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Introduction



Viscous and non—viscous HJ equations
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#(0,) = g € UC(RY)
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(x,w) — Txw is jointly measurable;
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We assume that A and H satisfy (A1)—-(A2) and (H1)-(H2)
respectively with bounds independent of w.
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where “+" corresponds to € > 0 and “—" to 6 < 0.By homoge-
nization for convex H, with probability 1

us(t, X, w) = Ug(t,x) = Ox — tH(H) ase — 0,

where

_ 1
p* —alpl = H() <5 p*—alpl.

H(X7p7w) < 2

N =

Thus H(+a) < 0. Since H(0) = 0, we infer that H is not convex.
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The argument above
works only for linear (in fact, monotone) initial data;
relies on Hopf-Cole transformation;
depends on the control representation formula for ug;
is valid only for d = 1.

We show that homogenization for linear initial data implies
homogenization for general UC initial data.

Such a result is refined (and simplified) in the stationary
ergodic setting.

For d = 1, we provide a class of examples of nonconvex
Hamiltonians satisfying H(x,0,w) = 0 for which the
corresponding viscous/nonviscous HJ equation homogenizes.
Our arguments do not use Hopf-Cole transformation or
representation formulas, but rely on the fact that d = 1.
The result is new in the viscous case.
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The solution ug of
e X 2 € X el — 8 d
Dot — etr (A (7) D2y ) +H<7,Dxu ) =0 in(0,400) xR
5 5

with initial datum w°(0,x) = 0 - x satisfies u(t,x) = eup (£, %),
where uy stands for u}.

The solution g of

0t + H(Dxu) =0, 1(0,x) =0 x
is of the form  Ty(t,x) := 6 - x — tH(6).
If (HJz) homogenizes, then, in particular,

—H(0) = lim uj(1,0) = Ilrg eup(1/e,0).

e—0t
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Let A and H satisfy
(A1)-(A2) and (H1)—(H2) respectively. Assume that the Cauchy problem
for (HJ1) is well-posed and one of the following two conditions holds:

Sm(): [H(x,pr) — H(x, pa)] < m(lps — pal) ¥x, pr, p2 € RY,
VO 3k o |ug(t,x) — ug(t,y)| < klx —y| ¥V x,y €RY, t >0.

Finally, suppose that there exists a continuous (and superlinear)
H:R? — R such that

Vo € ]Rd U(g(tsx) = 0-x— tﬁ(@) as € — 0+.
Then (HJ.) homogenizes.

Remark. If (H3) holds or (L) holds with x = x(6) locally bounded in 0,
then H is continuous.
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The outlined idea of the proof uses characterization results for
strongly continuous semi-groups on UC([0, +00) x R?) and
uniform (in ) finite speed of propagation for the semigroup
generated by the Cauchy problem (HJ.).

O. Alvarez, M. Bardi, Arch. Ration. Mech. Anal. (2003):
periodic setting, fully nonlinear degenerate parabolic PDEs.

The authors introduce a notion of ergodicity that is shown to
be a sufficient condition for homogenization.
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(£
M — ¢(#) as t — 400 uniformly in x.
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F(x,p, X) := —tr(A(x)X) + H(x,p) be Z9-periodic in x.
The function F is said to be if the periodic
solution wy of

we — tr (A(x)D2w) + H(x,0 + Dyw) =0 in (0, +00) x R

w(0,-) =0 on RY
satisfies

WG(t7 X)
t
To see a connection with our results, note that
ug(t,x) = (6, x) +ewp(t/e,x/e).

The ergodicity is equivalent to the statement that, for every fixed
t >0,

lim wuf(t,x) = (6,x) — t H() uniformly in x € R,
e—0+

— ¢(f) as t — +oo uniformly in x.



Assume that, for a fixed
0 € RY,

a 5 _ 7* o
8I_|>r(r)1Jr up(1,0,w) = —H(H) a.s. in Q.

Then

u§(t, X, w) e 0 - x — tH(B) in [0, 4+00) x RY a.s. in Q.
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Let us put ourself in a stationary ergodic setting with d = 1.

Let A satisfy (A1)—-(A2), and HL (-, ,w) € H(ao, Bo,7), where bounds
and parameters are independent of w.

Assume, in addition, that (HJ¥) with Hamiltonians H+ homogenizes,

Hi(x,0,w)=0 Vx€Randw e Q.

Set

H(X ) H+(X,p,(,g/‘) pr> 0
P, W) =
o H_(x,p,w) if p<O0.

The condition Hy(+,0,-) = 0 can be relaxed in favor of

Hi (-, po,-) = ho for some po, hg € R.

The homogenization requirement for Hy is met if, for
example,

H. are convex in p;
A =0 and Hy are level set convex;

H. are of the form for which we already obtained homogenization.
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Let d =1 and A, H as
above. Then (HJ¥) homogenizes, with

where H, and H_ are the effective Hamiltonians obtained by
homogenizing (HJ¥) with Hy and H_ in place of H.

The effective Hamiltonian H is not convex in general.
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same type of monotonicity of its initial datum, for every t > 0 and
w. For instance, ug(t,-,w) is nondecreasing if # > 0, in particular it
is also a solution of
£ X € X .
u; — €A (g) ug, + Hy (f./ ux,w) =0 in(0,+00) x R.

g

Since this equation homogenizes, we get

3 H() := — lim u5(1,0,w) = H,(0) a.s. in Q.
0

e—0t



The solution ug of
u; —eA (f) u, + H (i, ui,w) =0 in(0,+00) xR,
£ £

with initial datum (0, x) = 0x is such that uj(t,-,w) has the
same type of monotonicity of its initial datum, for every t > 0 and
w. For instance, ug(t,-,w) is nondecreasing if # > 0, in particular it
is also a solution of

u; —eA (g) ug, + Hy (57 ui,w) =0 in(0,+00) x R.

g

Since this equation homogenizes, we get

3 H() := — lim u5(1,0,w) = H,(0) a.s. in Q.

e—0t

The argument for 8 < 0 is similar.
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Due to uj(t,x) = cup (£,%), it is enough to prove it for & = 1.

gle

Assume that wup is a solution of

(up)e — (ug)xx + H(x, (ug)x) =0 in (0,400) x R,
up(0, x) = Ox in R,

with H smooth. By deriving the equation w.r.t. x, we get that
v := (up)x is a solution of

Ve — Vi + OxH(x, v) + OpH(x,v)vx =0 in (0, +00) x R,
v(0,x) =0 in R.

Since 0xH(x,0) =0, v =0 if § = 0. By comparison, we conclude
that

(up)x =v =0 if >0, (up)x =v <0 if6 <0,

yielding the asserted monotonicity of ug(t, ).
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Let H: Q — C(RY x RY) be a measurable random
field. We shall say that H(x, p,w) is if there is a
constant hy € R such that H(-, po,:) = hp on R x Q.

Let d =1 and A be as
above. Let H: Q — C (R x R) be a stationary random field
satisfying H(-,-,w) € H(v, ap, Bo) for every w. Let us furthermore
assume that

H is pinned at p1 < po < -+ < Ppp;

H(x,-,w) is convex (or level-set convex if A= 0) on each of
the intervals (—oo, p1), (p1,P2), - -, (pn, +00), for every
(x,w) e R x Q.
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The Hamiltonian H can be written in the following form:

Hi(x,p,w)  ifp<p
<

Ha(x, p,w if <
H(x, prw) = h(x, p,w) p1 < p < po
Hni1(x, pyw) if p = pn
where Hy, ..., Hpy1 are stationary Hamiltonians belonging to H(~, ao, o) for

every w and such that
Hi,...,Hny1  are convex if AZ0 or level-set convex if A= 0.
Then (HJZ) homogenizes, with
Pl (0) if 0 < P1
H>(0) if p1 <0< p
ﬁnbl(g) |f9>pn
where Hy,--- ,H,y1 are the effective Hamiltonians obtained by homogenizing
(HJZ) with Hi, ..., Hpt1 in place of H.



Thank you

for your attention!



