strategy that if the components

are swapped upon failure, the swap between component is done to prevent the

PMS from the failure, so the swap takes place only when the PMS cannot continue
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functioning with the existing components in place. The swap between components

in both strategies is logically restricted to components of the same type.

It is attractive if we can consider the possibility of swaping components at any

time during the mission. However, this cannot be realized in some PMSs, in which

the swap between components can be done only at transitions of phases. In this

chapter, we use the survival signature methodology as introduced by [37] to study

the effect of swapping components in both strategies, that is swapping components

upon failure and swapping component according to reliability importance, on the

PMS reliability when the components can be swapped at any time during the mission

or only at transitions of phases.

In this chapter we also extend the established cost models, presented in Chapter

3, to evaluate the expected costs of the failure of the PMS if there is a possibility to

swap components at any time during the mission or only at transitions of phases,

under the assumption that each phase of the system would need to complete its

mission successfully, where failure to achieve this incurs a penalty cost allocated to

each phase of not performing its mission. We consider two types of penalty costs,

namely, time independent and time dependent costs. The expected costs when the

two different scenarios of swapping possibilities are applicable are compared with

the option not to enable swaps.

This chapter is organized as follows: Section 4.2 presents a brief background on

phased mission systems. Section 4.3 considers the effect of swapping components

upon failure on the PMS reliability under the two scenarios of swapping possibili-

ties. Section 4.4 presents the effect of swapping components according to reliability

importance on the PMS reliability, considering the two scenarios of swapping possi-

bilities. Section 4.5 demonstrates two cost models to analyse the expected costs of

the failure of the PMS if the components can be swapped at any time during the

mission or only at transitions of phases. In each section, we illustrate the proposed

strategies through numerical examples. We end this chapter with some concluding

remarks.
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4.2 Phased mission systems

A PMS performing a sequence of functions or tasks during consecutive phases to

accomplish a specific mission. Generally, in a PMS, each phase corresponds to one

configuration and the configuration changes from phase to phase. The states of the

same component in different phases are mutually dependent. The PMS might have

the same components in each phase or the components might vary from phase to

phase. In this chapter we consider only PMSs with the same components used in

each phase. What is important and needs to be emphasized is that, in this thesis,

both the system and its components are assumed to be non-repairable during the

mission, so if a component fails to function at the end of a certain phase, then it

cannot work again in subsequent phases.

Consider a PMS with n components in each phase, with N ≥ 2 phases. The

state of component j ∈ {1, 2, · · · , n} in phase i, i ∈ {1, 2, · · · , N} can be represented

as a binary variable Xi,j

Xi,j =

1 component j is functioning in phase i

0 component j is failed in phase i

(4.2.1)

The state of the system in phase i can then be described by a binary function

φi = φi(Xi) = φi(Xi,1, · · · , Xi,n) (4.2.2)

where φi = 1 represents that the system successfully works for the entire phase i

and φi = 0 represents failure to do so. The vector Xi = (Xi,1, ..., Xi,n) represents

the states of all components at the end of phase i.

Similarly, the structure function of the PMS is also a binary variable which is com-

pletely determined by the states of all the components during the mission

φs = φs(X) = φs(X1,1, · · · , X1,n, · · · , XN,1, · · · , XN,n) (4.2.3)

where X = (X1, ..., XN) = (X1,1, ..., X1,n, ..., XN,1, ..., XN,n) is the state vector of the

components during the entire phased mission. Because a PMS is functioning if and

only if all its phases are completed without failure, the structure function of the

PMS can be written as

φs =
N∏
i=1

φi(Xi,1, · · · , Xi,n) (4.2.4)
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When φs = 1, this would provide a logical expression for the functioning of the

system, while φs = 0 provides an expression for the failure of the system.

4.3 Swapping components upon failure

In this section, we consider the strategy of swapping components upon failure to

increase PMS reliability under two scenarios of possibilities. First, we assume that

if a component fails at any time during the mission, it can be swapped by another one

which is still functioning. Secondly, we assume that the possibilities of component

swapping can occur only at transitions of phases, which means that when a PMS

fails during a certain phase, then no immediate swapping opportunities exist, so the

system fails. The swap between components is logically restricted to components

of the same type. We further assume here that such a swap of components can

be done only when the system cannot function with the existing components in

place. Section 4.3.1 considers the effect of swapping components upon failure on

PMS with single type of components. Section 4.3.2 considers the effect of swapping

components upon failure on PMS with multiple types of components.

4.3.1 PMS with single type of components

In this section we consider the simplest case in which a system with n components

of the same type that performs a N ≥ 2 phase mission. Phase i ∈ {1, 2, ..., N}

runs from time τi−1 to time τi with τ0 = 0 and τi−1 < τi∀i. The survival signature

ΦS (l1, l2, ...lN) denotes the probability that the PMS functions by the end of the

mission given that precisely li, i ∈ {1, 2, ..., N}, of its components functioned in

phase i. It is assumed that the random failure times of components in the same

phase are fully independent and exchangeable [37]. If N(t) ≤ N is the phase that the

system is in at time t, the survival signature of the first N(t) phases ΦS

(
l1, l2, ...lN(t)

)
is equal to

ΦS

(
l1, l2, ...lN(t)

)
=

N(t)∏
i=1

(
mi

li

)−1×∑
X∈S

φs (X) (4.3.1)
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where S denotes the set of all possible state vectors for which li components function

in phase i, and mi is the number of components that function at the beginning of

phase i. Because both the system and its components are non-repairable during the

mission, the number of components that function at the beginning of phase i should

be equal to the number of components that function at the end of phase i− 1. So,

mi = li−1 while m1 = n [37]. The reliability of the PMS at time t is given by

R(t) =

m1∑
l1=0

...

mN(t)∑
lN(t)=0

ΦS(l1, ...lN(t))P

N(t)⋂
i=1

{Ci(t) = li}

 (4.3.2)

where Ci(t) denotes the number of components that function in phase i at time

t ∈ [τi−1, τi) [37].

In this chapter we consider only PMS with the same components in each phase,

which means that all components appear in all phases and they age together. If the

components have a common CDF F (t), its conditional CDF in phase i is Fi(t) at

time t ∈ [τi−1, τi), conditioned on the system working at the beginning of phase i,

this is conditional CDF

Fi(t) =P (T < t|τi−1, τi, T > τi−1)

=
1

1− F (τi−1)

∫ min{t,τi}

τi−1

dF (z)

=
F (min {t, τi})− F (τi−1)

1− F (τi−1)
(4.3.3)

where τi−1 is the start time of phase i, τ0 ≡ 0, and T is the random variable represents

the component lifetime. From Equation (4.3.3), the last part of Equation (4.3.2)

can be simplified as

P

N(t)⋂
i=1

{Ci(t) = li}

 =

N(t)∏
i=1

P (Ci(t) = li) =

N(t)∏
i=1

((
mi

li

)
[1− Fi(t)]li [Fi(t)]mi−li

)
(4.3.4)

Thus, the reliability of the PMS at time t can be rewritten as

R(t) =

m1∑
l1=0

...

mN(t)∑
lN(t)=0

ΦS(l1, ...lN(t))

N(t)∏
i=1

((
mi

li

)
[1− Fi(t)]li [Fi(t)]mi−li

) (4.3.5)
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where

Fi(t) =
F (min {t, τi})− F (τi−1)

1− F (τi−1)
(4.3.6)

is the conditional CDF of the components at time t ∈ [τi−1, τi) in phase i for

i = 1, 2, · · · , N(t) [37]. It is conditioning on the component having worked at the

beginning of phase i.

From Equation (4.3.5), we can see that the survival signature of the PMS has

the same advantage as the survival signature of a single phased mission, that is it

takes into account the structure of the PMS and separates it from the conditional

failure time distributions of the components.

As in Section 2.2, we assume that there are fixed swapping rules, which prescribe

upon failure of a component precisely which other component takes over its role in

the system, if possible and if the other component is still functioning, in order to

prevent system from the failure, and we further assume that such a swap of compo-

nents takes neglectable time and does not affect the functioning of the component

that changes its role in the PMS nor its remaining time until failure. We can take

the effect of the defined swaps if they are applicable at any time during the mission

or only at transitions of phases, into account through the PMS structure function,

and hence, it can be taken into account for computation of the system reliability

through the PMS survival signature. Let Φ
(W )
S

(
l1, l2, ...lN(t)

)
denote the PMS sur-

vival signature if the defined swaps are applicable at any time during the mission

and Φ
(E)
S

(
l1, l2, ...lN(t)

)
denote the PMS survival signature if the defined swaps are

applicable only at transitions of phases,

Φ
(W )
S

(
l1, l2, ...lN(t)

)
=

N(t)∏
i=1

(
mi

li

)−1×∑
X∈S

φ(W )
s (X) (4.3.7)

Φ
(E)
S

(
l1, l2, ...lN(t)

)
=

N(t)∏
i=1

(
mi

li

)−1×∑
X∈S

φ(E)
s (X) (4.3.8)

where φ
(W )
s (X) is the structure function of the PMS considering the defined swaps

at any time during the mission and φ
(E)
s (X) is the structure function of the PMS

considering the the defined swaps only at transitions of phases, φ
(E)
s will be typically

equal to 1 for some X for which φs was equal to 0 and φ
(W )
s will typically be equal
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Figure 4.1: A PMS with single type of components

to 1 for some X for which φ
(E)
s was equal to 0, so φ

(W )
s ≥ φ

(E)
s ≥ φs. The reliability

of PMS can be calculated straightforwardly in both scenarios by substituting the

survival signature of the original PMS in (Equation 4.3.5) by the survival signatures

that consider the swapping scenarios in Equations (4.3.7) and (4.3.8).

R(W )(t) =

m1∑
l1=0

...

mN(t)∑
lN(t)=0

Φ
(W )
S (l1, ...lN(t))

N(t)∏
i=1

((
mi

li

)
[1− Fi(t)]li [Fi(t)]mi−li

) (4.3.9)

R(E)(t) =

m1∑
l1=0

...

mN(t)∑
lN(t)=0

Φ
(E)
S (l1, ...lN(t))

N(t)∏
i=1

((
mi

li

)
[1− Fi(t)]li [Fi(t)]mi−li

) (4.3.10)

where R(W )(t) is the reliability of the PMS if the defined swaps are applicable at

any during the mission and R(E)(t) is the reliability of the PMS at time t if the

defined swaps are applicable only at transitions of phases. The conditional CDF of

the components, Fi(t), at time t ∈ [τi−1, τi) in phase i for i = 1, 2, · · · , N(t), is given

by Equation (4.3.6). This CDF is conditioning on the component having worked at

the beginning of phase i.

It is important to notice here that the swap in both scenarios is entirely reflected

in the PMS survival signature, and the conditional failure time of the components

remains the same as for the original system. The following example explains this

approach in more detail.

Example 4.3.1 Consider the PMS in Figure 4.1 that consists of three components

performing a three-phase mission. All the components are of the same type and work

independently from one another in each phase. The duration of all three phases are
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The first phase The first two phases The PMS

0 ≤ t ≤ 10− 10+ ≤ t ≤ 20− 20+ ≤ t ≤ 30

l1 Φ1 Φ
(W )
1 Φ

(E)
1 l1 l2 Φ1,2 Φ

(W )
1,2 Φ

(E)
1,2 l1 l2 l3 ΦS Φ

(W )
S Φ

(E)
S

1 1/3 2/3 1/3 2 2 2/3 1 1 2 2 2 1/3 1 1

2 1 1 1 3 2 2/3 1 2/3 3 2 2 1/3 1 2/3

3 1 1 1 3 3 1 1 1 3 3 2 2/3 1 2/3

3 3 3 1 1 1

Table 4.1: Survival signatures of PMS shown in Example 4.3.1

10 hours each. All components in each phase are of the same type and the lifetime

distribution of the components in each phase follows an Exponential distribution

and the failure rates of phases 1, 2 and 3 are 2 × 10−3/hour, 1 × 10−4/hour and

2× 10−4/hour, respectively.

We want to examine the reliability of this PMS if components 1 and 2 can be

swapped upon failure at any time during the mission or only at transitions of phases.

The survival signature for the original PMS is calculated by Equation(4.3.1) and the

survival signature if components 1 and 2 are swappable upon failure at any time

during the mission or only at transitions of phases are calculated by Equation(4.3.7)

and Equation(4.3.8), respectively. In both scenarios, the opportunity of the swap is

taken into account through the structure functions. For example, the state vector

(0, 1, 0) represents the situation when components 1 and 3 fail during phase 1, but

component 2 is still functioning, in this case, φ1(0, 1, 0) = φ
(E)
1 (0, 1, 0) = 0, how-

ever, φ
(W )
1 (0, 1, 0) = 1, because in this scenario component 2 would be swapped by

component 1 during phase 1. The state vector (0, 1, 1, 0, 1, 1) represents the situ-

ation when component 1 fails during phase 1, but components 2 and 3 continue

to function until the end of phase 2. In this case φ1,2(0, 1, 1, 0, 1, 1) = 0, how-

ever, φ
(W )
1,2 (0, 1, 1, 0, 1, 1) = φ

(E)
1,2 (0, 1, 1, 0, 1, 1) = 1, because component 1 would be

swapped by component 2 at the time of transition to phase 2 in order to continue

the mission of phase 2.

Table 4.10 shows the results of the survival signatures for the original PMS

and for both scenarios. The first group of results are the survival signatures of
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phase 1, where Φ1, Φ
(W )
1 , Φ

(E)
1 are the survival signatures for the original PMS and

for both scenarios, respectively. The second group of results contain the survival

signatures of the first two phases, where Φ1,2, Φ
(W )
1,2 , Φ

(E)
1,2 are the survival signatures

for the original PMS and for both scenarios, respectively. The last group of results

represents the survival signatures of the whole PMS, where ΦS, Φ
(W )
S , Φ

(E)
S are the

survival signatures for the original PMS and for both scenarios, respectively. Entries

for which the survival signatures are 0 are omitted. From the results, we can see

clearly that the survival signature of the PMS is significantly improved in the case

that the swap can be performed at any time during the mission. The survival

signature in the case when the swap can be performed only at the transitions is

improved to some extent, but this improvement is not so large as in the case that

we can swap the components at any time.

Moreover, an interesting and unusual phenomenon of the value of the survival

signature is observed in the case that the swap is only applicable at the transi-

tions. In this case, the survival signature is not monotonically increasing with the

increase of the number of components that function, for example, Φ
(E)
1,2 (2, 2) = 1 >

Φ
(E)
1,2 (3, 2) = 2/3. That has not happened in the system without the operation of

component swapping. We want to briefly discuss the reason for that here. l1 = 2,

l2 = 2, indicates that one component failed during phase 1 and if this component is

component 1, then we can swap it by component 2 at transitions to complete the

mission of phase 2, however, l1 = 3, l2 = 2 indicates that there is one component

failed during phase 2 and if this component is component 1, the system would fail

in phase 2 since in this scenario the swap is not applicable.

We can obtain the conditional CDF of the components by using the failure rate of

the component in each phase in Equation (4.3.6). Then the reliability of the original

PMS can be obtained by substituting the survival signatures and the conditional

CDF into Equation (4.3.5). The results are shown in the second row of Table 4.2

and the solid line in Figure 4.2. As shown in Table 4.2 and Figure 4.2, there are

reliability jumps at t = 10 and t = 20. The reason is that if component 1 has

failed in phase 1, the PMS may still function in phase 1, however, the PMS will

fail immediately when it steps into phase 2. Therefore, there is a reliability jump
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t 0 10− 10+ 20− 20+ 30

R 1 0.99922 0.97981 0.97880 0.95887 0.95691

R(W ) 1 0.99961 0.99884 0.99872 0.99872 0.99847

R(E) 1 0.99922 0.99884 0.99778 0.99778 0.99567

Table 4.2: Reliability of the PMS in Example 4.3.1

between phases 1 and 2. Similarly, if component 2 has failed in phase 2, the system

can still function in phase 2 when component 3 is functioning, however, the system

will fail immediately when it steps into phase 3. Therefore, there is a reliability

jump between phases 2 and 3.

The reliability of the PMS when the swap is applicable at any time during the

mission or only at transition of phases can be obtained by Equation (4.3.9) and

Equation (4.3.10), respectively. The values of the reliability in both scenarios are

given in the third and fourth rows in Table 4.2 and are presented in Figure 4.2. In

Table 4.2, τ+i−1 represents the first moment in phase i, and τ−i represents the last

moment in phase i. In Figure 4.2, Ri, R
(W )
i and R

(E)
i , i ∈ {1, 2, 3}, are the reliability

of the original PMS and the reliability of both scenarios in phase i, respectively. The

results show that the reliability jumps at t = 10 and t = 20 are greatly reduced (or

even eliminated). The reason is that if component 1 has failed in phase 2, we can

replace it with component 2 if it still functions. Similarly, if component 2 has failed

in phase 3, it can be swapped by component 1 if it still functions. These measures

can greatly improve the reliability of the system. Moreover, these results illustrate

that the reliability of the PMS with the possibility of component swapping at any

time is higher than if can only swap components at the transitions of phases.

4.3.2 PMS with multiple types of components

Most practical PMSs for which the reliability is investigated consist of multiple types

of components. Therefore, a more interesting challenge is to develop the theory of

survival signature to such kind of PMSs.

Consider a system with N > 2 phases, and there are K types of components in
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Figure 4.2: Reliability of the PMS in Example 4.3.1

each phase. Let phase i run from time τi−1 to time τi with τ0 = 0 and τi−1 < τi, ∀i.

Let ΦS (l1,1, ..., l1,K , ..., lN,1, ..., lN,K) denote the probability that the PMS functions

given that precisely li,k, i ∈ {1, 2, ..., N} and k ∈ {1, 2, ..., K}, components of type

k function at the end of phase i. Because the failure times of the components in

the same phase are considered to be exchangeable, the survival signature of the first

N(t) phases is

ΦS

(
l1,1, ..., l1,K , ..., lN(t),1, ..., lN(t),K

)
=

N(t)∏
i=1

K∏
k=1

(
mi,k

li,k

)−1×∑
X∈S

φs (X) (4.3.11)

where N(t) ≤ N is the phase that the system is in at time t and S denotes the set

of all possible state vectors for which there are precisely li,k components of type k

functioning at the end of phase i. The number of components of type k that function

at the beginning of phase i is mi,k. As pointed out in Section 4.3.1, because both

the system and its components are non-repairable during the mission, the number of

components of type k that function at the beginning of phase i is equal to the number
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of components of type k that function at the end of phase i − 1. So, mi,k = li−1,k

while m1,k = nk, is the number of components of type k in the system.

A PMS functions if and only if all its phases are completed without failure,

therefore the reliability of the PMS can be expressed as:

R(t) =

m1,1∑
l1,1=0

...

mN(t),K∑
lN(t),K=0

ΦS

(
l1,1, ...l1,K , ...lN(t),1, ...lN(t),K

)
× P

N(t)⋂
i=1

K⋂
k=1

{Ci,k(t) = li,k}


(4.3.12)

where Ci,k(t) is the number of components of type k that function in phase i at time

t ∈ [τi−1, τi) and K is the number of types of components.

As we mentioned in Section 4.3.1, in this chapter we consider only the PMSs

with the same components in each phase, which means that all components appear

in all phases. If the components of type k in phase i have common CDF Fk(t), its

conditional CDF in phase i is Fi,k(t) at time t ∈ [τi−1, τi) conditioned on that the

system is working at the beginning of phase i, and it is equal to

Fi,k(t) =
Fk(min {t, τi})− Fk(τi−1)

1− Fk(τi−1)
(4.3.13)

Equation (4.3.12) can be simplified as

R(t) =

m1,1∑
l1,1=0

...

mN(t),K∑
lN(t),K=0

[
ΦS

(
l1,1, ...l1,K , ...lN(t),1, ...lN(t),K

)
×

N(t)∏
i=1

K∏
k=1

((
mi,k

li,k

)
[1− Fi,k(t)]li,k [Fi,k(t)]mi,k−li,k

)]
(4.3.14)

As in Section 4.3.1, if it is assumed that there are fixed swapping rules and that

such a swap of a component takes neglectable time, then we can study the effect

of the defined swaps if they are applicable at any time during the mission or only

at transitions of phases through the PMS survival signatures. The PMS survival

signatures if the defined swaps are applicable at any time during the mission or only

at transitions of phases are given, respectively, by

Φ
(W )
S (l1,1, ..., l1,K , ..., lN,1, ..., lN,K) =

(
N∏
i=1

K∏
k=1

(
mi,k

li,k

)−1)
×
∑
X∈S

φ(W )
s (X) (4.3.15)

Φ
(E)
S (l1,1, ..., l1,K , ..., lN,1, ..., lN,K) =

(
N∏
i=1

K∏
k=1

(
mi,k

li,k

)−1)
×
∑
X∈S

φ(E)
s (X) (4.3.16)
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Figure 4.3: A PMS with multiple types of components

Type Component Distribution Phase 1 Phase 2 Phase 3

1 1,2 Weibull α = 180, β = 2.2 α = 400, β = 3.2 α = 200, β = 2.4

2 3,4,5 Exponential λ = 1× 10−3 λ = 1× 10−4 λ = 2× 10−4

Table 4.3: The distribution information of the components in Figure 4.3

where φ
(W )
s (X) and φ

(E)
s (X) are the structure functions of the PMS considering the

the defined swaps at any time during the mission or only at transition of phases,

respectively, so φ
(W )
s ≥ φ

(E)
s ≥ φs. The reliability of PMS in both scenarios can be

calculated straightforward by substituting the survival signature of the original PMS

in Equation (4.3.14) by the survival signatures in Equation (4.3.15) and Equation

(4.3.16) that consider these scenarios. This approach is illustrated and explained in

more detail in the next example.

Example 4.3.2 For the PMS shown in Figure 4.3, assume that phases 1, 2 and

3 last for 10, 270 and 20 hours, respectively. The components follow Weibull and

Exponential distributions and can be divided into two types according to the dis-

tribution of the lifetime. Table 4.3 summarizes the distribution information of the

components in each phase. For the Weibull distribution, F (t) = 1 − e−(t/β)
α
, α

and β are the scale parameter and shape parameter, respectively. For Exponential

distribution, F (t) = 1 − e−λt, λ is the failure rate. We want to examine the reli-

ability of this PMS if components 1 and 2 are swappable, and components 3 and

4 are swappable upon failure at any time during the mission or only at transition

of phases. For example, in phase 1, if the swap is applicable only at transition of

phases, then no swapping opportunity exists, but if the swap is applicable at any

time during the mission, then we can swap component 1 by 2 when component 2
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fails but component 1 still functions, and we can swap component 3 by 4 when

component 1, 4 and 5 fail but component 3 still functions. Note that if any of the

components 1 or 5 still function, component 4 cannot be swapped by component

3 because the swap is just applicable upon failure, which means that if the system

cannot continue to function with the existing components in place. The survival

signature for the original PMS is calculated by Equation (4.3.11) and the survival

signatures if the defined swaps are applicable at any time during the mission or only

at transition of phases, are calculated by Equation (4.3.15) and Equation (4.3.16),

respectively. Table 4.4 shows the survival signatures of phase 1, where Φ1, Φ
(W )
1 ,

Φ
(E)
1 are the survival signatures for the original PMS and for both scenarios, respec-

tively. Table 4.5 shows the survival signatures of the first two phases, where Φ1,2,

Φ
(W )
1,2 , Φ

(E)
1,2 are the survival signatures for the original PMS and for both scenarios,

respectively. Table 4.6 shows the survival signatures of the whole PMS, where ΦS,

Φ
(W )
S , Φ

(E)
S are the survival signatures for the original PMS and for both scenarios,

respectively. Entries for which the survival signatures are 0 are omitted.

The reliability of the PMS is shown in Table 4.7 and Figure 4.4. In Figure 4.4,

Ri, R
(W )
i and R

(E)
i , i ∈ {1, 2, 3}, are the reliability of the PMS in phase i. Specially,

R
(W )
i is for the case that we can swap the components at any time and R

(E)
i is for

the case that the components can only be swapped at the switches of phases. The

results show that there is a reliability jump at the transition of phases 2 and 3 in

the original PMS. The reason is that if components 1 and 3 or components 2, 4 and

5 have all failed simultaneously in phase 2, then the PMS still has to be functioning,

however, the PMS will fail immediately when it steps into phase 3. Therefore, there

is a reliability jump between phases 2 and 3. The operation of component swap upon

failure nearly eliminates the reliability jump between these phases. The reason for

this is that, if components 1 and 3 both failed in phase 2, then component 1 can be

swapped by 2 and component 3 can be swapped by 4. Also, if the components 2, 4

and 5 all failed in phase 2, then components 2 and 4 can be swapped by 1 and 3,

respectively. The results show that the reliability of PMS is significantly improved

as a result of possible swapping components upon failure.
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The first phase

0 ≤ t ≤ 10−

l1,1 l1,2 Φ1 Φ
(W )
1 Φ

(E)
1

1 1 1/3 1 1/3

1 2 1/2 1 1/2

1 3 1/2 1 1/2

2 1 1 1 1

2 2 1 1 1

2 3 1 1 1

Table 4.4: Φ1, Φ
(W )
1 and Φ

(E)
1 of PMS shown in Example 4.3.2

The first two phases

10+ ≤ t ≤ 280−

l1,1 l1,2 l2,1 l2,2 Φ1,2 Φ
(W )
1,2 Φ

(E)
1,2 l1,1 l1,2 l2,1 l2,2 Φ1,2 Φ

(W )
1,2 Φ

(E)
1,2

1 1 0 1 0 2/3 1/6 2 2 0 2 1 1 1

1 1 1 1 0 2/3 1/6 2 2 1 1 1/3 2/3 1/2

1 2 0 1 1/6 2/3 1/4 2 2 1 2 1 1 1

1 2 0 2 1/2 1 1/2 2 2 2 0 1 1 1

1 2 1 1 1/6 2/3 1/4 2 2 2 1 1 1 1

1 2 1 2 1/2 1 1/2 2 2 2 2 1 1 1

1 3 0 1 1/6 2/3 1/6 2 3 0 1 1/3 2/3 1/3

1 3 0 2 1/2 1 1/2 2 3 0 2 1 1 1

1 3 0 3 1/2 1 1/2 2 3 0 3 1 1 1

1 3 1 1 1/6 2/3 1/6 2 3 1 1 1/3 2/3 1/3

1 3 1 2 1/2 1 1/2 2 3 1 2 1 1 1

1 3 1 3 1/2 1 1/2 2 3 1 3 1 1 1

2 1 0 1 1/3 2/3 2/3 2 3 2 0 1 1 1

2 1 1 1 1/3 2/3 2/3 2 3 2 1 1 1 1

2 1 2 0 1 1 1 2 3 2 2 1 1 1

2 1 2 1 1 1 1 2 3 2 3 1 1 1

2 2 0 1 1/3 2/3 1/2

Table 4.5: Φ1,2, Φ
(W )
1,2 and Φ

(E)
1,2 of PMS shown in Example 4.3.2
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The PMS

280+ ≤ t ≤ 300

l1,1 l1,2 l2,1 l2,2 l3,1 l3,3 ΦS Φ
(W )
S Φ

(E)
S l1,1 l1,2 l2,1 l2,2 l3,1 l3,3 ΦS Φ

(W )
S Φ

(E)
S

1 1 1 1 1 1 0 2/3 1/6 2 2 2 2 2 0 1 1 1

1 2 0 2 0 2 1/3 1 1/2 2 2 2 2 2 1 1 1 1

1 2 1 1 1 1 1/6 2/3 1/6 2 2 2 2 2 2 1 1 1

1 2 1 2 0 2 1/3 1 1/2 2 3 0 2 0 2 2/3 1 1

1 2 1 2 1 1 1/6 1 1/3 2 3 0 3 0 2 2/3 1 2/3

1 2 1 2 1 2 1/3 1 1/2 2 3 0 3 0 3 1 1 1

1 3 0 2 0 2 1/3 1 1/2 2 3 1 1 1 1 1/6 2/3 1/3

1 3 0 3 0 2 1/3 1 1/3 2 3 1 2 0 2 2/3 1 2/3

1 3 0 3 0 3 1/2 1 1/2 2 3 1 2 1 1 1/2 1 2/3

1 3 1 1 1 1 1/6 2/3 1/6 2 3 1 2 1 2 5/6 1 1

1 3 1 2 0 2 1/3 1 1/2 2 3 1 3 0 2 2/3 1 2/3

1 3 1 2 1 1 1/6 1 1/3 2 3 1 3 0 3 1 1 1

1 3 1 2 1 2 1/3 1 1/2 2 3 1 3 1 1 1/2 1 1/2

1 3 1 3 0 2 1/3 1 1/3 2 3 1 3 1 2 5/6 1 5/6

1 3 1 3 0 3 1/2 1 1/2 2 3 1 3 1 3 1 1 1

1 3 1 3 1 1 1/6 1 1/6 2 3 2 0 2 0 1 1 1

1 3 1 3 1 2 1/3 1 1/2 2 3 2 1 1 1 1/2 1 1/2

1 3 1 3 1 3 1/2 1 1/2 2 3 2 1 2 0 1 1 1

2 1 1 1 1 1 1/6 2/3 1/3 2 3 2 1 2 1 1 1 1

2 1 2 0 2 0 1 1 1 2 3 2 2 0 2 2/3 1 2/3

2 1 2 1 1 1 1/2 1 1/2 2 3 2 2 1 1 1/2 1 1/2

2 1 2 1 2 0 1 1 1 2 3 2 2 1 2 5/6 1 5/6

2 1 2 1 2 1 1 1 1 2 3 2 2 2 0 1 1 1

2 2 0 2 0 2 2/3 1 1 2 3 2 2 2 1 1 1 1

2 2 1 1 1 1 1/6 2/3 1/3 2 3 2 2 2 2 1 1 1

2 2 1 2 0 2 2/3 1 2/3 2 3 2 3 0 2 2/3 1 2/3

2 2 1 2 1 1 1/2 1 2/3 2 3 2 3 0 3 1 1 1

2 2 1 2 1 2 5/6 1 1 2 3 2 3 1 1 1/2 1 1/2

2 2 2 0 2 0 1 1 1 2 3 2 3 1 2 5/6 1 5/6

2 2 2 1 1 1 1/2 1 1/2 2 3 2 3 1 3 1 1 1

2 2 2 1 2 0 1 1 1 2 3 2 3 2 0 1 1 1

2 2 2 1 2 1 1 1 1 2 3 2 3 2 1 1 1 1

2 2 2 2 0 2 2/3 1 2/3 2 3 2 3 2 2 1 1 1

2 2 2 2 1 1 1/2 1 1/2 2 3 2 3 2 3 1 1 1

2 2 2 2 1 2 5/6 1 5/6

Table 4.6: ΦS, Φ
(W )
S and Φ

(E)
S of PMS shown in Example 4.3.2
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Figure 4.4: Reliability of the PMS in Example 4.3.2

t 0 10− 10+ 280− 280+ 300

R 1 0.998269 0.998269 0.997046 0.987450 0.976445

R(W ) 1 0.999996 0.999996 0.999371 0.999179 0.998375

R(E) 1 0.998269 0.998269 0.997211 0.996951 0.983626

Table 4.7: Reliability of the PMS in Example 4.3.2

4.4 Swapping components according to structure

importance

In Section 4.3, the reliability of the PMS is improved by swapping components upon

failure. In this section, we consider an another swapping strategy to improve the

reliability of PMSs, which is having swapping of components according to structure

importance. In this strategy, the structure importance is used to measure the im-

portance level of the components in contributing to system reliability, then when

a component with high importance fails, it is swapped by another component with
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lower importance from the system which has not yet failed. If the component is

swapped according to the structure importance criterion, the swap will take place

with disregard of whether or not the system can continue to function with the exist-

ing components in place, depending on the level of the importance of the component

that has failed. However, if the component is swapped upon failure, the swap takes

place only if the PMS cannot continue to function with the existing components in

place.

As introduced in Chapter 1, since it is assumed that only components of the

same type are swappable, the structural importance which measures the relative

importance of components with respect to their positions is sufficient to prioritize

the components in each phase [11]. The structural importance of component j ∈

{1, 2, · · · , n} for the configuration in phase i ∈ {1, 2, · · · , N} denoted by SI
(i)
j , is

defined as

SI
(i)
j =

1

2n−1

∑
xj

[
φi(1j, x

j)− φi(0j, xj)
]

(4.4.1)

where φi(·) is the structure function of the system in phase i; xj represents the

component state vector with xj removed, (1j, x
j) and (0j, x

j) represent the compo-

nent vector when component j in phase i is in state 1 or 0, respectively and 2n−1

represents the total number of different state vector with n− 1 in it.

After the components are prioritized by structural importance, the swapping

rules are defined upon this prioritization, so it is assumed that when a component

with high importance fails, it is swapped by another component of the same type

with lower importance which has not yet failed. It is assumed further that the swap

between components takes neglectable time and does not affect the functioning

state of the component that changes its role in the PMS nor its remaining time until

failure.

We can calculate the reliability of a PMS after we define the swapping rules

according to the structural importance, in the same way as in Section 4.3. We take

the effect of the defined swaps either if they are applicable at any time during the

mission or only at transitions of phases, into account through the PMS structure

function, and hence, it can be taken into account for computation of the system re-

liability through the PMS survival signature. The survival signatures, if the defined
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Phase 1 Phase 2 Phase 3

SI
(1)
1 SI

(1)
2 SI

(1)
3 SI

(2)
1 SI

(2)
2 SI

(2)
3 SI

(3)
1 SI

(3)
2 SI

(3)
3

0.75 0.25 0.25 0.75 0.25 0.25 0.25 0.75 0.25

Table 4.8: Structure importance for the configuration in Figure 4.1

swaps according to the structure importance are applicable at any time during the

mission or only at transitions of phases, can be calculated using Equation (4.3.15)

and Equation (4.3.16) respectively and the reliability can be obtained as in Section

4.3 by substituting the survival signature of the original PMS in Equation (4.3.14)

by these survival signatures. This approach is illustrated and explained in more

detail in the following two examples.

Example 4.4.1 Consider again the system in Figure 4.1 and the same scenario for

the phases duration and the conditional lifetime distribution of the components in

each phase as in Example 4.3.1. We want to examine the reliability of this PMS if

the components are swapped according to structural importance. Table 4.10 listed

structural importance of each component for the configuration in each phase of the

PMS shown in Figure 4.1.

The results show that, for the first two phases, the structural importance of

component 2 is equal to that of component 3, and both are lower than the structural

importance of component 1 so SI
(1)
1 > SI

(1)
2 = SI

(1)
3 , SI

(2)
1 > SI

(2)
2 = SI

(2)
3 . In

phase 3, the structural importance of component 1 is equal to that of component

3, and the importance of components 1 and 3 is lower than that of component 2 so

SI
(3)
2 > SI

(3)
1 = SI

(3)
3 . Therefore, we would enable to swap component 2 or 3 into

the place of component 1, if that fails in the first two phases. In phase 3, it is better

to swap component 1 or 3 into the place of component 2 if that component fails.

Let us assume that components 1 and 2 are swappable according to their struc-

tural importance. Therefore, if components 1 and 2 are swappable at any time

during the mission, we can swap component 2 by 1 in phases 1 and 2 if component

1 fails but component 2 is still functioning. Similarly, component 1 can take over

the role of component 2 in phase 3, if component 2 fails but component 1 is still
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functioning. If components 1 and 2 are swappable only at switches of phases, we

can swap component 2 by 1 at the switch of phases 1 and 2 when component 1 fails

but component 2 is still functioning. Similarly, component 2 can take over the role

of component 1 at the switch of phases 2 and 3, if component 2 fails but component

1 is still functioning. Therefore, the cases of the swap that we have if components 1

and 2 are swappable according to its structural importance in this example are the

same as the cases of the swap that we have in Example 4.3.1 when components 1

and 2 are swappable upon failure, but this is not usually the case as we will see in

the next example. So, the results of the survival signatures are the same as in Table

4.10 and the results of the reliability are the same as that are shown in Table 4.2

and Figure 4.2.

Example 4.4.2 Consider the system in Figure 4.3 and we keep the same scenario

for the phases duration and the conditional lifetime distribution of the components

in each phase as in Example 4.3.2. Structural importance analysis is conducted

to measure the importance of the components in contributing to system reliability

in each phase, the results are shown in Table 4.9. The results show the orders

of structure importances are SI
(1)
2 > SI

(1)
1 , SI

(1)
4 = SI

(1)
5 > SI

(1)
3 , SI

(2)
1 = SI

(2)
2 ,

SI
(2)
3 > SI

(2)
4 = SI

(2)
5 , SI

(3)
1 > SI

(3)
2 , SI

(3)
3 > SI

(3)
4 = SI

(3)
5 . Therefore, for the

components of type 1, if components 1 and 2 are swappable, we can swap component

1 by 2 in phases 1 when component 2 fails but component 1 still functions. And

we can swap component 2 by 1 in phase 3. Similarly, for the components of type

2, if components 3 and 4 are swappable, we can swap component 3 by 4 in phase

1 when component 4 fails but component 2 still functions. Moreover, component 4

can take over the role of component 3 in phases 2 and 3 when component 3 fails

but component 4 still functions. Table 4.10, Table 4.11 and Table 4.12 show The

resulting survival signatures of phase 1, the survival signatures of the first two phases

and the survival signatures of the whole PMS, respectively. Entries for which the

survival signatures are 0 are omitted. The resulting reliability function are shown

in Figure 4.5 with the specific values around transition times given in Table 4.13.
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Phase 1

SI
(1)
1 SI

(1)
2 SI

(1)
3 SI

(1)
4 SI

(1)
5

0.06 0.81 0.06 0.19 0.19

Phase 2

SI
(2)
1 SI

(2)
2 SI

(2)
3 SI

(2)
4 SI

(2)
5

0.19 0.19 0.56 0.19 0.19

Phase 3

SI
(3)
1 SI

(3)
2 SI

(3)
3 SI

(3)
4 SI

(3)
5

0.44 0.19 0.44 0.19 0.19

Table 4.9: Structure importance for the configuration in each phase in Figure 4.3
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The first phase

0 ≤ t ≤ 10−

l1,1 l1,2 Φ1 Φ
(W )
1 Φ

(E)
1

1 1 1/3 1 1/3

1 2 1/2 1 1/2

1 3 1/2 1 1/2

2 1 1 1 1

2 2 1 1 1

2 3 1 1 1

Table 4.10: Φ1, Φ
(W )
1 and Φ

(E)
1 of PMS shown in Example 4.4.2

The first two phases

10+ ≤ t ≤ 280−

l1,1 l1,2 l2,1 l2,2 Φ1,2 Φ
(W )
1,2 Φ

(E)
1,2 l1,1 l1,2 l2,1 l2,2 Φ1,2 Φ

(W )
1,2 Φ

(E)
1,2

1 1 0 1 0 2/3 1/6 2 2 0 2 1 1 1

1 1 1 1 0 2/3 1/6 2 2 1 1 1/3 2/3 1/2

1 2 0 1 1/6 2/3 1/4 2 2 1 2 1 1 1

1 2 0 2 1/2 1 1/2 2 2 2 0 1 1 1

1 2 1 1 1/6 2/3 1/4 2 2 2 1 1 1 1

1 2 1 2 1/2 1 1/2 2 2 2 2 1 1 1

1 3 0 1 1/6 2/3 1/6 2 3 0 1 1/3 2/3 1/3

1 3 0 2 1/2 1 1/2 2 3 0 2 1 1 1

1 3 0 3 1/2 1 1/2 2 3 0 3 1 1 1

1 3 1 1 1/6 2/3 1/6 2 3 1 1 1/3 2/3 1/3

1 3 1 2 1/2 1 1/2 2 3 1 2 1 1 1

1 3 1 3 1/2 1 1/2 2 3 1 3 1 1 1

2 1 0 1 1/3 2/3 2/3 2 3 2 0 1 1 1

2 1 1 1 1/3 2/3 2/3 2 3 2 1 1 1 1

2 1 2 0 1 1 1 2 3 2 2 1 1 1

2 1 2 1 1 1 1 2 3 2 3 1 1 1

2 2 0 1 1/3 2/3 1/2

Table 4.11: Φ1,2, Φ
(W )
1,2 and Φ

(E)
1,2 of PMS shown in Example 4.4.2
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The PMS

280+ ≤ t ≤ 300

l1,1 l1,2 l2,1 l2,2 l3,1 l3,3 ΦS Φ
(W )
S Φ

(E)
S l1,1 l1,2 l2,1 l2,2 l3,1 l3,3 ΦS Φ

(W )
S Φ

(E)
S

1 1 1 1 1 1 0 0 0 2 2 2 2 2 0 1 1 1

1 2 0 2 0 2 1/3 1 1/2 2 2 2 2 2 1 1 1 1

1 2 1 1 1 1 1/6 0 0 2 2 2 2 2 2 1 1 1

1 2 1 2 0 2 1/3 1 1/2 2 3 0 2 0 2 2/3 1 1

1 2 1 2 1 1 1/6 1/3 1/4 2 3 0 3 0 2 2/3 1 2/3

1 2 1 2 1 2 1/3 1 1/2 2 3 0 3 0 3 1 1 1

1 3 0 2 0 2 1/3 1 1/2 2 3 1 1 1 1 1/6 0 0

1 3 0 3 0 2 1/3 1 1/3 2 3 1 2 0 2 2/3 1 1

1 3 0 3 0 3 1/2 1 1/2 2 3 1 2 1 1 1/2 1/3 1/2

1 3 1 1 1 1 1/6 0 0 2 3 1 2 1 2 5/6 1 1

1 3 1 2 0 2 1/3 1 1/2 2 3 1 3 0 2 2/3 1 2/3

1 3 1 2 1 1 1/6 1/3 1/4 2 3 1 3 0 3 1 1 1

1 3 1 2 1 2 1/3 1 1/2 2 3 1 3 1 1 1/2 1/3 2/3

1 3 1 3 0 2 1/3 1 1/3 2 3 1 3 1 2 5/6 1 1

1 3 1 3 0 3 1/2 1 1/2 2 3 1 3 1 3 1 1 1

1 3 1 3 1 1 1/6 1/3 1/3 2 3 2 0 2 0 1 1 1

1 3 1 3 1 2 1/3 1 1/2 2 3 2 1 1 1 1/2 1/3 1/2

1 3 1 3 1 3 1/2 1 1/2 2 3 2 1 2 0 1 1 1

2 1 1 1 1 1 1/6 0 0 2 3 2 1 2 1 1 1 1

2 1 2 0 2 0 1 1 1 2 3 2 2 0 2 2/3 1 1

2 1 2 1 1 1 1/2 1/6 1/2 2 3 2 2 1 1 1/2 2/3 1/2

2 1 2 1 2 0 1 1 1 2 3 2 2 1 2 5/6 1 1

2 1 2 1 2 1 1 1 1 2 3 2 2 2 0 1 1 1

2 2 0 2 0 2 2/3 1 1 2 3 2 2 2 1 1 1 1

2 2 1 1 1 1 1/6 0 0 2 3 2 2 2 2 1 1 1

2 2 1 2 0 2 2/3 1 1 2 3 2 3 0 2 2/3 1 2/3

2 2 1 2 1 1 1/2 1/3 1/2 2 3 2 3 0 3 1 1 1

2 2 1 2 1 2 5/6 1 1 2 3 2 3 1 1 1/2 1/2 1/3

2 2 2 0 2 0 1 1 1 2 3 2 3 1 2 5/6 5/6 1

2 2 2 1 1 1 1/2 1/3 1/2 2 3 2 3 1 3 1 1 1

2 2 2 1 2 0 1 1 1 2 3 2 3 2 0 1 1 1

2 2 2 1 2 1 1 1 1 2 3 2 3 2 1 1 1 1

2 2 2 2 0 2 2/3 1 1 2 3 2 3 2 2 1 1 1

2 2 2 2 1 1 1/2 1/3 1/2 2 3 2 3 2 3 1 1 1

2 2 2 2 1 2 5/6 1 1

Table 4.12: ΦS, Φ
(W )
S and Φ

(E)
S of PMS shown in Example 4.4.2



4.4. Swapping components according to structure importance 92

0 50 100 150 200 250 300

0.
98

0
0.

98
5

0.
99

0
0.

99
5

1.
00

0

Time

R
el

ia
bi

lit
y

R1

R1(W)

R1(E)

R2

R2(W)

R2(E)

R3

R3(W)

R3(E)

Figure 4.5: Reliability of the PMS in Example 4.4.2

t 0 10− 10+ 280− 280+ 300

RS 1 0.998269 0.998269 0.997046 0.987450 0.976445

R
(w)
S 1 0.999996 0.999996 0.999371 0.998166 0.996450

R
(E)
S 1 0.998269 0.998269 0.997211 0.996446 0.994388

Table 4.13: Reliability of the PMS in Example 4.4.2

Comparing these results with the results in Example 4.3.2 in which the com-

ponents are swapped upon failure, we find that the survival signatures and the

reliability in phases 1 and 2, if the components 1 and 2 are swappable, and the com-

ponents 3 and 4 are swappable according to their structural importances are exactly

the same as if these components are swapped upon failure, however, in phase 3,

the results are different. The reason is that there is some cases of the swaps that

happen when the components are swapped upon failure but not happen when the

components swapped according to their structural importance, and vice versa. For

example, if the swaps are applicable at any time during the mission, when the com-
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ponents 1 and 4 function and components 2, 3 and 5 are failed in phase 3, the PMS

continue to function when the components are swapped upon failure, since there is

no need for component swapping in this case, however, when the components are

swapped according to their structural importances, the system will have failed since

in this case component 4 has taken over the role of component 3, because component

4 is classified as less importance than 3.

The results also show that the reliability jump at the transition of phases 2 and

3 in the original PMS is reduced when the components are swapped according to

its structural importance. However, the amount of reduction that is gained if the

component are swapped upon failure, is more than if they are swapped according

to their structural importance. The reason for this is that in the case when the

components are swapped according to their structure importances, if the components

2, 4 and 5 all failed during phase 2, then components 2 and 4 cannot be swapped by

1 and 3 respectively when is needed, as in the case when the components swapped

upon failure.

4.5 Cost analysis of PMS with component swap-

ping

In Chapter 3, we have analyzed the cost effectiveness of component swapping over a

fixed period of time. In this section, we aim to extend the cost effectiveness analysis

of component swapping to phased mission system under the assumption that each

phase of the system would need to complete its mission successfully, where failure

to achieve this incurs a penalty cost allocated to each phase of not performing its

mission. We consider time independent penalty costs in Section 4.5.1 and time

dependent penalty cost in Section 4.5.2. In each section the expected costs when

the components swapping (either upon failure or according to reliability importance)

is applicable at any time during the mission, are compared with the option when it

is applicable only at transitions, and also with the option not to enable swaps.
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4.5.1 Time independent penalty costs

Suppose that we have a PMS which needs to perform a sequence of missions in a

certain period of time [τ0, τN). The system must function during all the phases. If

the system fails at any time during phase i before N , then a fixed penalty cost must

be paid. Let this cost be

P (i) =
N∑
j=i

pj (4.5.1)

where pj, j = i, · · · , N , is a specific cost resulting for phase j not being completed.

We assume that pj is independent of the failure time during phase j. Let Ts denote

the random failure time of the PMS. We need to derive the probability that the

system fails during phase i, so P (Ts ∈ [τi−1, τi)). Let Ai denote the event that the

PMS fails at any time during phase i, i ∈ {1, 2, ..., N}, so Aci denotes the event that

the PMS survives during phase i.

P (Ts ∈ [τi−1, τi)) =P (Ac1, A
c
2, · · · , Aci−1, Ai) =

P (Ac1, A
c
2, · · · , Aci−1)− P (Ac1, A

c
2, · · · , Aci−1, Aci)

Let R(τ−i−1) = P (Ac1, A
c
2, · · · , Aci−1) be the probability that the system survives

phase i− 1, and R(τ−i ) = P (Ac1, A
c
2, · · · , Aci−1, Aci) is the probability that the system

survives phase i, then, the probability that the system fail during phase i is

P (Ts ∈ [τi−1, τi)) = R(τ−i−1)−R(τ−i )

Let CS denote the expected cost of failure of the PMS,

CS =
N∑
i=1

P (i)
(
R(τ−i−1)−R(τ−i )

)
(4.5.2)

where τ−i represents the last moment in phase i.

As described in Sections 4.3 and 4.4, the reliability of PMSs can be improved by

swapping components either at any time during the mission or only at the transition

of phases. An upfront cost may need to be paid to enable each swapping scenario.

Let b denote the cost to enable a regime of specified swaps at any time during the

mission and e denote the cost to enable a regime of specified swaps only at the
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transition of phases. Let C
(W )
S and C

(W )
S denote the expected costs of the system in

both scenarios, respectively. These expected costs are derived as follows:

C
(W )
S = b+

N∑
i=1

[
P (i)

(
R(W )(τ−i−1)−R(W )(τ−i )

)]
(4.5.3)

C
(E)
S = e+

N∑
i=1

[
P (i)

(
R(E)(τ−i−1)−R(E)(τ−i )

)]
(4.5.4)

where R(W )(t) is the reliability of the system at time t ∈ [τi−1, τi) if the specified

swaps are applicable at any time during the mission, and R(E)(t) is the reliability of

the system the specified swaps are applicable only at the transitions of phases.

4.5.2 Time dependent penalty costs

In practical engineering, the cost penalty for failure of a PMS may be time depen-

dent. Similar as in Section 3.2.2, we consider the case where the costs are based on

the system downtime, let the penalty cost per unit of time in phase i be ui. If the

system fails at time TS ∈ [τi−1, τi), then the down time is (τi−TS)+
∑N

k=i+1(τk−τk−1)

for i ∈ {1, 2, · · · , N}, k ∈ {2, 3, · · · , N − 1}. If the system fails during phase i, the

expected penalty costs that need to be paid are

CSi =

∫ τ−i

τ+i−1

f(t)
(
ui(τi − t) +

N∑
k=i+1

uk(τk − τk−1)
)
dt.

where τ+i−1 represents the first moment in phase i and τ−i represents the last moment

in phase i and f(t) is the PDF of the failure time of the PMS. If the system fails at

τi, the expected penalty cost are

CSτi = P (TS = τi)
( N∑
k=i+1

uk(τk − τk−1)
)

Let CS denote the expected cost of a PMS, then

CS =
N∑
i=1

[∫ τ−i

τ+i−1

f(t)
(
ui(τi − t) +

N∑
k=i+1

uk(τk − τk−1)
)
dt+

P (TS = τi)
( N∑
k=i+1

uk(τk − τk−1)
)]
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=
N∑
i=1

[
ui

∫ τ−i

τ+i−1

(τi − t)f(t)dt+
(
F (τ−i )− F (τ+i−1)

) N∑
k=i+1

uk(τk − τk−1)+

(
F (τ+i )− F (τ−i )

)( N∑
k=i+1

uk(τk − τk−1)
)]

=
N∑
i=1

[
ui

∫ τ−i

τ+i−1

(τi − t)f(t)dt+
(
R(τ+i−1)−R(τ+i )

) N∑
k=i+1

uk(τk − τk−1)

]
(4.5.5)

We derive
∫ τ−i
τ+i−1

(τi − t)f(t)dt as follows,∫ τ−i

τ+i−1

(τi − t)f(t)dt = τi[F (τ−i )− F (τ+i−1)]−
∫ τ−i

τ+i−1

tf(t)dt (4.5.6)

and ∫ τ−i

τ+i−1

tf(t)dt =

∫ τ−i

0

tf(t)dt−
∫ τ+i−1

0

tf(t)dt (4.5.7)

We derive
∫ τ−i
0

tf(t)dt for any i = 1, 2, · · · , N as follows,∫ τ−i

0

tf(t)dt =

∫ τ−i

0

∫ t

0

f(t)dudt =

∫ τ−i

0

∫ τ−i

u

f(t)dtdu =

∫ τ−i

0

F (τ−i )− F (u)du =∫ τ−i

0

(F (τ−i )− 1) + (1− F (u))du = −τiR(τ−i ) +

∫ τ−i

0

R(u)du (4.5.8)

Substituting the result from Equation (4.5.8) to Equation (4.5.7), gives∫ τ−i

τ+i−1

tf(t)dt = −τiR(τ−i ) +

∫ τ−i

0

R(u)du−

[
−τi−1R(τ+i−1) +

∫ τ+i−1

0

R(u)du

]
(4.5.9)

Substituting the result from Equation (4.5.9) to Equation (4.5.6), gives∫ τ−i

τ+i−1

(τi − t)f(t)dt = (τi − τi−1)R(τ+i−1)−
∫ τ−i

τ+i−1

R(t)dt (4.5.10)

From Equations(4.5.9) and (4.5.5), the expected cost of failure of a PMS is given

by the following equation:

CS =
N∑
i=1

[
ui

(
(τi − τi−1)R(τ+i−1)−

∫ τ−i

τ+i−1

R(t)dt

)
+

(
R(τ+i−1)−R(τ+i )

) N∑
k=i+1

uk(τk − τk−1)

]
(4.5.11)
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Similarly, as shown above with time independent penalty costs, if b is the upfront

cost needed to be paid to enable a regime of specified swaps at any time during the

mission, and e is the upfront cost needed to be paid to enable a regime of specified

swaps at only at the transitions of phases, the expected costs in both scenarios are

given by the following equations

C
(W )
S =b+

N∑
i=1

[
ui

(
(τi − τi−1)R(W )(τ+i−1)−

∫ τ−i

τ+i−1

R(W )(t)dt

)
+

(
R(W )(τ+i−1)−R(W )(τ+i )

) N∑
k=i+1

uk(τk − τk−1)

]
(4.5.12)

C
(E)
S =e+

N∑
i=1

[
ui

(
(τi − τi−1)R(E)(τ+i−1)−

∫ τ−i

τ+i−1

R(E)(t)dt

)
+

(
R(E)(τ+i−1)−R(E)(τ+i )

) N∑
k=i+1

uk(τk − τk−1)

]
(4.5.13)

The following two examples illustrate the effect of swapping components in both

scenarios on the expected costs for a PMS when the components are swapped upon

failure, while the case when the components are swapped according to structure

importance will be illustrated in Example 4.5.3.

Example 4.5.1 In this example, we consider again the PMS with single type of

components as in Figure 4.1 and we keep the same scenario for the duration of all

the three phases and for the conditional lifetime distribution of the components in

each phase as in Example 4.3.1. We also consider the same scenario for the swapping

opportunity as in Example 4.3.1, namely components 1 and 2 can be swapped upon

failure. We want to compare the expected cost of the original PMS with the expected

cost when components 1 and 2 are swappable at any time during the mission or only

at switches of phases.

Assume that the penalty costs allocated to each phase of not performing its

mission are 1× 103, 8× 102 and 5× 102, respectively, for phase 1, 2, and 3. If these

penalty costs are independent of the failure time during or before the phases, the
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expected cost for the original PMS are given by Equation (4.5.2) and equal to

CS =

[
23× 102

(
1−R(10−)

)]
+

[
13× 102

(
R(10−)−R(20−)

)]
+[

5× 102
(
R(20−)−R(30)

)]
= 39.28

Assume that the cost to enable the swap at any time during the mission is

b = 50, and the cost to enable the swap only at the transitions of phases is e = 3.

The expected cost of failure in both swapping scenarios are as follows:

C
(W )
S =50 +

[
23× 102

(
1−R(W )(10−)

)]
+

[
13× 102

(
R(W )(10−)−R(W )(20−)

)]
+[

5× 102
(
R(W )(20−)−R(W )(30)

)]
= 52.1

C
(E)
S =3 +

[
23× 102

(
1−R(E)(10−)

)]
+

[
13× 102

(
R(E)(10−)−R(E)(20−)

)]
+[

5× 102
(
R(E)(20−)−R(E)(30)

)]
= 7.72

It can be clearly seen that, while taking the opportunity of both swapping scenar-

ios would reduce the expected costs, the maximum reduction is obtained when the

swap is applicable only at the switches of phases. In Figure 4.6(a), we plot the ex-

pected cost as a function of the swap costs. We can clearly see that CS ≤ C
(W )
S when

b ≥ 37.11 and CS ≤ C
(E)
S when e ≥ 34.58. Also, C

(W )
S = C

(E)
S when b = e + 2.54.

Therefore, in the case that b ≤ e + 2.54 and b < 37.11 it is better to take the

option that enable the swap at any time during the mission, and in the case that

b > e+ 2.54 and e < 34.58 it is better to take the option to enable the swap only at

the transitions of phases. In the other cases is better not to take the option of any

swap scenarios.

Now assume that the penalty cost is time dependent where 1× 103, 8× 102 and

5×102 are the costs per unit of time in phases 1, 2 and 3, respectively, and the swap

costs at any time during the mission and at the transitions of phases are b = 50 and

e = 3, respectively. The expected cost of the original PMS and the expected costs

in the both scenarios are calculated as follows:
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CS =

[
1× 103

(
10−

∫ 10−

0

R(t)dt

)
+
(

1−R(10+)
)(

(8 + 5)× 102(10)
)]

+[
8× 102

(
(10)R(10+)−

∫ 20−

10+
R(t)dt

)
+
(
R(10+)−R(20+)

)(
5× 102(10)

)]

+

[
5× 102

(
(10)R(20+)−

∫ 30

20+
R(t)dt

)]
= 378.71

C
(W )
S = 50 +

[
1× 103

(
10−

∫ 10−

0

R(W )(t)dt

)
+
(

1−R(W )(10+)
)(

(8 + 5)× 102(10)
)]

+[
8× 102

(
(10)R(W )(10+)−

∫ 20−

10+
R(t)dt

)
+
(
R(W )(10+)−R(W )(20+)

)(
5× 102(10)

)]

+

[
5× 102

(
(10)R(W )(20+)−

∫ 30

20+
R(W )(t)dt

)]
= 68.07

C
(E)
S = 3 +

[
1× 103

(
10−

∫ 10−

0

R(E)(t)dt

)
+
(

1−R(E)(10+)
)(

(8 + 5)× 102(10)
)]

+[
8× 102

(
(10)R(E)(10+)−

∫ 20−

10+
R(t)dt

)
+
(
R(E)(10+)−R(E)(20+)

)(
5× 102(10)

)]

+

[
5× 102

(
(10)R(E)(20+)−

∫ 30

20+
R(E)(t)dt

)]
= 35.49

It can be clearly seen that the best option is to take the opportunity to enable

the swap only at the switches of phases. The expected costs are plotted as a function

of the swap costs in Figure 4.6(b). We can see that CS ≤ C
(W )
S when b ≥ 360.65

and CS ≤ C
(E)
S when e ≥ 346.22. Also, C

(W )
S = C

(E)
S when b = e+ 14.42. Therefore,

if b ≤ e + 14.42 and b < 360.65 it is better to take the opportunity to enable the

swap at any time during the mission, and if b > e+ 14.42 and e < 346.22 it is better

to take the opportunity to enable the swap only at the transitions of phases. In all

other cases it is better not to take the option of any swap scenarios.
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Figure 4.6: Cost for the PMS in Example 4.3.1
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Example 4.5.2 In this example, we consider the same PMS with multiple types

of components as in Figure 4.3, and we keep the same scenario for the duration of

all the three phases and for the conditional lifetime distributions of the components

in each phase as in Example 4.3.2 and Example 4.4.2. Also, we consider the same

scenario for the swapping case as in Example 4.3.2, namely that components 1 and

2 are swappable, and components 3 and 4 are swappable, upon failure. We want to

compare the expected costs of the original PMS with the expected costs when the

components are swapped at any time during the mission or only at transitions of

phases.

Assume that the penalty costs allocated to phases 1, 2 and 3 are 1× 103, 8× 102

and 5× 102, respectively, and the swap cost at any time during the mission and at

the transitions of phases are b = 50 and e = 3. If the penalty costs are independent

of the failure time during the phases, the expected cost for the original PMS is CS =

15.87 and the expected cost in both scenarios are C
(W )
S = 51.32 and C

(E)
S = 15.15.

Therefore, the least cost is obtained when the swap is enabled only at the transitions

of phases, followed by the option of not to enable any swaps, and the maximum cost

is when the swap is enabled at any time during the mission.

We plot the expected costs as functions of the swap costs in Figure 4.7(a). From

this figure we can see that CS ≤ C
(W )
S when b ≥ 14.55, CS ≤ C

(E)
S when e ≥ 3.72 and

C
(W )
S = C

(E)
S when b = e + 10.83. Therefore, it it is better to take the opportunity

to enable the swap at any time during the mission if b ≤ e + 10.83 and b < 14.55,

it is better to take the opportunity to enable the swap only at the transitions of

phases if b > e + 10.83 and e < 3.72, and in the other cases it is better to not take

the option of any swaps.

If the penalty costs are dependent on the failure time during the phases, the

expected cost of the original PMS and the expected costs in both scenarios are

CS = 615.38, C
(W )
S = 90.63 and C

(E)
S = 526.99. Figure 4.7(b) shows the expected

cost as a function of the swap costs. CS ≤ C
(W )
S when b ≥ 574.75, CS ≤ C

(E)
S

when e ≥ 91.39, and C
(W )
S = C

(E)
S when b = e + 483.36, so, if b ≤ e + 483.36 and

b < 574.75 is good to take the opportunity that enable the swap at any time during

the mission, if b > e + 483.36 and e < 91.39 it is better to take the opportunity to
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Figure 4.7: Cost for the PMS in Example 4.4.1

enable the swap only at the transitions of phases, and in the other cases it is better

to not take the option of any swaps scenarios.
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Example 4.5.3 In this example, we consider again the same system in Figure 4.3,

and we want to analyse the cost of this system if the component swapped accord-

ing to the structure importance as Example 4.4.2, we also keep the same scenario

for the duration of all three phases and for conditional lifetime distribution of the

components in each phase as in Example 4.3.2, and Example 4.4.2. If the penalty

costs of failure and the swap costs are the same as Example 4.5.2, the expected

costs when the penalty costs are independent of the failure time during the phase

is CS = 15.87 for the original system and are C
(W )
S = 52.28 C

(E)
S = 16.77 for the

both swap scenarios. Comparing these results with the results when the components

swapped upon failure in Example 4.5.2, we find that in this example it is better to

not take the option of any swap scenarios, but in the previous example is good to

take the the opportunity to enable the swap only at the transitions of phases. This

because the improvement that is gained in the reliability when the components are

swapped upon failure is more than if they are swapped according to the structure

importance.

Figure 4.8(a) shows how the expected costs would change depending on the cost

of the swap. We can see in this figure that if b ≤ e + 4.48 and b < 13.59 is good

to take the opportunity that enable the swap at any time during the mission, if

e < 9.10 and b > e + 4.48 is good to take the opportunity to enable the swap only

at the switches of phases, and in the other cases is good to not take the option of

any swap scenarios.

If the penalty costs of failure is time dependent, the expected cost for the original

system is CS = 615.38 and for the both swap scenarios are C
(W )
S = 105.41 and

C
(E)
S = 473.02. Comparing these results with the results in Example 4.5.2, it clear

that although the best option in both results is to take the the opportunity to enable

the swap only at the transitions of phases, the expected cost when the components

are swapped upon failure is less than if they are swapped according to the structure

importance.

If we plot the expected costs against the swap cost, we can see in Figure 4.8(b)

that, if b ≤ e+ 414.60 and b < 559.96 it is better to take the opportunity to enable

the swap at any time during the mission, if e < 145.35 and b > e+414.60 it is better
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Figure 4.8: Cost for the PMS in Example 4.4.2

to take the opportunity to enable the swap only at the transitions of phases, and in

the other cases it is better to not take the option of any swap scenarios.

The analyses in the previous examples show that the operation of component

swapping either at any time during the mission or only at the transitions of phases

might contribute significantly to reducing the expected costs of the PMS. The

amount of this contribution depends on the gain in the reliability that due to these

swap scenarios and on the swap costs.
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4.6 Concluding remarks

A phased mission system (PMS) is one that performs several different tasks or

functions in sequence. In order to accomplish the mission successfully, the system

has to complete every phase without failure. Therefore, it is often difficult for

a PMS to work with high reliability. We extended the new interesting strategy

of swapping components upon failure as introduced in Chapter 2 of this thesis,

to improve the reliability of PMSs. It is assumed that when a component fails,

it can be swapped by another one which is still functioning in order to prevent

the PMS from failure. In addition, in this chapter we discussed the strategy of

swapping components according to structure importance. The structure importance

is used to measure the importance level of the components in contributing to system

reliability, then when a component with high importance fails, it is swapped by

another component with lower importance form the system which has not yet failed,

in order to improve the system reliability.

The survival signature methodology that is introduced by [37] is used to analyse

the effect of component swapping according to both strategies on the reliability of

the PMS, comparing the scenario when the swap between components is applica-

ble at any time during the mission with the scenario when it is applicable only at

transitions of phases. The analysis shows the effectiveness of component swapping

in both scenarios in improving the reliability of the system. Considering component

swapping strategy in increasing the reliability of the PMS is attractive since it will

not increase the weight and volume of the system. What is more important and need

to be emphasized is that, in the proposed approaches, the reliability and number of

components do not need to be increased to improve the system reliability. A topic

for further research could be to study the contribution that swapping components

can make to PMS resilience in comparison to other activities, including more in-

built redundancy, standby components, or maintenance and replacement activities.

Moreover, a further interesting topic is the possibility to swap PMS components

when they are all still functioning. This could be attractive if one has the opportu-

nity to swap components of different types, where for example, a critical component

may, while still functioning, be swapped with another of different type component
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at a certain time if they have different hazard rates over time, for example, a compo-

nent with increasing hazard rate may be best to use in a critical part of the system

in early stages, to then be swapped by a component with decreasing hazard rate to

improve system reliability at later stages.

In this chapter, we derive two models (time independent and time dependent)

of penalty costs of PMSs, in order to compare the expected costs for the PMS when

there is a possibility to swap components with the option not to enable swaps. This

shows that although an upfront cost might need to be paid to enable each swapping

opportunity, the operation of component swapping either at any time during the

mission or only at the switches of phases might contribute significantly in reducing

the expected cost of the PMS. The amount of this contribution is depend on the

amount of the reliability that is gained in these swap scenarios and on the swap

cost. The amount of reliability gained by component swapping could be used to

determine which swap cost options is good in reducing the expected cost. These in-

dicators are useful in security assessment and risk management under the constraint

of cost. Further interesting topics for future research are different cost structures and

consideration of swapping, component standby, spares and maintenance activities.



Chapter 5

Concluding Remarks

In this thesis, we introduced the strategy of components swapping to enhance system

reliability and to make it more resilient to component failure. It is crucial that

this is a different activity than popular and well-studied approaches such as the

use of additional components to provide increased redundancy, the use of standby

components, maintenance activities, or increased component reliability [25, 33, 61,

71]. It is assumed that when a component fails, it can be swapped by another

one which is still functioning in order to enhance the reliability of the system. It

is further assumed that such a swap of components can be done only when the

system cannot function with the existing components in place. The quantification

of system reliability if some components can be swapped is introduced based on the

survival signature concept [18]. We considered component importance, which was

particularly simplified by the use of the survival signature.

It is likely to be attractive to consider a component swap, upon failure if this

activity can be done at low cost. In this thesis we also studied the cost effectiveness

of component swapping over a fixed period of time. The cost aspects is studied

under the assumption that a system would need to function for a given period of

time, where failure to achieve this incurs a penalty cost. The different swap scenarios

are compared with the option not to enable swaps, focusing on minimum expected

costs over the given period. We also examined the cost effectiveness of component

swapping over an unlimited time horizon from the perspective of renewal theory.

It is assumed that the system is entirely renewed upon failure, at a known cost.

107



Chapter 5. Concluding Remarks 108

The expected cost per unit of time for the renewal system when there are different

swapping scenarios are compared with the option not to enable swaps, focusing on

minimum expected costs. We also discussed the meaningful effect that component

swapping might have on the preventive replacement actions.

A phased mission system (PMS) is one that performs several different tasks or

functions in sequence. In order to accomplish the mission successfully, the system

in every phase has to be completed without failure. Therefore, it is often difficult

for a PMS to work with high reliability. We extended the strategy of swapping

components upon failure that is introduced in Chapter 2 to improve the reliability

of PMS. In addition, we discussed another strategy of swapping components which

is swaping components according to structure importance. The survival signature

methodology that is introduced by [37] is used to analyse the effect of component

swapping according to both strategies on the reliability of the PMS. The scenario

when the swap between components is applicable at any time during the mission

is compared with the scenario when it is applicable only at transition of phases.

In this thesis we also studied the effectiveness of the cost of component swapping

in reducing the expected costs of the failure of PMS. The expected costs when the

two different scenarios of swapping possibilities are applicable are compared with

the option not to enable swaps, focusing on minimum expected costs over the given

period.

The increase in system reliability through such component swapping is new and

has not received much attention in the literature. The results show that the strategy

of swapping components upon failure can contribute significantly in improving the

reliability of a system and makes it resilient to possible faults. This strategy is quite

interesting since it will not increase the weight and volume of the system, it can

be used in the systems that are not easily accessible for repair and replacements, it

could enable preparation of substantial repair activities. In addition, in this strategy

the reliability and number of the components don’t need to be increased to improve

the reliability of the system. Although an upfront cost needs to be paid to enable

each swapping opportunity, this cost can contribute effectively in reducing the cost

associated with system failure. The cost modules that are derived in this thesis are
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useful in security assessment and risk management under the constraint of cost.

The approach of component swapping can be applied to improve the reliability of

many real systems. Real applications can include the following examples. Aerospace

systems with multiple computers on board, where some computers tasked with minor

functions can be prepared to take over crucial functions in case another computer

fails. Lighting systems, where multiple locations must be provided with light under

contract but where partial lighting at any location may be sufficient to meet the

contractual requirements. Transport systems, where parts of one mode of transport

can be used to keep another one running. Organizations, where employees can be

trained to take over some functioning of others in case of unexpected absence.

A further interesting topic for future research is the possibility to swap com-

ponents of different types and the possibility to swap components when they are

all still functioning. This could be attractive if one has the opportunity to swap

components of different types where a critical component may, while still function-

ing, be swapped with another component at a certain time if they have different

hazard rates over time. For example, a component with increasing hazard rate may

be best to use in a critical part of the system in early stages, to then be swapped

by a component with decreasing hazard rate to improve system reliability at later

stages. Further research also is to study the contribution that swaps can make to

system resilience in comparison to other activities, including more in-built redun-

dancy, standby components,or maintenance and replacement activities [64]. It could

also consider other importance measures. All the introduced research topics might

be considered for PMS.

The effect of the swapping of components in this thesis is entirely reflected

through the change in the survival signature. It may be of interest to investigate

whether or not this change can also be reflected by a distortion of the component re-

liabilities [59], which may provide a further tool for comparison of different systems

and different swapping routines. It has been shown that very efficient simulation

methods can be based on the survival signature [49]. The same simulation method

can perhaps also be used to only learn about difference in reliability for two swapping

regimes.
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It may be of interest also for future research to investigate different cost struc-

tures and consideration of choice between swapping components, standby, spares

and maintenance activities based on corresponding costs. It may also consider the

possibility to combine componets swapping with inspection models [10].

The approach presented in this thesis requires repeated calculation of survival

signatures. Aslett [6] has created a function in the statistical software R to compute

the survival signature, given a graphical presentation of the system structure. This

will be necessary for our work for systems that are not very small, and it will be of

interest to create a tool that can automatically compute all the survival signatures

required in case of a substantial system with many component swapping oppor-

tunities. It will be of interest also if this could be created for PMS in which the

calculation of survival signatures is more complicated.
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