Thick morphisms and homotopy bracket structures

Theodore Voronov

University of Manchester, UK, and Tomsk State University, Russia

LMS-EPSRC Durham Symposium Higher Structures in *M*-Theory 12 to 18 August 2018 Monday 13 August, 16:20-17:00

"Microformal geometry" in brief

Key points: thick morphisms and nonlinear pullbacks

- There is a notion of *thick* (or *microformal*) *morphisms* of (super)manifolds generalizing ordinary smooth maps;
- Key difference: the pullback Φ^* by a thick morphism $\Phi: M_1 \rightarrow M_2$,

 $\Phi^*\colon \mathbf{C}^\infty(M_2) \to \mathbf{C}^\infty(M_1)\,,$

is, in general, **nonlinear** (actually, formal) map of infinite-dimensional manifolds of even functions.

"Microformal geometry" in brief

Key points: thick morphisms and nonlinear pullbacks

- There is a notion of *thick* (or *microformal*) *morphisms* of (super)manifolds generalizing ordinary smooth maps;
- Key difference: the pullback Φ^* by a thick morphism $\Phi: M_1 \rightarrow M_2$, $\Phi: M_1 \rightarrow M_2$,

 $\Phi^*\colon \mathbf{C}^\infty(M_2) \to \mathbf{C}^\infty(M_1)\,,$

is, in general, **nonlinear** (actually, formal) map of infinite-dimensional manifolds of even functions.

"Why we care"; in particular:

- Motivation: L_{∞} -morphisms of homotopy Poisson brackets;
- Applications and development: homotopy structures; duality of vector spaces and bundles; fermionic and quantum versions;
- Hints at a "nonlinear extension" of algebra-geometry duality.

Motivation

L_{∞} -algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

- L_∞ -algebra (in antisymmetric version) L
- L_{∞} -algebra (in symmetric version) $\Pi L = V$
- (Formal) Q-structure on V, i.e., $Q \in \operatorname{Vect}(V)$, $\tilde{Q} = 1$, $Q^2 = 0$.

Motivation

L_{∞} -algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

- L_∞ -algebra (in antisymmetric version) L
- L_{∞} -algebra (in symmetric version) $\Pi L = V$
- (Formal) *Q*-structure on *V*, i.e., $Q \in \text{Vect}(V)$, $\tilde{Q} = 1$, $Q^2 = 0$.

L_∞ -morphisms of L_∞ -algebras as Q-maps

 L_{∞} -morphism $L \rightsquigarrow K \quad \Leftrightarrow \quad (\text{nonlinear}) \ Q$ -morphism $\Pi L \rightarrow \Pi K$

Motivation

L_{∞} -algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

- L_∞ -algebra (in antisymmetric version) L
- L_{∞} -algebra (in symmetric version) $\Pi L = V$
- (Formal) Q-structure on V, i.e., $Q \in \operatorname{Vect}(V)$, $\tilde{Q} = 1$, $Q^2 = 0$.

L_∞ -morphisms of L_∞ -algebras as Q-maps

 L_{∞} -morphism $L \rightsquigarrow K \quad \Leftrightarrow \quad (\text{nonlinear}) \ Q$ -morphism $\Pi L \rightarrow \Pi K$

Problem: what for functions?!

If we have L_{∞} -brackets on $C^{\infty}(M_1)$ and $C^{\infty}(M_2)$ (e.g. homotopy Poisson or homotopy Schouten), what is a "natural" construction for L_{∞} -morphisms? (Should be NONLINEAR maps! Pullbacks will not work!)

Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

$$\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} \mathfrak{A}^{k+1}(M)$$

 $\uparrow \qquad \uparrow$

 $\Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M),$

and vertical arrows map Koszul bracket to the Schouten bracket.

Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

$$\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} \mathfrak{A}^{k+1}(M)$$

 $\uparrow \qquad \uparrow$

 $\Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M),$

and vertical arrows map Koszul bracket to the Schouten bracket. **Homotopy case:** for a homotopy Poisson M, one can still construct

but vertical arrows cannot map many 'higher Koszul brackets' into one Schouten bracket. An L_{∞} -morphism?

Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

$$\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} \mathfrak{A}^{k+1}(M)$$

 $\uparrow \qquad \uparrow$

 $\Omega^{k}(M) \xrightarrow{d} \Omega^{k+1}(M),$

and vertical arrows map Koszul bracket to the Schouten bracket. **Homotopy case:** for a homotopy Poisson M, one can still construct

but vertical arrows cannot map many 'higher Koszul brackets' into one Schouten bracket. An L_{∞} -morphism? SOLUTION: pullback by a **thick morphism**!

Definition of a microformal (thick) morphism

Let M_1 , M_2 be supermanifolds with local coordinates x^a , y^i . Let p_a and q_i be conjugate momenta (fiber coordinates in T^*M_1 , T^*M_2) and $\omega_1 = dp_a dx^a$, $\omega_2 = dq_i dy^i$ be the symplectic forms.

Definition of a microformal (thick) morphism

Let M_1 , M_2 be supermanifolds with local coordinates x^a , y^i . Let p_a and q_i be conjugate momenta (fiber coordinates in T^*M_1 , T^*M_2) and $\omega_1 = dp_a dx^a$, $\omega_2 = dq_i dy^i$ be the symplectic forms.

Definition

A microformal (aka thick) morphism $\Phi: M_1 \rightarrow M_2$ is a formal Lagrangian submanifold $\Phi \subset T^*M_2 \times T^*M_1$ w.r.t. $\omega_2 - \omega_1$ specified locally by a generating function of the form S(x, q):

$$q_i dy^i - p_a dx^a = d(y^i q_i - S)$$
 on Φ ,

where S(x, q), regarded as a part of the structure, is a formal power series in momenta

$$S(x,q) = S_0(x) + S^i(x)q_i + \frac{1}{2}S^{ij}(x)q_jq_i + \frac{1}{3!}S^{ijk}(x)q_kq_jq_i + \dots$$

Pullback by a microformal morphism

Construction of pullback

Let $\Phi: M_1 \rightarrow M_2$ be a thick morphism with the generating function S. The *pullback* Φ^* is a formal mapping $\Phi^*: \mathbf{C}^{\infty}(M_2) \rightarrow \mathbf{C}^{\infty}(M_1)$ of functional supermanifolds (of 'bosonic' functions) defined by

$$\Phi^*[g](x) = g(y) + S(x,q) - y^i q_i,$$

for $g \in \mathbf{C}^{\infty}(M_2)$, where q_i and y^i are determined from the equations

$$q_i = rac{\partial g}{\partial y^i}(y), \quad y^i = (-1)^{\tilde{\imath}} rac{\partial S}{\partial q_i}(x,q)$$

(giving $y^i = (-1)^{\tilde{i}} \frac{\partial S}{\partial q_i}(x, \frac{\partial g}{\partial y}(y))$ solvable by iterations).

Heuristically, if $f = \Phi^*[g]$, then $\Lambda_f = \Lambda_g \circ \Phi$, where $\Lambda_f = \operatorname{gr}(df)$.

General form of pullback

Example

Let $S(x,q) = S^0(x) + \varphi^i(x)q_i$. Then: $\Phi^*[g] = S^0 + \varphi^*g$. (NB: ordinary maps have generating functions $S = \varphi^i(x)q_i$.)

General form of pullback

Example

Let
$$S(x,q) = S^0(x) + \varphi^i(x)q_i$$
. Then: $\Phi^*[g] = S^0 + \varphi^*g$.
(NB: ordinary maps have generating functions $S = \varphi^i(x)q_i$.)

For a general $S(x,q) = S^0(x) + \varphi^i(x)q_i + \dots$, the equation $y^i = (-1)^{\tilde{i}} \frac{\partial S}{\partial q_i}(x, \frac{\partial g}{\partial y}(y))$ defines a map $\varphi_g \colon M_1 \to M_2$ as a formal perturbation of $\varphi = \varphi_0 \colon M_1 \to M_2$:

$$\varphi_g^i(x) = \varphi^i(x) + S^{ij}(x)\partial_j g(\varphi(x)) + \dots,$$

and $\Phi^*[g](x) = (g(y) + S(x,q) - y^i q_i)|_{y=\varphi_g(x),q=\partial g/\partial y(\varphi_g(x))}$, which gives Φ^* as a formal nonlinear differential operator:

General form of Φ^* : $\mathbf{C}^{\infty}(M_2) \rightarrow \mathbf{C}^{\infty}(M_1)$

$$\Phi^*[g](x) = S^0(x) + g(\varphi(x)) + \frac{1}{2}S^{ij}(x)\partial_i g(\varphi(x))\partial_j g(\varphi(x)) + \dots$$

Coordinate invariance

Transformation law for generating functions of thick morphisms

A generating function S(x,q) as a geometric object on $M_1 \times M_2$ transforms by

$$S'(x',q') = S(x,q) - y^i q_i + y^{i'} q_{i'}$$
.

Here S(x, q) is the expression for S in 'old' coordinates and S'(x', q') is the expression for S in 'new' coordinates. At the r.h.s., the variables x^a and $y^{i'}$ are given by substitutions: $x^a = x^a(x')$ and $y^{i'} = y^{i'}(y)$, while q_i and y^i are determined from

$$q_i = rac{\partial y^{i'}}{\partial y^i}(y) \, q_{i'} \,, \quad y^i = (-1)^{\widetilde{\imath}} rac{\partial S}{\partial q_i}(x,q) \,.$$

The transformation law satisfies the cocycle condition. The canonical relation $\Phi \subset T^*M_2 \times (-T^*M_1)$ specified by S is well-defined. Pullbacks do not depend on a choice of coordinates.

Key fact: derivative of pullback

Theorem

Let $\Phi: M_1 \rightarrow M_2$ be a thick morphism. Consider the pullback

$$\Phi^*\colon \mathbf{C}^{\infty}(M_2)\to \mathbf{C}^{\infty}(M_1)\,.$$

Then for every $g \in \mathbf{C}^{\infty}(M_2)$, the derivative $T\Phi^*[g]$ is given by

$$T\Phi^*[g] = \varphi_g^* \,,$$

where φ_g^* : $C^{\infty}(M_2) \to C^{\infty}(M_1)$ is the usual pullback with respect to the map φ_g : $M_1 \to M_2$ defined by $y^i = (-1)^{\tilde{i}} \frac{\partial S}{\partial q_i}(x, \frac{\partial g}{\partial y}(y))$ (depending perturbatively on g, $\varphi_g = \varphi_0 + \varphi_1 + \varphi_2 + \ldots$).

Corollary

For every g, the derivative $T\Phi^*[g]$ of Φ^* is an algebra homomorphism $C^{\infty}(M_2) \to C^{\infty}(M_1)$.

Composition law

Consider thick morphisms Φ_{21} : $M_1 \rightarrow M_2$ and Φ_{31} : $M_2 \rightarrow M_3$ with generating functions $S_{21} = S_{21}(x, q)$ and $S_{32} = S_{32}(y, r)$.

Theorem

The composition $\Phi_{32} \circ \Phi_{21}$ is well-defined as a thick morphism $\Phi_{31}: M_1 \rightarrow M_3$ with the generating function $S_{31} = S_{31}(x, r)$, where

$$S_{31}(x,r) = S_{32}(y,r) + S_{21}(x,q) - y^i q_i$$

and y^i and q_i are expressed through (x^a, r_μ) from the system

$$q_i = rac{\partial S_{32}}{\partial y^i}(y,r), \quad y^i = (-1)^{\tilde{\imath}} rac{\partial S_{21}}{\partial q_i}(x,q),$$

which has a unique solution as a power series in r_{μ} and a functional power series in S_{32} .

Further facts

Formal category

Composition of thick morphisms is associative and and $(\Phi_{32} \circ \Phi_{21})^* = \Phi_{21}^* \circ \Phi_{32}^*$. In the lowest order, the composition is as in $\mathcal{SMan} \rtimes \mathbf{C}^{\infty}$, whose arrows are pairs (φ_{21}, f_{21}) with the composition $(\varphi_{32}, f_{32}) \circ (\varphi_{21}, f_{21}) = (\varphi_{32} \circ \varphi_{21}, \varphi_{21}^* f_{32} + f_{21})$. Thick morphisms form a *formal category* ("formal thickening" of $\mathcal{SMan} \rtimes \mathbf{C}^{\infty}$). Denote it \mathcal{E} Thick.

"Fermionic version"

There is a fermionic version based on anticotangent bundles ΠT^*M and odd generating functions $S(x, y^*)$: "odd thick morphisms" $\Psi: M_1 \Rightarrow M_2$ induce nonlinear pullbacks $\Psi^*: \Pi \mathbb{C}^{\infty}(M_2) \to \Pi \mathbb{C}^{\infty}(M_1)$ of **odd** functions ("fermionic fields") and their composition gives another formal category, $\Im Thick$, which contains $\Im Man \rtimes \Pi \mathbb{C}^{\infty}$.

Recollection: L_{∞} -algebras and L_{∞} -morphisms – 1

We consider $\mathbb{Z}_2\text{-}\mathsf{graded}$ version. (One can include a $\mathbb{Z}\text{-}\mathsf{grading.})$

There are two parallel notions: "symmetric" and "antisymmetric".

Definition (L_{∞} -algebra: antisymmetric version)

A vector space $L = L_0 \oplus L_1$ with a collection of multilinear operations

$$[-,\ldots,-]: \underbrace{L \times \ldots \times L}_{k \text{ times}} \to L \quad \text{(for } k = 0, 1, 2, \ldots)$$

such that

- the parity of the *k*th bracket is *k* mod 2;
- all brackets are antisymmetric (in \mathbb{Z}_2 -graded sense);
- $\sum_{r+s=n} \sum_{\text{shuffles}} (-1)^{\alpha+\sigma} [[x_{\sigma(1)}, \ldots, x_{\sigma(r)}], \ldots, x_{\sigma(r+s)}] = 0,$ for all $n = 0, 1, 2, 3, \ldots$

(here $(-1)^{\alpha}$ comes from parities and $(-1)^{\sigma} = \operatorname{sign} \sigma$).

Recollection: L_{∞} -algebras and L_{∞} -morphisms – 2

A parallel notion is as follows.

Definition (L_{∞} -algebra: symmetric version)

A vector space $V = V_0 \oplus V_1$ with a collection of multilinear operations

$$\{-,\ldots,-\}: \underbrace{V \times \ldots \times V}_{k \text{ times}} \to V \quad (\text{for } k = 0, 1, 2, \ldots)$$

such that

- all brackets are odd;
- all brackets are symmetric (in Z₂-graded sense);
- $\sum_{r+s=n} \sum_{\text{shuffles}} (-1)^{\alpha} \{ \{ v_{\sigma(1)}, \dots, v_{\sigma(r)} \}, \dots, v_{\sigma(r+s)} \} = 0,$ for all $n = 0, 1, 2, 3, \dots$

(here $(-1)^{\alpha}$ comes from parities only).

Recollection: L_{∞} -algebras and L_{∞} -morphisms – 3

Equivalent structures:

- Antisymmetric L_∞ -algebra structure on L
- Symmetric L_{∞} -algebra structure on ΠL
- Homological vector field $Q \in \operatorname{Vect}(\Pi L)$, i.e., $\tilde{Q} = 1$, $Q^2 = 0$

(Also: P_{∞} - on L^* and S_{∞} - on ΠL^* , to be discussed later.) NB: we identify super vector spaces with supermanifolds.

Recollection: L_{∞} -algebras and L_{∞} -morphisms – 4

Relation between brackets in L and ΠL

$$\{\Pi x_1, \ldots, \Pi x_k\} = (-1)^{(k-1)\tilde{x}_1 + \ldots \tilde{x}_{k-1}} \Pi [x_1, \ldots, x_k].$$

Relation with Q

•
$$Q(\xi) = \sum \frac{1}{n!} \{ \xi, \dots, \xi \}$$
, where $\xi \in V = \prod L$

• Higher derived bracket formula: $\iota([x_1, \ldots, xk]) = \pm [\ldots [Q, \iota(x_1)], \ldots, \iota(x_k)](0)$, for $x = x^i e_i \in L$, and $\iota(x) := (-1)^{\tilde{x}} x^i \partial / \partial \xi^i \in \operatorname{Vect}(\Pi L)$ (sign fixed by linearity condition).

Description of L_{∞} -morphisms

An L_{∞} -morphism $L_1 \rightsquigarrow L_2$ is given by a sequence $\Lambda^n L_1 \rightarrow L_2$ or $S^n(\Pi L_1) \rightarrow \Pi L_2$ satisfying a sequences of identities ("higher homotopies"). It is equivalent to a Q-map $\Pi L_1 \rightarrow \Pi L_2$.

Digression: P_{∞} - and S_{∞} -structures

Let M be a (super)manifold. Then a P_{∞} - (S_{∞} -) structure on M is an antisymmetric (resp., symmetric) L_{∞} -structure on $C^{\infty}(M)$ such that the brackets are multiderivations.

A P_∞-structure on M is specified by an even
 P ∈ C[∞](ΠT*M) satisfying [P, P] = 0, by the formula:

$${f_1, \ldots, f_k}_P = [\ldots [P, f_1], \ldots, f_k]|_M.$$

• An S_{∞} -structure on M is specified by an odd $H \in C^{\infty}(T^*M)$ satisfying (H, H) = 0, by the formula:

$${f_1, \ldots, f_k}_H = (\ldots (H, f_1), \ldots, f_k)|_M.$$

Homological vector fields ("Hamilton-Jacobi"):

•
$$Q_P = \int_M Dx P(x, \frac{\partial \psi}{\partial x}) \frac{\delta}{\delta \psi(x)} \in \operatorname{Vect}(\Pi \mathbb{C}^{\infty}(M))$$

• $Q_H = \int_M Dx H(x, \frac{\partial f}{\partial x}) \frac{\delta}{\delta f(x)} \in \operatorname{Vect}(\mathbb{C}^{\infty}(M))$

Key theorem: pullback as an L_{∞} -morphism

Let M_1 and M_2 be S_∞ -manifolds, with $H_i \in C^\infty(T^*M_i)$, i = 1, 2.

Definition of an S_{∞} ("homotopy Schouten") thick morphism

A thick morphism $\Phi: M_1 \rightarrow M_2$ is S_{∞} if $\pi_1^* H_1 = \pi_2^* H_2$ on Φ .

Note: this is expressed by the Hamilton-Jacobi equation

$$H_1\left(x,\frac{\partial S}{\partial x}\right) = H_2\left(\frac{\partial S}{\partial q},q\right).$$

Theorem

If a thick morphism of S_{∞} -manifolds $\Phi: M_1 \rightarrow M_2$ is S_{∞} , then the pullback

$$\Phi^*\colon \operatorname{\mathbf{C}^{\infty}}(M_2) o \operatorname{\mathbf{C}^{\infty}}(M_1)$$

is an L_{∞} -morphism of the homotopy Schouten brackets. In greater detail: Φ^* intertwines the homological vector fields $Q_{H_2} \in \operatorname{Vect}(\mathbf{C}^{\infty}(M_2))$ and $Q_{H_1} \in \operatorname{Vect}(\mathbf{C}^{\infty}(M_1))$.

Another application: adjoint for a nonlinear transformation

Theorem

1. For a fiberwise map of vector bundles $\Phi\colon\thinspace E_1\to E_2,$ there is a fiberwise thick morphism

$$\Phi^*: E_2^* \longrightarrow E_1^*,$$

with the same properties as the usual adjoint and coinciding with it if Φ is fiberwise-linear. Construction: $\Phi^* := (\kappa \times \kappa) (\Phi)^{op} \subset T^* E_1^* \times (-T^* E_2^*)$, where $\kappa \colon T^* E \to T^* E^*$ is the Mackenzie–Xu diffeomorphism. 2. The obtained pushforward of functions on the dual bundles

$$\Phi_* := (\Phi^*)^* \colon \operatorname{\mathbf{C}}^\infty(E_1^*) \to \operatorname{\mathbf{C}}^\infty(E_2^*)$$

if restricted on the space of sections $\mathbf{C}^{\infty}(M, E_1)$ takes it to $\mathbf{C}^{\infty}(M, E_2)$ and coincides on sections with $\Phi_*(\mathbf{v}) = \Phi \circ \mathbf{v}$.

Recollection: L_{∞} -algebroids

• An L_{∞} -algebroid is a vector bundle $E \to M$ with an antisymmetric L_{∞} -algebra structure on sections and a sequence of *n*-ary anchors $E \times_M \ldots \times_M E \to TM$ so that the Leibniz identities hold:

$$[u_1,\ldots,u_{n-1},fu_n] = a(u_1,\ldots,u_{n-1})(f) u_n + (-1)^{\alpha} f[u_1,\ldots,u_n],$$

where $(-1)^{\alpha} = (-1)^{(\tilde{u}_1 + ... + \tilde{u}_{n-1} + n)\tilde{f}}$.

- An L_{∞} -algebroid structure on $E \to M$ is equivalent to a (formal) homological vector field on the supermanifold ΠE .
- An L_∞-morphism of L_∞-algebroids Φ: E₁ → E₂ is specified by a map (in general, nonlinear) Φ: ΠE₁ → ΠE₂ such that the corresponding homological vector fields are Φ-related.
- Example: all anchors assemble into an L_{∞} -morphism $\Pi E \rightarrow \Pi T M$.

L_{∞} -morphisms of Lie-Poisson and Lie-Schouten brackets

Theorem

An L_{∞} -morphism of L_{∞} -algebroids over a base M induces L_{∞} -morphisms of the homotopy Poisson and homotopy Schouten algebras of functions on the dual and antidual bundles respectively.

Corollary

The anchor for an $L_\infty\text{-algebroid}\ E\to M$ induces $L_\infty\text{-morphisms}$

 $\mathbf{C}^\infty(\Pi E^*) \to \mathbf{C}^\infty(\Pi T^*M)$

for the homotopy Schouten brackets, and

$$\Pi \mathbf{C}^{\infty}(E^*) \to \Pi \mathbf{C}^{\infty}(T^*M).$$

for the homotopy Poisson brackets.

Application to a homotopy Poisson manifold

In particular, we have the following:

Corollary

On a homotopy Poisson manifold M, there is an L_∞ -morphism

$$\mathbf{\Omega}(M) = \mathbf{C}^{\infty}(\Pi TM)
ightarrow \mathbf{C}^{\infty}(\Pi T^*M) = \mathfrak{A}(M) \,,$$

between the higher Koszul brackets on forms (induced by a homotopy Poisson structure) and the canonical Schouten bracket on multivector fields.

(This was our initial problem discussed in the beginning.)

Quantum pullbacks and quantum thick morphisms

Definition

A quantum pullback $\hat{\Phi}^*$: $\mathit{OC}^\infty_\hbar(M_2) o \mathit{OC}^\infty_\hbar(M_1)$ is defined by

$$(\hat{\Phi}^*[w])(x) = \int_{\mathcal{T}^*\mathcal{M}_2} Dy \mathcal{D}q \ e^{\frac{i}{\hbar}(S_\hbar(x,q)-y^iq_i)} w(y) \,.$$

A quantum thick (or microformal) morphism $\hat{\Phi}: M_1 \rightarrow_{\hbar} M_2$ is the corresponding arrow in the dual category.

Here $S_{\hbar}(x,q)$ is a quantum generating function:

$$S_{\hbar}(x,q) = S_{\hbar}^{0}(x) + \varphi_{\hbar}^{i}(x)q_{i} + \frac{1}{2}S_{\hbar}^{ij}(x)q_{j}q_{i} + \frac{1}{3!}S_{\hbar}^{ijk}(x)q_{k}q_{j}q_{i} + \dots$$
$$OC_{\hbar}^{\infty}(M) \text{ is the algebra of oscillatory wave functions, i.e. sums of formal expressions $w(x) = a_{\hbar}(x)e^{\frac{i}{\hbar}b_{\hbar}(x)}$, where $a_{\hbar}(x)$ and $b_{\hbar}(x)$ are formal power series in \hbar .
 $(Dq := (2\pi\hbar)^{-n}(i\hbar)^{m}Dq$ in dimension $n|m$.$$

Classical limit

Theorem

Let $\hat{\Phi}: M_1 \rightarrow_{\hbar} M_2$ be a quantum thick morphism with a quantum generating function S_{\hbar} . Consider $S_0(x, q) := \lim_{\hbar \to 0} S_{\hbar}(x, q)$ as the (classical) generating function of a (classical) thick morphism $\Phi: M_1 \rightarrow M_2$. Then for any oscillatory wave function of the form $w(y) = e^{\frac{i}{\hbar}g(y)}$ on M_2 , the quantum pullback given by

$$\hat{\Phi}^*\left[e^{\frac{i}{\hbar}g}\right] = e^{\frac{i}{\hbar}f_{\hbar}(x)},$$

where $f_{\hbar} = \Phi^*[g] + O(\hbar)$, and Φ^* is the pullback by the classical microformal morphism $\Phi: M_1 \rightarrow M_2$ defined by $S_0(x, q)$.

We say that $\Phi = \lim_{\hbar \to 0} \hat{\Phi}$.

Explicit formula for quantum pullback

Suppose

$$S_{\hbar}(x,q) = S^{0}_{\hbar}(x) + \varphi^{i}_{\hbar}(x)q_{i} + S^{+}_{\hbar}(x,q),$$

where $S_{\hbar}^{+}(x,q)$ is the sum of all terms of order ≥ 2 in q_i .

Theorem

The action of $\hat{\Phi}^*$ defined by $S_{\hbar}(x,q)$ can be expressed as follows:

$$\left(\hat{\Phi}^*w\right)(x) = e^{\frac{i}{\hbar}S_{\hbar}^{0}(x)} \left(e^{\frac{i}{\hbar}S_{\hbar}^{+}\left(x,\frac{\hbar}{i}\frac{\partial}{\partial y}\right)}w(y)\right)|_{y^{i}=\varphi_{\hbar}^{i}(x)}$$

Hence the quantum pullback $\hat{\Phi}^*$ is a special type formal linear differential operator over a 'quantum-perturbed' map $\varphi_{\hbar} \colon M_1 \to M_2$. Here $S^0_{\hbar}(x)$ gives the phase factor, $\varphi^i_{\hbar}(x)q_i$ gives the map, and $S^+_{\hbar}(x,q)$ is responsible for "quantum corrections".

Digression: brackets generated by an operator

Let A be a commutative algebra with 1 over $\mathbb{C}[[\hbar]]$. Let Δ be a linear operator on A. Consider two sequences of multilinear operations (of parity $\tilde{\Delta}$ and symmetric in the supersense):

Definition (a modification of Koszul's)

Quantum brackets generated by Δ :

$$\{a_1,\ldots,a_k\}_{\Delta,\hbar}:=(-i\hbar)^{-k}[\ldots[\Delta,a_1],\ldots,a_k](1);$$

classical brackets generated by Δ :

$$\{a_1,\ldots,a_k\}_{\Delta,0}:=\lim_{\hbar\to 0}(-i\hbar)^{-k}[\ldots[\Delta,a_1],\ldots,a_k](1)$$

- Δ is a formal ħ-differential operator if all quantum brackets are defined;
- ∆ is an ħ-differential operator of order ≤ n if all quantum brackets vanish for k > n.

More on brackets generated by Δ

Remark (Explicit formulas)

• For
$$k = 0$$
, $\{\varnothing\}_{\Delta,\hbar} = \Delta(1)$;
• for $k = 1$, $\{a\}_{\Delta,\hbar} = (-i\hbar)^{-1} (\Delta(a) - \Delta(1)a)$;
• for $k = 2$, $\{a, b\}_{\Delta,\hbar} = (-i\hbar)^{-2} (\Delta(ab) - \Delta(a)b - (-1)^{\tilde{a}\tilde{b}}\Delta(b)a + \Delta(1)ab)$;
• for general k , $\{a_1, \dots, a_k\}_{\Delta,\hbar} = (-i\hbar)^{-k}$
 $\sum_{s=0}^{k} (-1)^s \sum_{(k-s,s)-shuffles} (-1)^{\alpha} \Delta(a_{\tau(1)} \dots a_{\tau(k-s)}) a_{\tau(k-s+1)} \dots a_{\tau(k)}$,

where
$$(-1)^{\alpha} = (-1)^{\alpha(\tau; \tilde{a}_1, \dots, \tilde{a}_k)}$$
 is the Koszul sign.

\hbar -differential operators

 $\operatorname{ord}_{\hbar}\Delta\leqslant k$ iff for all $a\in A$, $[\Delta,a]=i\hbar B$ where $\operatorname{ord}_{\hbar}B\leqslant k-1$.

$S_{\infty,\hbar}$ -algebras

Let Δ on A be odd. If $\Delta^2 = 0$, then the quantum brackets define an L_{∞} -algebra (in the odd symmetric version). They additionally satisfy the modified Leibniz identity

$$\{a_1, \dots, a_{k-1}, ab\}_{\Delta,\hbar} = \{a_1, \dots, a_{k-1}, a\}_{\Delta,\hbar}b \pm a\{a_1, \dots, a_{k-1}, b\}_{\Delta,\hbar} + \underbrace{(-i\hbar)\{a_1, \dots, a_{k-1}, a, b\}_{\Delta,\hbar}}_{\text{extra term}} .$$

We call such an algebraic structure an $S_{\infty,\hbar}$ -algebra. Note: the operator Δ and the whole $S_{\infty,\hbar}$ -structure are fully defined by 0- and 1-brackets.

Lemma

The quantum brackets generated by Δ correspond to a "Batalin-Vilkovisky homological vector field" on A (regarded as a supermanifold)

$$Q = e^{-\frac{i}{\hbar}a} \Delta \left(e^{\frac{i}{\hbar}a} \right) \frac{\delta}{\delta a}$$

BV-manifolds and BV quantum morphisms

Definition

(1) A *BV-manifold*: a supermanifold *M* equipped with an odd formal \hbar -differential operator Δ , $\Delta^2 = 0$. The operator Δ is the *BV-operator*.

(2) A (quantum) BV-morphism of BV-manifolds (M_1, Δ_1) and (M_2, Δ_2) : a quantum thick morphism $\hat{\Phi}: M_1 \rightarrow_{\hbar} M_2$ such that

$$\Delta_1 \circ \hat{\Phi}^* = \hat{\Phi}^* \circ \Delta_2$$
 .

Since Δ induces a sequence of quantum brackets, and is defined by the 0- and 1-brackets, a BV-structure and an $S_{\infty,\hbar}$ -structure on M are equivalent.

Question

How to obtain an L_{∞} -morphism of quantum brackets generated by BV-operators? (Note: the operator $\hat{\Phi}^*$ is linear, so cannot be the answer.)

L_{∞} -morphism of quantum brackets induced by a quantum BV-morphism

Define
$$\hat{\Phi}^!$$
: $\mathbf{C}^{\infty}_{\hbar}(M_2) \to \mathbf{C}^{\infty}_{\hbar}(M_1)$ by

$$\hat{\Phi}^! := rac{\hbar}{i} \, \ln \circ \hat{\Phi}^* \circ \exp rac{i}{\hbar} \, ,$$

or
$$\hat{\Phi}^!(g)=rac{\hbar}{i}\,\ln\,\hat{\Phi}^*ig(e^{rac{i}{\hbar}g}ig)$$
 , for a $g\in {f C}^\infty_{\hbar}(M_2)$.

Theorem

If $\hat{\Phi}: M_1 \rightarrow_{\hbar} M_2$ is a BV quantum morphism, then $\hat{\Phi}^{\dagger}$ is an L_{∞} -morphism of the $S_{\infty,\hbar}$ -algebras of functions. Or, in greater detail: $\hat{\Phi}^{\dagger}$ is a morphism of infinite-dimensional Q-manifolds $\mathbf{C}^{\infty}_{\hbar}(M_2) \rightarrow \mathbf{C}^{\infty}_{\hbar}(M_1)$, where

$$Q_{\Delta} = \int Dx \ e^{-\frac{i}{\hbar}f} \Delta\left(e^{\frac{i}{\hbar}f}\right) \frac{\delta}{\delta f(x)}.$$

From a quantum BV morphism to a classical S_{∞} thick morphism

Let *M* be a BV-manifold with a BV-operator Δ . In the limit $\hbar \rightarrow 0$, Δ gives an S_{∞} -structure. Its "master Hamiltonian" is

$$H(x,p) = \lim_{\hbar \to 0} e^{-\frac{i}{\hbar}x^a p_a} \Delta(e^{\frac{i}{\hbar}x^a p_a}).$$

Theorem ("analog of Egorov's theorem")

Let M_1 and M_2 be BV-manifolds and let $\hat{\Phi}: M_1 \rightarrow {}_{\hbar}M_2$ be a BV quantum thick morphism. Then its classical limit $\Phi: M_1 \rightarrow M_2$ is a homotopy Schouten morphism for the induced S_{∞} -structures.

Explicitly: the intertwining relation $\Delta_1 \circ \hat{\Phi}^* = \hat{\Phi}^* \circ \Delta_2$ implies the Hamilton-Jacobi equation for the classical thick morphism $\Phi = \lim_{\hbar \to 0} \hat{\Phi}$:

$$H_1\left(x,\frac{\partial S}{\partial x}\right) = H_2\left(\frac{\partial S}{\partial q},q\right).$$

Some open questions

"Non-linear algebra-geometry duality"

- Define a non-linear homomorphism of algebras to be a map $A_1 \rightarrow A_2$ such that its derivative at every element $a \in A_1$ is an algebra homomorphism. (Variant: a formal map $A_1 \rightarrow A_2$.) Question: how to describe such maps?
- In particular, is it true that all such non-linear homomorphisms between algebras $C^{\infty}(M)$ are pullbacks by thick morphisms?

Other

- "Thick manifolds": if we have thick diffeomorphisms, what can be obtained by gluing?
- Action of thick morphisms on forms, cohomology, etc. ...

References

- "Nonlinear pullbacks" of functions and L_{∞} -morphisms for homotopy Poisson structures.
 - J. Geom. Phys. 111 (2017), 94-110. arXiv:1409.6475
- Thick morphisms of supermanifolds and oscillatory integral operators.

Russian Math. Surveys **71** (4) (2016), 784–786. arXiv:1506.02417

- Microformal geometry and homotopy algebras. *Proc. Steklov Inst. Math.* **302** (2018), in press arXiv:1411.6720v6
- Tangent functor on microformal morphisms. arXiv:1710.04335

FINIS

Thank you for attention!