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Introduction
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Diffusion Operators

In local coordinates,

L =
1

2

n∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
k=1

bk(x)
∂

∂xk
.

Here A(x) := (ai,j(x)) is a n× n symmetric non-negative
matrix. If Lipschitz continuous, there exist a family of
vector fields X1, . . . , Xm, m ≥ n, s.t.

Lf =
1

2

m∑
k=1

Xk(Xkf) +X0f.

I L is elliptic if and only if X(x) : Rm → TxM is a
surjection and so determines a Riemannian metric.
An elliptic operator is 1

2
∆ plus drift for some

Riemannian metric. A strong Markov process with
generator 1

2
∆ is a BM.
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SDEs

Given L = 1
2

∑
(Xi)

2 +X0, define

dxt =
m∑
i=1

Xi(xt) ◦ dBi
t +X0(xt)dt.

The solutions are diffusions (strong Markov processes)
with generator L.
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Stochastic slow fast systems


dxεt =

m1∑
k=1

Xk(x
ε
t, y

ε
t) ◦ dBk

t +X0(xεt, y
ε
t) dt,

dyεt =
1√
ε

m2∑
k=1

Yk(x
ε
t, y

ε
t) ◦ dW k

t +
1

ε
Y0(xεt, y

ε
t) dt.

Problem. Take ε→ 0, show xεt converges weakly.

1

ε


L0≡Lx0︷ ︸︸ ︷

1

2
Y 2
i (x, ·) + Y0(x, ·)

+

L1≡Ly1︷ ︸︸ ︷(
1

2
Xk(·, y)2 +X0(·, y)

)
.


d

dt
uε(t, x, y) = (

1

ε
L0 + L1)uε(t, x, y)

uε(0, x, y) = f(x) 5 / 30



Uniform LLN (uniform Birkhoff)

I Suppose for each x, Lx has a unique invariant
measure. Then Lx is said to satisfy a locally uniform
law of large numbers if

I x→ µx is locally Lipschitz continuous.
I For every f ∈ L2 ∩ Cr, there exists a locally bounded
C(x) such that∣∣∣∣ 1T

∫ t+T

t
f(yxr ) dr −

∫
G
f(y)µx(dy)

∣∣∣∣
L2(Ω)

≤ C(x)c(f) 1√
T
.

–This is useful for estimating speed of convergence.
–Not trivial: consider dyt = σ(x)dBt +∇h(x, yt)dt.
–Proved in case G is compact,

∑
Yi satisfies

Hörmander’s condition+ bounds [xml18, Abel Symp].
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Zero index Fredholm operators

-To solve Lxf = v, v must satisfy several independent
constraints. The dimension of the solutions minus the
dimension of the independent constraints is the ‘index’.
-If L satisfies Hörmander’s conditions, it is Fredholm from
its domain to L2: L has closed range,

dim(kerLx) <∞, dim(ker(Lx)∗) <∞
-If the Fredholm index =0, define Πx : L2 → ker(Lx),
functioning as an averaging operator.
Open Problem.∣∣∣∣ 1

T

∫ t+T

t

f(yxr ) dr − Πxf

∣∣∣∣ ≤ C(x)c(f)β(T )?

Note: Given Lx : E → F , smooth in x, dim(ker(Lx)) may
not be continuous in x. Their index is [M. Atiyah]. Caution:
Dom(Lx) may vary with x.

7 / 30



Effective Motions
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Effective motions

Effective motions coming from averaging is associated
with a first integral or a conserved map. Effective motions
typically live in a reduced space: a quotient of the original
space and an action space.
When the unperturbed motion has a full range of
symmetries, the quotient space (or orbit space) is a
smooth manifold. The classification will rely on algebra
and differential geometry. The reduced space is often a
foliation or a graph.
When this is a graph, the identification of the effective
motion is associated with exit laws of Markov processes.
[Brin, Freidlin, Wentzell, Bhatin, Borodin, Koralov, ...]
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A baby model on Hopf fibration

S3 ∼ SU(2) =

{(
z w
−w̄, z̄

)
: z, w ∈ C

}
.

I The Pauli matrices :

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
.

I Berger’s spheres is S3 with { 1√
ε
X1, X2, X3} o.n.b. The

spectra of Berger’s spheres, i.e.
1
ε
(X1)2 + (X2)2 + (X3)2, converges.

I Problem.
Lε =

1

2ε
(X1)2 +X2.

What information can we extract from Lε, when ε is
taken to zero? Look at dgεt = 1√

ε
gεtX1 ◦ dBt + gεtX2 dt.
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a baby theorem

Take a unit vector Y0 ∈ 〈X2, X3〉.

dgεt =
1√
ε
gεtX1dBt + gεtY0dt.

π(z, w) = (1
2
(|w|2 − |z|2), zw̄) is the Hopf map, mapping S3

to S2 = SU(2)/S1, and xεt = π(gεt).

Theorem. [xml’18 JJMS]
I As ε→ 0, xεt := π(gεt)→ π(g0)
I xεt

ε

converges in law to the BM on S2(1
2
) scaled by

λ = 1
2
.

I The horizontal lift, (x̃εt), of (xεt), converges weakly to
the hypoelliptic diffusion with generator L̄ = 1

2
∆hor.
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Using symmetries

Suppose that H is a compact subgroup of a Lie group G
with a left invariant metric.

I Then g = g⊕ h⊥ and there is an ad(H)-invariant
orthogonal splitting :

h⊥ = m0 ⊕m1 ⊕ · · · ⊕ml,

m0 is the space of Ad(H) invariant vectors.
I Take Ak ∈ h, and Y ∈ h⊥.

dgt =

p∑
k=1

γAk(gt) ◦ dBk
t + δY (gt)dt.

The solutions interpolate between translates of the
one parameter group on G and diffusions on H.

I We will take γ →∞ while setting δ = 1. Consider
diffusions on the orbit space G/H.
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Adiabatic limit on homogeneous spaces

Suppose {Ak} and their iterated commutators generate h.

dgεt =
1√
ε

N∑
k=1

Ak(g
ε
t) ◦ dbkt + Y (gεt)dt, gε0 = g0,

I There exists g̃εt , with gεtH = g̃εtH, converging to the
solution of ∂

∂t
ḡ = Ym0(ḡ). Key:

∫
H

Ad(H)(Y )dh = 0 iff
Y ∈ m1 ⊕ · · · ⊕ml,

I If Y ∈ mk is a unit vector, g̃εt/ε converges to a diffusion
with generator λ(Y )

∑dim(mk)
j=1 (Yk,j)

2. associate matrix
eigenvector to eigenfunction of L0, solve Poisson eq.
and use a result of D. Rumynin.

I π(g̃εt/ε) ∈ G/H converges to Markov proces. Paralle
translations along π(g̃εt/ε), converges to stochastic
parallel transports along the limiting diffusions.

I If {Ak} is an o.n.b. of h, λk(Y ) is independent of Y . 13 / 30



Taking the adiabatic limit in geometry

–Taking the adiabatic limit in geometry is popular: Getzler,
Bismut, Lebeau,...,
–The theorem follows from a separation of scales, and :

ẏεt(ω) =
m∑
k=1

Yk (yεt(ω))αk(z
ε
t (ω)), yε0(ω) = y0. (1)

where zεt is a 1
ε
L0 diffusion, αk ‘averages’ to zero w.r.t. the

invariant measure of L0.
Then yεt

ε

converges to an explicit Markov process with rate

ε
1
4 in Wasserstein distance.

[xml, PTRF’17], Lions, Sougnidis, Papaniclaou, Keller,
Varadhan, ...
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Hamiltonian systems
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Averaging

I Let x0 ∈ T n and ω = (ω1, . . . , ωn) where ω1, . . . , ωn are
linearly independent real numbers over Q. Then

lim
t→∞

1

t

∫ t

0

f(x0 + sω)ds =

∫
Tn
f(x)µ(dx), f ∈ L1.

I If
İ = εg(I, θ), θ̇ = ω(I) + εf(I, θ),

then Iε( t
ε
)→ Ī(t), where

d

dt
Ī(t) =

∫
g(Ī(t), θ)µ(dθ).
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Integrable Hamiltonian

I Darboux’s theorem. Given an integrable Hamiltonian
system, for almost every point, there is a canonical
action-angle coordinates such that the Hamiltonian H
is a function of I only. Then ẋt = XH(xt) is equivalent
to

İ = 0, θ̇ = ω(I).

Let us consider a perturbation:
ẋt = (∇H)⊥(xt) + εV (xt). Then H(xεt) is a slow
motion and converges within the canonical charts. 1

I Shape of the effective limit is a challenge beyond the
local coordinates: Non-constant frequencies. more
than 1-degree of freedom, product of one dimensional
Hamiltonians is most promising. Neshdadt, ...

1Early 60’s: Bogolyubov-Mitropolskii, Anosov, 70’s: V I Arnold,
Neishtadt.
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Perturbation of 1-dim. Hamiltonians

M. Brin, M. Freidlin, A.D. Wentzell,...:

dxε,δt =
1

2
δ dBt +

1

ε
J∇H(xε,δt ).

As δ → 0, xε,δt converges weakly to a diffusion x̄εt on graph.
Then take ε→ 0, x̄εt converges weakly to a motion on
graph, deterministic on each edge of the energy graph,
random on vertex.
Bhatin, Dolgopyat, Korolov, Kifer, ...
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The shallow water equation

Suppose we have a shallow water with height H and free
surface z +H.

∂u

∂t
+ u · ∇u = ν∆ut + ξ1 +∇h

∂h

∂t
+ div((z +H)u) = α ∆h+ ξ2.

We then put this on a rotationary frame: ˙̃e = R× e and
obtain a rotationary shallow water equation. Then any
vector A =

∑3
i=1Aiei evolves by

Ȧ =
3∑
i=1

d

dt
(Aiei) =

3∑
i=1

d

dt
Ãi̇̃ei.

Ȧrot := Ȧint +R× A.
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Shallow water in rotational frame

The shallow water equation in rotational frame has an
additional Coriolis force: 2R× u and an additional
centrifugal force R×R× u.
By analyzing the wave forms, Salzman (1962) used a
double Fourier series expansion and obtained a set of
ODE’s. Lorenz (1963) found (also 60) the same equations
by brutally truncating the Fourier modes.

u̇ = −vw + bvz,
v̇ = uw − buz
ẇ = −uv
ẋ = −1

ε
z

ż = 1
ε
x+ buv

(u, v, w) represents slow waves in large scale caused by
rotation of the planet, (x, z) represents gravity wave (eg
surface wave at beach, fast smaller in scale).
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Lorenz system

u̇ = −vw + bvz,
v̇ = uw − buz
ẇ = −uv
ẋ = −1

ε
z

ż = 1
ε
x+ buv

b = u0√
g0l0

, ε = Rossby
b√

1+b2
. We first take ε = 1, b small.

The system has two constants of motion:

u2 + v2 = C1, v2 + w2 + x2 + z2 = C2.

There are no non-trivial solutions such that C1 = 0 or
C2 = 0. We restrict it to the energy surfaces, is it chaotic?
is it integrable?
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Poincare map for hydrodynamic 5d system

The Poincare map for w = 0 section on (z, x) plane 2

R = 1, b = 0.1, C = 1.

2Acknowledgement: Obtained for me by Alexey Kazakov and
Dimitry Turaev.
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Hamiltonian

Setting u =
√
C cosφ′, v =

√
C sinφ′, φ′ = φ− εbx. The

system is in fact a Hamiltonian system in (u, v, z, x). with

H =
1

2
C sin2(φ′ + εbx) +

1

2
(w2 + z2 + x2),

The part chaotic and part integrable nature is
characteristic of Hamiltonian systems.
Restricted to a constant energy surface u2 + v2 = C, It is
also equivalent to the nearly integrable system:

ψ̇ = w − bz
ẇ = −C sin(2ψ)
ż = x+ bC sin(2ψ)
ẋ = −z
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Stochastic integrable systems

If we consider a time dependent random energy∑n
i=1HiḂ

i
t on R2n (or symplectic manifolds), we are

naturally lad to a stochastic Hamiltonian system:

dyt =
n∑
i=1

XHi(yt) ◦ dBi
t.

Consider now a small perturbation

dyt =
1

ε

∑
i

XHi(yt) ◦ dBi
t +K(yt)dt.

Theorem. [xml, nonlinearity 08.] Inside canonical coord.
I Hi(y s

ε
) converges in Lp to solution of an ODE, speed

of convergence is controlled above by c(t)ε
1
4 .

I Fluctuation from limit. If K is a Hamiltonian vector
field, then Hi(y s

ε2
) converges to a Markov process.
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Stochastic Lorenz equation

Set H1 = 1
2
w2 + sin2 ψ, H2 = 1

2
(z2 + x2).

ψ̇ = w −bz
ẇ = −C sin(2ψ)
ż = x +bC sin(2ψ)
ẋ = −z

Consider
dψ = w ◦ dB1 −bzdt
ẇ = −C sin(2ψ) ◦ dB1

ż = x ◦ dB2 +bC sin(2ψ)dt
ẋ = −z ◦ dB2

.

Set Hb
i (t) = H2(xt/b, yt/b). Observe that Htot = H1 +H2 is

a first integral, so H1, H2 are bounded,
d

dt
Hb

2(xt/b, yt/b) = Czt/b sin(2ψt/b).
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Product canonical coordinates

x =
√

2I2 cos θ2, z =
√

2I2 sin θ2.

Let (I1, θ1) denote the canonical coordinate for the
pendulum,

H1 =
1

2
w2 + sin2 ψ,

which divides into two phases: H < C and H > C. Set
κ(I1) := H̃1(I1)

C
. On H < C,

I1 =
4

2π

∫ sin−1 H̃1(I1)
C

0

√
2H̃(I1)− 2C sin2 ψ dψ.

θ1 =
d

dI1

∫ ψ

0

√
2H̃1(I1)− 2C sin2 ψ dψ.

We take the product canonical coordinates. Observe that
H1 +H2 is a first integral.
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Couple oscillator with pendulum
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[xml+ Patching18+].

In canonical local coordinates, the perturbation vector
field can be written with elliptic integrals, in 4 lines.
The reduced equation in liberation phase is:

dθ1 = ω(I1)dB1
t + bK̃θ1dt

dθ1 = dB2
t + bK̃θ2dt

dI1 = bK̃I1dt

dI2 = bK̃I2dt.

All functions are explicit, involving elliptic integrals. The
drifts in the angle components are complicated involving
both I2, I1 and θ2. The invariant measures turns out to be
the normalized Lebesgue measure. Using a result in
[xml’08], [ c.f. Stratonovich, A.D. Khasminski, M. Freidlin,
D. Athreya 09,...], explicit limits can be obtained, with rate
of convergence. 28 / 30



Rough exit time estimates

In the liberation phase,

T b = inf
t≥0
{κ(I1(t)) = δ1, or κ(I1(t)) = (1 ∧ Htot

C
)− δ2}.

Then, [xml+pathcing 18+]

T b ≥

sin−1
√

C
Htot

κ(0)− sin−1
√

C
Htot

δ1

b
√
C/2


∧

sin−1
√

C
Htot

(1 ∧ Htot
C

)− δ2 − sin−1
√

C
Htot

κ(0)

b
√
C/2


A separate formula is available in the rotation phase.
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Effective limits

–Despite that K is not Hamiltonian, there is no visible
movement of Hi on [0, 1

b
]. (for the liberating case:

E

{
sup
s≤t
|H1(y s

b
∧T b)−Hi(y0)|

∣∣∣T b > t/b

}
≤ 2c(t)b

1
4

1− b1/4 c(t)
c̃

.

–Within the liberaing phrase, Hb
1(t/b2) converges to

dζt =
√
a(ζt) ◦ dWt + γ1(ζt)dt

a(I1) =
CκI2

2K(κ)

∫ u0(κ)

0

sn(u, k)dn(u, k)φ̂(u, k)du.

φ̂(u; k) = [A1(κ)+F1(u, κ)eu/
√

2C +[A2(κ)+F2(u, κ)]e−u/
√

2C

γ1 =
1

2

∫
[0,2π]2

LKΘdθ.

Θ =
√

2KI2φ̂(u;κ) sin(θ2)
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