Thick morphisms and homotopy bracket structures

Theodore Voronov

University of Manchester, UK, and Tomsk State University, Russia

LMS-EPSRC Durham Symposium
Higher Structures in M-Theory
12 to 18 August 2018
Monday 13 August, 16:20-17:00

"Microformal geometry" in brief

Key points: thick morphisms and nonlinear pullbacks

- There is a notion of thick (or microformal) morphisms of (super)manifolds generalizing ordinary smooth maps;
- Key difference: the pullback Φ^{*} by a thick morphism $\Phi: M_{1} \rightarrow M_{2}$,

$$
\Phi^{*}: \mathbf{C}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}^{\infty}\left(M_{1}\right),
$$

is, in general, nonlinear (actually, formal) map of infinite-dimensional manifolds of even functions.

"Microformal geometry" in brief

Key points: thick morphisms and nonlinear pullbacks

- There is a notion of thick (or microformal) morphisms of (super)manifolds generalizing ordinary smooth maps;
- Key difference: the pullback Φ^{*} by a thick morphism $\Phi: M_{1} \rightarrow M_{2}$,

$$
\Phi^{*}: \mathbf{C}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}^{\infty}\left(M_{1}\right),
$$

is, in general, nonlinear (actually, formal) map of infinite-dimensional manifolds of even functions.

"Why we care"; in particular:

- Motivation: L_{∞}-morphisms of homotopy Poisson brackets;
- Applications and development: homotopy structures; duality of vector spaces and bundles; fermionic and quantum versions;
- Hints at a "nonlinear extension" of algebra-geometry duality.

Motivation

L_{∞}-algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

- L_{∞}-algebra (in antisymmetric version) L
- L_{∞}-algebra (in symmetric version) $\Pi L=V$
- (Formal) Q-structure on V, i.e., $Q \in \operatorname{Vect}(V), \tilde{Q}=1$, $Q^{2}=0$.

Motivation

L_{∞}-algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

- L_{∞}-algebra (in antisymmetric version) L
- L_{∞}-algebra (in symmetric version) $\Pi L=V$
- (Formal) Q-structure on V, i.e., $Q \in \operatorname{Vect}(V), \tilde{Q}=1$, $Q^{2}=0$.
L_{∞}-morphisms of L_{∞}-algebras as Q-maps
L_{∞}-morphism $L \rightsquigarrow K \quad \Leftrightarrow \quad$ (nonlinear) Q-morphism $\Pi L \rightarrow \Pi K$

Motivation

L_{∞}-algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

- L_{∞}-algebra (in antisymmetric version) L
- L_{∞}-algebra (in symmetric version) $\Pi L=V$
- (Formal) Q-structure on V, i.e., $Q \in \operatorname{Vect}(V), \tilde{Q}=1$, $Q^{2}=0$.
L_{∞}-morphisms of L_{∞}-algebras as Q-maps
L_{∞}-morphism $L \rightsquigarrow K \Leftrightarrow$ (nonlinear) Q-morphism $\Pi L \rightarrow \Pi K$

Problem: what for functions?!

If we have L_{∞}-brackets on $C^{\infty}\left(M_{1}\right)$ and $C^{\infty}\left(M_{2}\right)$ (e.g. homotopy Poisson or homotopy Schouten), what is a "natural" construction for L_{∞}-morphisms? (Should be NONLINEAR maps! Pullbacks will not work!)

Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

$$
\begin{array}{cc}
\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} & \mathfrak{A}^{k+1}(M) \\
\uparrow & \uparrow \\
\Omega^{k}(M) \xrightarrow{d} & \Omega^{k+1}(M),
\end{array}
$$

and vertical arrows map Koszul bracket to the Schouten bracket.

Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

$$
\begin{array}{cc}
\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} & \mathfrak{A}^{k+1}(M) \\
\uparrow & \uparrow \\
\Omega^{k}(M) \xrightarrow{d} & \Omega^{k+1}(M),
\end{array}
$$

and vertical arrows map Koszul bracket to the Schouten bracket. Homotopy case: for a homotopy Poisson M, one can still construct

$$
\begin{array}{cc}
\mathfrak{A}(M) \xrightarrow{d_{P}} & \mathfrak{A}(M) \\
\uparrow & \uparrow \\
\Omega(M) \xrightarrow{d} & \Omega(M),
\end{array}
$$

but vertical arrows cannot map many 'higher Koszul brackets' into one Schouten bracket. An L_{∞}-morphism?

Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

$$
\begin{array}{cc}
\mathfrak{A}^{k}(M) \xrightarrow{d_{P}} & \mathfrak{A}^{k+1}(M) \\
\uparrow & \uparrow \\
\Omega^{k}(M) \xrightarrow{d} & \Omega^{k+1}(M),
\end{array}
$$

and vertical arrows map Koszul bracket to the Schouten bracket. Homotopy case: for a homotopy Poisson M, one can still construct

$$
\begin{array}{cc}
\mathfrak{A}(M) \xrightarrow{d_{P}} & \mathfrak{A}(M) \\
\uparrow & \uparrow \\
\Omega(M) \xrightarrow{d} & \Omega(M),
\end{array}
$$

but vertical arrows cannot map many 'higher Koszul brackets' into one Schouten bracket. An L_{∞}-morphism? SOLUTION: pullback by a thick morphism!

Definition of a microformal (thick) morphism

Let M_{1}, M_{2} be supermanifolds with local coordinates x^{a}, y^{i}.
Let p_{a} and q_{i} be conjugate momenta (fiber coordinates in $T^{*} M_{1}$, $T^{*} M_{2}$) and $\omega_{1}=d p_{a} d x^{a}, \omega_{2}=d q_{i} d y^{i}$ be the symplectic forms.

Definition of a microformal (thick) morphism

Let M_{1}, M_{2} be supermanifolds with local coordinates x^{a}, y^{i}. Let p_{a} and q_{i} be conjugate momenta (fiber coordinates in $T^{*} M_{1}$, $T^{*} M_{2}$) and $\omega_{1}=d p_{a} d x^{a}, \omega_{2}=d q_{i} d y^{i}$ be the symplectic forms.

Definition

A microformal (aka thick) morphism $\Phi: M_{1} \rightarrow M_{2}$ is a formal Lagrangian submanifold $\Phi \subset T^{*} M_{2} \times T^{*} M_{1}$ w.r.t. $\omega_{2}-\omega_{1}$ specified locally by a generating function of the form $S(x, q)$:

$$
q_{i} d y^{i}-p_{a} d x^{a}=d\left(y^{i} q_{i}-S\right) \quad \text { on } \Phi,
$$

where $S(x, q)$, regarded as a part of the structure, is a formal power series in momenta

$$
S(x, q)=S_{0}(x)+S^{i}(x) q_{i}+\frac{1}{2} S^{i j}(x) q_{j} q_{i}+\frac{1}{3!} S^{i j k}(x) q_{k} q_{j} q_{i}+\ldots
$$

Pullback by a microformal morphism

Construction of pullback

Let $\Phi: M_{1} \rightarrow M_{2}$ be a thick morphism with the generating function S. The pullback Φ^{*} is a formal mapping $\Phi^{*}: \mathbf{C}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}^{\infty}\left(M_{1}\right)$ of functional supermanifolds (of 'bosonic' functions) defined by

$$
\Phi^{*}[g](x)=g(y)+S(x, q)-y^{i} q_{i}
$$

for $g \in \mathbf{C}^{\infty}\left(M_{2}\right)$, where q_{i} and y^{i} are determined from the equations

$$
q_{i}=\frac{\partial g}{\partial y^{i}}(y), \quad y^{i}=(-1)^{\tilde{z}} \frac{\partial S}{\partial q_{i}}(x, q)
$$

(giving $y^{i}=(-1)^{\tilde{r}} \frac{\partial S}{\partial q_{i}}\left(x, \frac{\partial g}{\partial y}(y)\right)$ solvable by iterations).

Heuristically, if $f=\Phi^{*}[g]$, then $\Lambda_{f}=\Lambda_{g} \circ \Phi$, where $\Lambda_{f}=\operatorname{gr}(d f)$.

General form of pullback

Example

Let $S(x, q)=S^{0}(x)+\varphi^{i}(x) q_{i}$. Then: $\Phi^{*}[g]=S^{0}+\varphi^{*} g$. (NB: ordinary maps have generating functions $S=\varphi^{i}(x) q_{i}$.)

General form of pullback

Example

Let $S(x, q)=S^{0}(x)+\varphi^{i}(x) q_{i}$. Then: $\Phi^{*}[g]=S^{0}+\varphi^{*} g$. (NB: ordinary maps have generating functions $S=\varphi^{i}(x) q_{i}$.)

For a general $S(x, q)=S^{0}(x)+\varphi^{i}(x) q_{i}+\ldots$, the equation $y^{i}=(-1)^{i} \frac{\partial S}{\partial q_{i}}\left(x, \frac{\partial g}{\partial y}(y)\right)$ defines a map $\varphi_{g}: M_{1} \rightarrow M_{2}$ as a formal perturbation of $\varphi=\varphi_{0}: M_{1} \rightarrow M_{2}$:

$$
\varphi_{g}^{i}(x)=\varphi^{i}(x)+S^{i j}(x) \partial_{j} g(\varphi(x))+\ldots
$$

and $\Phi^{*}[g](x)=\left.\left(g(y)+S(x, q)-y^{i} q_{i}\right)\right|_{y=\varphi_{g}(x), q=\partial g / \partial y\left(\varphi_{g}(x)\right)}$, which gives Φ^{*} as a formal nonlinear differential operator :

General form of $\phi^{*}: \mathbf{C}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}^{\infty}\left(M_{1}\right)$

$$
\Phi^{*}[g](x)=S^{0}(x)+g(\varphi(x))+\frac{1}{2} S^{i j}(x) \partial_{i} g(\varphi(x)) \partial_{j} g(\varphi(x))+\ldots
$$

Coordinate invariance

Transformation law for generating functions of thick morphisms

A generating function $S(x, q)$ as a geometric object on $M_{1} \times M_{2}$ transforms by

$$
S^{\prime}\left(x^{\prime}, q^{\prime}\right)=S(x, q)-y^{i} q_{i}+y^{i^{\prime}} q_{i^{\prime}}
$$

Here $S(x, q)$ is the expression for S in 'old' coordinates and $S^{\prime}\left(x^{\prime}, q^{\prime}\right)$ is the expression for S in 'new' coordinates. At the r.h.s., the variables x^{a} and $y^{i^{\prime}}$ are given by substitutions: $x^{a}=x^{a}\left(x^{\prime}\right)$ and $y^{i^{\prime}}=y^{i^{\prime}}(y)$, while q_{i} and y^{i} are determined from

$$
q_{i}=\frac{\partial y^{i^{\prime}}}{\partial y^{i}}(y) q_{i^{\prime}}, \quad y^{i}=(-1)^{\tilde{z}} \frac{\partial S}{\partial q_{i}}(x, q) .
$$

The transformation law satisfies the cocycle condition. The canonical relation $\Phi \subset T^{*} M_{2} \times\left(-T^{*} M_{1}\right)$ specified by S is well-defined. Pullbacks do not depend on a choice of coordinates.

Key fact: derivative of pullback

Theorem

Let $\Phi: M_{1} \rightarrow M_{2}$ be a thick morphism. Consider the pullback

$$
\Phi^{*}: \mathbf{C}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}^{\infty}\left(M_{1}\right)
$$

Then for every $g \in \mathbf{C}^{\infty}\left(M_{2}\right)$, the derivative $T \Phi^{*}[g]$ is given by

$$
T \Phi^{*}[g]=\varphi_{g}^{*}
$$

where $\varphi_{g}^{*}: C^{\infty}\left(M_{2}\right) \rightarrow C^{\infty}\left(M_{1}\right)$ is the usual pullback with respect to the map $\varphi_{g}: M_{1} \rightarrow M_{2}$ defined by $y^{i}=(-1)^{\tilde{z}} \frac{\partial S}{\partial q_{i}}\left(x, \frac{\partial g}{\partial y}(y)\right)$ (depending perturbatively on $g, \varphi_{g}=\varphi_{0}+\varphi_{1}+\varphi_{2}+\ldots$).

Corollary

For every g, the derivative $T \Phi^{*}[g]$ of Φ^{*} is an algebra homomorphism $C^{\infty}\left(M_{2}\right) \rightarrow C^{\infty}\left(M_{1}\right)$.

Composition law

Consider thick morphisms $\Phi_{21}: M_{1} \rightarrow M_{2}$ and $\Phi_{31}: M_{2} \rightarrow M_{3}$ with generating functions $S_{21}=S_{21}(x, q)$ and $S_{32}=S_{32}(y, r)$.

Theorem

The composition $\Phi_{32} \circ \Phi_{21}$ is well-defined as a thick morphism $\Phi_{31}: M_{1} \rightarrow M_{3}$ with the generating function $S_{31}=S_{31}(x, r)$, where

$$
S_{31}(x, r)=S_{32}(y, r)+S_{21}(x, q)-y^{i} q_{i}
$$

and y^{i} and q_{i} are expressed through $\left(x^{a}, r_{\mu}\right)$ from the system

$$
q_{i}=\frac{\partial S_{32}}{\partial y^{i}}(y, r), \quad y^{i}=(-1)^{\tilde{2}} \frac{\partial S_{21}}{\partial q_{i}}(x, q),
$$

which has a unique solution as a power series in r_{μ} and a functional power series in S_{32}.

Further facts

Formal category

Composition of thick morphisms is associative and and $\left(\Phi_{32} \circ \Phi_{21}\right)^{*}=\Phi_{21}^{*} \circ \Phi_{32}^{*}$. In the lowest order, the composition is as in $\mathcal{S M}$ an $\rtimes \mathbf{C}^{\infty}$, whose arrows are pairs $\left(\varphi_{21}, f_{21}\right)$ with the composition $\left(\varphi_{32}, f_{32}\right) \circ\left(\varphi_{21}, f_{21}\right)=\left(\varphi_{32} \circ \varphi_{21}, \varphi_{21}^{*} f_{32}+f_{21}\right)$. Thick morphisms form a formal category ("formal thickening" of SMan $\rtimes \mathbf{C}^{\infty}$). Denote it $\mathcal{E T}$ hick.

"Fermionic version"

There is a fermionic version based on anticotangent bundles $\Pi T^{*} M$ and odd generating functions $S\left(x, y^{*}\right)$: "odd thick morphisms" $\Psi: M_{1} \Rightarrow M_{2}$ induce nonlinear pullbacks $\psi^{*}: \Pi \boldsymbol{C}^{\infty}\left(M_{2}\right) \rightarrow \Pi \boldsymbol{C}^{\infty}\left(M_{1}\right)$ of odd functions ("fermionic fields") and their composition gives another formal category, OThick, which contains $\mathcal{S M}$ an $\rtimes \boldsymbol{\Pi}{ }^{\infty}$.

Recollection: L_{∞}-algebras and L_{∞}-morphisms - 1

We consider \mathbb{Z}_{2}-graded version. (One can include a \mathbb{Z}-grading.) There are two parallel notions: "symmetric" and "antisymmetric".

Definition (L_{∞}-algebra: antisymmetric version)

A vector space $L=L_{0} \oplus L_{1}$ with a collection of multilinear operations
such that

$$
[-, \ldots,-]: \underbrace{L \times \ldots \times L}_{k \text { times }} \rightarrow L \quad(\text { for } k=0,1,2, \ldots)
$$

- the parity of the k th bracket is $k \bmod 2$;
- all brackets are antisymmetric (in \mathbb{Z}_{2}-graded sense);
- $\sum_{r+s=n} \sum_{\text {shuffles }}(-1)^{\alpha+\sigma}\left[\left[x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right], \ldots, x_{\sigma(r+s)}\right]=0$, for all $n=0,1,2,3, \ldots$
(here $(-1)^{\alpha}$ comes from parities and $(-1)^{\sigma}=\operatorname{sign} \sigma$).

Recollection: L_{∞}-algebras and L_{∞}-morphisms - 2

A parallel notion is as follows.

Definition (L_{∞}-algebra: symmetric version)

A vector space $V=V_{0} \oplus V_{1}$ with a collection of multilinear operations
such that

$$
\{-, \ldots,-\}: \underbrace{V \times \ldots \times V}_{k \text { times }} \rightarrow V \quad(\text { for } k=0,1,2, \ldots)
$$

- all brackets are odd;
- all brackets are symmetric (in \mathbb{Z}_{2}-graded sense);
- $\sum_{r+s=n} \sum_{\text {shuffles }}(-1)^{\alpha}\left\{\left\{v_{\sigma(1)}, \ldots, v_{\sigma(r)}\right\}, \ldots, v_{\sigma(r+s)}\right\}=0$, for all $n=0,1,2,3, \ldots$
(here $(-1)^{\alpha}$ comes from parities only).

Recollection: L_{∞}-algebras and L_{∞}-morphisms - 3

Equivalent structures:

- Antisymmetric L_{∞}-algebra structure on L
- Symmetric L_{∞}-algebra structure on ΠL
- Homological vector field $Q \in \operatorname{Vect}(\Pi L)$, i.e., $\tilde{Q}=1, Q^{2}=0$
(Also: $P_{\infty^{-}}$on L^{*} and $S_{\infty^{-}}$on ΠL^{*}, to be discussed later.)
NB: we identify super vector spaces with supermanifolds.

Recollection: L_{∞}-algebras and L_{∞}-morphisms - 4

Relation between brackets in L and ΠL

$$
\left\{\Pi x_{1}, \ldots, \Pi x_{k}\right\}=(-1)^{(k-1) \tilde{x}_{1}+\ldots \tilde{x}_{k-1}} \Pi\left[x_{1}, \ldots, x_{k}\right] .
$$

Relation with Q

$$
\text { - } Q(\xi)=\sum \frac{1}{n!}\{\underbrace{\xi, \ldots, \xi}_{n}\} \text {, where } \xi \in V=\Pi L
$$

- Higher derived bracket formula:
$\iota\left(\left[x_{1}, \ldots, x k\right]\right)= \pm\left[\ldots\left[Q, \iota\left(x_{1}\right)\right], \ldots, \iota\left(x_{k}\right)\right](0)$, for $x=x^{i} e_{i} \in L$, and $\iota(x):=(-1)^{\tilde{x}} x^{i} \partial / \partial \xi^{i} \in \operatorname{Vect}(\Pi L)$ (sign fixed by linearity condition).

Description of L_{∞}-morphisms

An L_{∞}-morphism $L_{1} \rightsquigarrow L_{2}$ is given by a sequence $\Lambda^{n} L_{1} \rightarrow L_{2}$ or $S^{n}\left(\Pi L_{1}\right) \rightarrow \Pi L_{2}$ satisfying a sequences of identities ("higher homotopies" $)$. It is equivalent to a Q-map $\Pi L_{1} \rightarrow \Pi L_{2}$.

Digression: $P_{\infty^{-}}$and $S_{\infty^{-}}$-structures

Let M be a (super)manifold. Then a $P_{\infty^{-}}\left(S_{\infty^{-}}\right)$structure on M is an antisymmetric (resp., symmetric) L_{∞}-structure on $C^{\infty}(M)$ such that the brackets are multiderivations.

- A P_{∞}-structure on M is specified by an even $P \in C^{\infty}\left(\Pi T^{*} M\right)$ satisfying $[P, P]=0$, by the formula:

$$
\left\{f_{1}, \ldots, f_{k}\right\}_{P}=\left.\left[\ldots\left[P, f_{1}\right], \ldots, f_{k}\right]\right|_{M}
$$

- An S_{∞}-structure on M is specified by an odd $H \in C^{\infty}\left(T^{*} M\right)$ satisfying $(H, H)=0$, by the formula:

$$
\left\{f_{1}, \ldots, f_{k}\right\}_{H}=\left.\left(\ldots\left(H, f_{1}\right), \ldots, f_{k}\right)\right|_{M}
$$

Homological vector fields ("Hamilton-Jacobi"):

- $Q_{P}=\int_{M} D x P\left(x, \frac{\partial \psi}{\partial x}\right) \frac{\delta}{\delta \psi(x)} \in \operatorname{Vect}\left(\boldsymbol{\Pi C}^{\infty}(M)\right)$
- $Q_{H}=\int_{M} D x H\left(x, \frac{\partial f}{\partial x}\right) \frac{\delta}{\delta f(x)} \in \operatorname{Vect}\left(\mathbf{C}^{\infty}(M)\right)$

Key theorem: pullback as an L_{∞}-morphism

Let M_{1} and M_{2} be S_{∞}-manifolds, with $H_{i} \in C^{\infty}\left(T^{*} M_{i}\right), i=1,2$.

Definition of an S_{∞} ("homotopy Schouten") thick morphism

A thick morphism $\Phi: M_{1} \rightarrow M_{2}$ is S_{∞} if $\pi_{1}^{*} H_{1}=\pi_{2}^{*} H_{2}$ on Φ.
Note: this is expressed by the Hamilton-Jacobi equation

$$
H_{1}\left(x, \frac{\partial S}{\partial x}\right)=H_{2}\left(\frac{\partial S}{\partial q}, q\right)
$$

Theorem

If a thick morphism of S_{∞}-manifolds $\Phi: M_{1} \rightarrow M_{2}$ is S_{∞}, then the pullback

$$
\Phi^{*}: \mathbf{C}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}^{\infty}\left(M_{1}\right)
$$

is an L_{∞}-morphism of the homotopy Schouten brackets. In greater detail: Φ^{*} intertwines the homological vector fields $Q_{H_{2}} \in \operatorname{Vect}\left(\mathbf{C}^{\infty}\left(M_{2}\right)\right)$ and $Q_{H_{1}} \in \operatorname{Vect}\left(\mathbf{C}^{\infty}\left(M_{1}\right)\right)$.

Another application: adjoint for a nonlinear transformation

Theorem

1. For a fiberwise map of vector bundles $\Phi: E_{1} \rightarrow E_{2}$, there is a fiberwise thick morphism

$$
\Phi^{*}: E_{2}^{*} \rightarrow E_{1}^{*}
$$

with the same properties as the usual adjoint and coinciding with it if Φ is fiberwise-linear. Construction:
$\Phi^{*}:=(\boldsymbol{\kappa} \times \boldsymbol{\kappa})(\Phi)^{o p} \subset T^{*} E_{1}^{*} \times\left(-T^{*} E_{2}^{*}\right)$, where
$\kappa: T^{*} E \rightarrow T^{*} E^{*}$ is the Mackenzie-Xu diffeomorphism.
2. The obtained pushforward of functions on the dual bundles

$$
\Phi_{*}:=\left(\Phi^{*}\right)^{*}: \mathbf{C}^{\infty}\left(E_{1}^{*}\right) \rightarrow \mathbf{C}^{\infty}\left(E_{2}^{*}\right)
$$

if restricted on the space of sections $\mathbf{C}^{\infty}\left(M, E_{1}\right)$ takes it to $\mathbf{C}^{\infty}\left(M, E_{2}\right)$ and coincides on sections with $\Phi_{*}(\boldsymbol{v})=\Phi \circ \boldsymbol{v}$.

Recollection: L_{∞}-algebroids

- An L_{∞}-algebroid is a vector bundle $E \rightarrow M$ with an antisymmetric L_{∞}-algebra structure on sections and a sequence of n-ary anchors $E \times_{M} \ldots \times_{M} E \rightarrow T M$ so that the Leibniz identities hold:
$\left[u_{1}, \ldots, u_{n-1}, f u_{n}\right]=a\left(u_{1}, \ldots, u_{n-1}\right)(f) u_{n}+(-1)^{\alpha} f\left[u_{1}, \ldots, u_{n}\right]$, where $(-1)^{\alpha}=(-1)^{\left(\tilde{u}_{1}+\ldots+\tilde{u}_{n-1}+n\right) \tilde{f}}$.
- An L_{∞}-algebroid structure on $E \rightarrow M$ is equivalent to a (formal) homological vector field on the supermanifold ΠE.
- An L_{∞}-morphism of L_{∞}-algebroids $\Phi: E_{1} \rightsquigarrow E_{2}$ is specified by a map (in general, nonlinear) $\Phi: \Pi E_{1} \rightarrow \Pi E_{2}$ such that the corresponding homological vector fields are Φ-related.
- Example: all anchors assemble into an L_{∞}-morphism ПЕ \rightarrow ПТМ .

L_{∞}-morphisms of Lie-Poisson and Lie-Schouten brackets

Theorem

An L_{∞}-morphism of L_{∞}-algebroids over a base M induces L_{∞}-morphisms of the homotopy Poisson and homotopy Schouten algebras of functions on the dual and antidual bundles respectively.

Corollary

The anchor for an L_{∞}-algebroid $E \rightarrow M$ induces L_{∞}-morphisms

$$
\mathbf{C}^{\infty}\left(\Pi E^{*}\right) \rightarrow \mathbf{C}^{\infty}\left(\Pi T^{*} M\right)
$$

for the homotopy Schouten brackets, and

$$
\boldsymbol{\Pi} \mathbf{C}^{\infty}\left(E^{*}\right) \rightarrow \boldsymbol{\Pi C}^{\infty}\left(T^{*} M\right)
$$

for the homotopy Poisson brackets.

Application to a homotopy Poisson manifold

In particular, we have the following:

Corollary

On a homotopy Poisson manifold M, there is an L_{∞}-morphism

$$
\boldsymbol{\Omega}(M)=\mathbf{C}^{\infty}(\Pi T M) \rightarrow \mathbf{C}^{\infty}\left(\Pi T^{*} M\right)=\boldsymbol{\mathfrak { A }}(M)
$$

between the higher Koszul brackets on forms (induced by a homotopy Poisson structure) and the canonical Schouten bracket on multivector fields.
(This was our initial problem discussed in the beginning.)

Quantum pullbacks and quantum thick morphisms

Definition

A quantum pullback $\hat{\Phi}^{*}: O C_{\hbar}^{\infty}\left(M_{2}\right) \rightarrow O C_{\hbar}^{\infty}\left(M_{1}\right)$ is defined by

$$
\left(\hat{\Phi}^{*}[w]\right)(x)=\int_{T^{*} M_{2}} D y D q e^{\frac{i}{\hbar}\left(S_{\hbar}(x, q)-y^{i} q_{i}\right)} w(y)
$$

A quantum thick (or microformal) morphism $\hat{\Phi}: M_{1} \rightarrow_{\hbar} M_{2}$ is the corresponding arrow in the dual category.

Here $S_{\hbar}(x, q)$ is a quantum generating function:
$S_{\hbar}(x, q)=S_{\hbar}^{0}(x)+\varphi_{\hbar}^{i}(x) q_{i}+\frac{1}{2} S_{\hbar}^{i j}(x) q_{j} q_{i}+\frac{1}{3!} S_{\hbar}^{i j k}(x) q_{k} q_{j} q_{i}+\ldots$
$O C_{\hbar}^{\infty}(M)$ is the algebra of oscillatory wave functions, i.e. sums of formal expressions $w(x)=a_{\hbar}(x) e^{\frac{i}{\hbar} b_{\hbar}(x)}$, where $a_{\hbar}(x)$ and $b_{\hbar}(x)$ are formal power series in \hbar.
$\left(D q:=(2 \pi \hbar)^{-n}(i \hbar)^{m} D q\right.$ in dimension $n \mid m$.)

Theorem

Let $\hat{\Phi}: M_{1} \rightarrow_{\hbar} M_{2}$ be a quantum thick morphism with a quantum generating function S_{\hbar}. Consider $S_{0}(x, q):=\lim _{\hbar \rightarrow 0} S_{\hbar}(x, q)$ as the (classical) generating function of a (classical) thick morphism $\Phi: M_{1} \rightarrow M_{2}$. Then for any oscillatory wave function of the form $w(y)=e^{\frac{i}{\hbar} g(y)}$ on M_{2}, the quantum pullback given by

$$
\hat{\Phi}^{*}\left[e^{\frac{i}{\hbar} g}\right]=e^{\frac{i}{\hbar} f_{\hbar}(x)},
$$

where $f_{\hbar}=\Phi^{*}[g]+O(\hbar)$, and Φ^{*} is the pullback by the classical microformal morphism $\Phi: M_{1} \rightarrow M_{2}$ defined by $S_{0}(x, q)$.

We say that $\Phi=\lim _{\hbar \rightarrow 0} \hat{\Phi}$.

Explicit formula for quantum pullback

Suppose

$$
S_{\hbar}(x, q)=S_{\hbar}^{0}(x)+\varphi_{\hbar}^{i}(x) q_{i}+S_{\hbar}^{+}(x, q)
$$

where $S_{\hbar}^{+}(x, q)$ is the sum of all terms of order $\geqslant 2$ in q_{i}.

Theorem

The action of $\hat{\Phi}^{*}$ defined by $S_{\hbar}(x, q)$ can be expressed as follows:

$$
\left(\hat{\Phi}^{*} w\right)(x)=\left.e^{\frac{i}{\hbar} S_{\hbar}^{0}(x)}\left(e^{\frac{i}{\hbar} S_{\hbar}^{+}\left(x, \frac{\hbar}{i} \frac{\partial}{\partial y}\right)} w(y)\right)\right|_{y^{i}=\varphi_{\hbar}^{i}(x)}
$$

Hence the quantum pullback $\hat{\Phi}^{*}$ is a special type formal linear differential operator over a 'quantum-perturbed' map $\varphi_{\hbar}: M_{1} \rightarrow M_{2}$. Here $S_{\hbar}^{0}(x)$ gives the phase factor, $\varphi_{\hbar}^{i}(x) q_{i}$ gives the map, and $S_{\hbar}^{+}(x, q)$ is responsible for "quantum corrections".

Digression: brackets generated by an operator

Let A be a commutative algebra with 1 over $\mathbb{C}[[\hbar]]$. Let Δ be a linear operator on A. Consider two sequences of multilinear operations (of parity $\tilde{\Delta}$ and symmetric in the supersense):

Definition (a modification of Koszul's)

Quantum brackets generated by Δ :

$$
\left\{a_{1}, \ldots, a_{k}\right\}_{\Delta, \hbar}:=(-i \hbar)^{-k}\left[\ldots\left[\Delta, a_{1}\right], \ldots, a_{k}\right](1) ;
$$

classical brackets generated by Δ :

$$
\left\{a_{1}, \ldots, a_{k}\right\}_{\Delta, 0}:=\lim _{\hbar \rightarrow 0}(-i \hbar)^{-k}\left[\ldots\left[\Delta, a_{1}\right], \ldots, a_{k}\right](1)
$$

- Δ is a formal \hbar-differential operator if all quantum brackets are defined;
- Δ is an \hbar-differential operator of order $\leqslant n$ if all quantum brackets vanish for $k>n$.

More on brackets generated by Δ

Remark (Explicit formulas)

- For $k=0,\{\varnothing\}_{\Delta, \hbar}=\Delta(1)$;
- for $k=1,\{a\}_{\Delta, \hbar}=(-i \hbar)^{-1}(\Delta(a)-\Delta(1) a)$;
- for $k=2,\{a, b\}_{\Delta, \hbar}=$

$$
(-i \hbar)^{-2}\left(\Delta(a b)-\Delta(a) b-(-1)^{\tilde{a} \tilde{b}} \Delta(b) a+\Delta(1) a b\right) ;
$$

- for general $k,\left\{a_{1}, \ldots, a_{k}\right\}_{\Delta, \hbar}=(-i \hbar)^{-k}$

$$
\sum_{s=0}^{k}(-1)^{s} \sum_{(k-s, s) \text {-shuffles }}(-1)^{\alpha} \Delta\left(a_{\tau(1)} \ldots a_{\tau(k-s)}\right) a_{\tau(k-s+1)} \ldots a_{\tau(k)}
$$ where $(-1)^{\alpha}=(-1)^{\alpha\left(\tau ; \tilde{a}_{1}, \ldots, \tilde{a}_{k}\right)}$ is the Koszul sign.

\hbar-differential operators

 $\operatorname{ord}_{\hbar} \Delta \leqslant k$ iff for all $a \in A,[\Delta, a]=i \hbar B w^{w h e r e} \operatorname{ord}_{\hbar} B \leqslant k-1$.
$S_{\infty, \hbar \text {-algebras }}$

Let Δ on A be odd. If $\Delta^{2}=0$, then the quantum brackets define an L_{∞}-algebra (in the odd symmetric version). They additionally satisfy the modified Leibniz identity

$$
\begin{aligned}
& \left\{a_{1}, \ldots, a_{k-1}, a b\right\}_{\Delta, \hbar}=\left\{a_{1}, \ldots, a_{k-1}, a\right\}_{\Delta, \hbar} b \pm \\
& a\left\{a_{1}, \ldots, a_{k-1}, b\right\}_{\Delta, \hbar}+\underbrace{(-i \hbar)\left\{a_{1}, \ldots, a_{k-1}, a, b\right\}_{\Delta, \hbar}}_{\text {extra term }}
\end{aligned}
$$

We call such an algebraic structure an $S_{\infty, \hbar}$-algebra.
Note: the operator Δ and the whole $S_{\infty, \hbar}$-structure are fully defined by 0 - and 1-brackets.

Lemma

The quantum brackets generated by Δ correspond to a "Batalin-Vilkovisky homological vector field" on A (regarded as a supermanifold)

$$
Q=e^{-\frac{i}{\hbar} a} \Delta\left(e^{\frac{i}{\hbar} a}\right) \frac{\delta}{\delta a}
$$

BV-manifolds and BV quantum morphisms

Definition

(1) A $B V$-manifold: a supermanifold M equipped with an odd formal \hbar-differential operator $\Delta, \Delta^{2}=0$. The operator Δ is the $B V$-operator.
(2) A (quantum) BV-morphism of BV-manifolds $\left(M_{1}, \Delta_{1}\right)$ and $\left(M_{2}, \Delta_{2}\right)$: a quantum thick morphism $\hat{\Phi}: M_{1} \rightarrow{ }_{\hbar} M_{2}$ such that

$$
\Delta_{1} \circ \hat{\Phi}^{*}=\hat{\Phi}^{*} \circ \Delta_{2}
$$

Since Δ induces a sequence of quantum brackets, and is defined by the 0 - and 1-brackets, a BV-structure and an $S_{\infty, \hbar} \hbar^{\text {-structure on }} M$ are equivalent.

Question

How to obtain an L_{∞}-morphism of quantum brackets generated by BV-operators? (Note: the operator $\hat{\phi}^{*}$ is linear, so cannot be the answer.)

L_{∞}-morphism of quantum brackets induced by a quantum BV-morphism

Define $\hat{\Phi}^{!}: \mathbf{C}_{\hbar}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}_{\hbar}^{\infty}\left(M_{1}\right)$ by

$$
\hat{\Phi}^{!}:=\frac{\hbar}{i} \ln \circ \hat{\phi}^{*} \circ \exp \frac{i}{\hbar},
$$

or $\hat{\Phi}^{!}(g)=\frac{\hbar}{i} \ln \hat{\Phi}^{*}\left(e^{\frac{i}{\hbar} g}\right)$, for a $g \in \mathbf{C}_{\hbar}^{\infty}\left(M_{2}\right)$.

Theorem

If $\hat{\Phi}: M_{1} \rightarrow{ }_{\hbar} M_{2}$ is a $B V$ quantum morphism, then $\hat{\Phi}$! is an L_{∞}-morphism of the $S_{\infty, \hbar}$-algebras of functions.
Or, in greater detail: $\hat{\Phi}^{!}$is a morphism of infinite-dimensional Q-manifolds $\mathbf{C}_{\hbar}^{\infty}\left(M_{2}\right) \rightarrow \mathbf{C}_{\hbar}^{\infty}\left(M_{1}\right)$, where

$$
Q_{\Delta}=\int D x e^{-\frac{i}{\hbar} f} \Delta\left(e^{\frac{i}{\hbar} f}\right) \frac{\delta}{\delta f(x)}
$$

From a quantum BV morphism to a classical S_{∞} thick morphism

Let M be a BV-manifold with a BV-operator Δ. In the limit $\hbar \rightarrow 0, \Delta$ gives an S_{∞}-structure. Its "master Hamiltonian" is

$$
H(x, p)=\lim _{\hbar \rightarrow 0} e^{-\frac{i}{\hbar} x^{a} p_{a}} \Delta\left(e^{\frac{i}{\hbar} x^{a} p_{a}}\right)
$$

Theorem ("analog of Egorov's theorem")

Let M_{1} and M_{2} be $B V$-manifolds and let $\hat{\Phi}: M_{1} \rightarrow{ }_{\hbar} M_{2}$ be a $B V$ quantum thick morphism. Then its classical limit $\Phi: M_{1} \rightarrow M_{2}$ is a homotopy Schouten morphism for the induced S_{∞}-structures.

Explicitly: the intertwining relation $\Delta_{1} \circ \hat{\phi}^{*}=\hat{\phi}^{*} \circ \Delta_{2}$ implies the Hamilton-Jacobi equation for the classical thick morphism $\Phi=\lim _{\hbar \rightarrow 0} \hat{\Phi}$:

$$
H_{1}\left(x, \frac{\partial S}{\partial x}\right)=H_{2}\left(\frac{\partial S}{\partial q}, q\right) .
$$

Some open questions

"Non-linear algebra-geometry duality"

- Define a non-linear homomorphism of algebras to be a map $A_{1} \rightarrow A_{2}$ such that its derivative at every element $a \in A_{1}$ is an algebra homomorphism. (Variant: a formal map $A_{1} \rightarrow A_{2}$.) Question: how to describe such maps?
- In particular, is it true that all such non-linear homomorphisms between algebras $C^{\infty}(M)$ are pullbacks by thick morphisms?

Other

- "Thick manifolds": if we have thick diffeomorphisms, what can be obtained by gluing?
- Action of thick morphisms on forms, cohomology, etc. ...

References

- "Nonlinear pullbacks" of functions and L_{∞}-morphisms for homotopy Poisson structures.
J. Geom. Phys. 111 (2017), 94-110. arXiv:1409.6475
- Thick morphisms of supermanifolds and oscillatory integral operators.
Russian Math. Surveys 71 (4) (2016), 784-786. arXiv:1506. 02417
- Microformal geometry and homotopy algebras.

Proc. Steklov Inst. Math. 302 (2018), in press arXiv:1411.6720v6

- Tangent functor on microformal morphisms. arXiv:1710.04335

FINIS

Thank you for attention!

