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“Microformal geometry” in brief

Key points: thick morphisms and nonlinear pullbacks

There is a notion of thick (or microformal) morphisms of
(super)manifolds generalizing ordinary smooth maps;

Key difference: the pullback Φ∗ by a thick morphism
Φ: M1 →M2,

Φ∗ : C∞(M2)→ C∞(M1) ,

is, in general, nonlinear (actually, formal) map of
infinite-dimensional manifolds of even functions.

“Why we care”; in particular:

Motivation: L∞-morphisms of homotopy Poisson brackets;

Applications and development: homotopy structures; duality
of vector spaces and bundles; fermionic and quantum versions;

Hints at a “nonlinear extension” of algebra-geometry duality.
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Motivation

L∞-algebras (or SHLAs) as Q-manifolds

Recall that the following structures are equivalent:

L∞-algebra (in antisymmetric version) L

L∞-algebra (in symmetric version) ΠL = V

(Formal) Q-structure on V , i.e., Q ∈ Vect(V ), Q̃ = 1,
Q2 = 0.

L∞-morphisms of L∞-algebras as Q-maps

L∞-morphism L K ⇔ (nonlinear) Q-morphism ΠL→ ΠK

Problem: what for functions?!

If we have L∞-brackets on C∞(M1) and C∞(M2) (e.g. homotopy
Poisson or homotopy Schouten), what is a “natural” construction
for L∞-morphisms? (Should be NONLINEAR maps! Pullbacks will
not work!)
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Example: higher Koszul brackets

Classical fact: for a Poisson M, there is a commutative diagram

Ak(M)
dP−−−−→ Ak+1(M)x x

Ωk(M)
d−−−−→ Ωk+1(M) ,

and vertical arrows map Koszul bracket to the Schouten bracket.

Homotopy case: for a homotopy Poisson M, one can still
construct

A(M)
dP−−−−→ A(M)x x

Ω(M)
d−−−−→ Ω(M) ,

but vertical arrows cannot map many ‘higher Koszul brackets’ into
one Schouten bracket. An L∞-morphism?
SOLUTION: pullback by a thick morphism!
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Definition of a microformal (thick) morphism

Let M1, M2 be supermanifolds with local coordinates xa, y i .
Let pa and qi be conjugate momenta (fiber coordinates in T ∗M1,
T ∗M2) and ω1 = dpadx

a, ω2 = dqidy
i be the symplectic forms.

Definition

A microformal (aka thick) morphism Φ: M1 →M2 is a formal
Lagrangian submanifold Φ ⊂ T ∗M2 × T ∗M1 w.r.t. ω2 − ω1

specified locally by a generating function of the form S(x , q) :

qidy
i − padx

a = d(y iqi − S) on Φ ,

where S(x , q), regarded as a part of the structure, is a formal
power series in momenta

S(x , q) = S0(x) + S i (x)qi +
1

2
S ij(x)qjqi +

1

3!
S ijk(x)qkqjqi + . . .
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Pullback by a microformal morphism

Construction of pullback

Let Φ: M1 →M2 be a thick morphism with the generating function
S . The pullback Φ∗ is a formal mapping Φ∗ : C∞(M2)→ C∞(M1)
of functional supermanifolds (of ‘bosonic’ functions) defined by

Φ∗[g ](x) = g(y) + S(x , q)− y iqi ,

for g ∈ C∞(M2), where qi and y i are determined from the
equations

qi =
∂g

∂y i
(y) , y i = (−1)ı̃

∂S

∂qi
(x , q)

(giving y i = (−1)ı̃ ∂S∂qi (x ,
∂g
∂y (y)) solvable by iterations).

Heuristically, if f = Φ∗[g ], then Λf = Λg ◦ Φ, where Λf = gr(df ) .

Theodore Voronov Thick morphisms and homotopy bracket structures 6 / 33
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General form of pullback

Example

Let S(x , q) = S0(x) + ϕi (x)qi . Then: Φ∗[g ] = S0 + ϕ∗g .
(NB: ordinary maps have generating functions S = ϕi (x)qi .)

For a general S(x , q) = S0(x) + ϕi (x)qi + . . . , the equation
y i = (−1)ı̃ ∂S∂qi (x ,

∂g
∂y (y)) defines a map ϕg : M1 → M2 as a formal

perturbation of ϕ = ϕ0 : M1 → M2:

ϕi
g (x) = ϕi (x) + S ij(x)∂jg(ϕ(x)) + . . . ,

and Φ∗[g ](x) =
(
g(y) + S(x , q)− y iqi

)
|y=ϕg (x),q=∂g/∂y(ϕg (x)) ,

which gives Φ∗ as a formal nonlinear differential operator :

General form of Φ∗ : C∞(M2)→ C∞(M1)

Φ∗[g ](x) = S0(x) + g(ϕ(x)) +
1

2
S ij(x)∂ig(ϕ(x))∂jg(ϕ(x)) + . . .
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Coordinate invariance

Transformation law for generating functions of thick morphisms

A generating function S(x , q) as a geometric object on M1 ×M2

transforms by

S ′(x ′, q′) = S(x , q)− y iqi + y i
′
qi ′ .

Here S(x , q) is the expression for S in ‘old’ coordinates and
S ′(x ′, q′) is the expression for S in ‘new’ coordinates. At the r.h.s.,
the variables xa and y i

′
are given by substitutions: xa = xa(x ′) and

y i
′

= y i
′
(y), while qi and y i are determined from

qi =
∂y i

′

∂y i
(y) qi ′ , y i = (−1)ı̃

∂S

∂qi
(x , q) .

The transformation law satisfies the cocycle condition. The
canonical relation Φ ⊂ T ∗M2 × (−T ∗M1) specified by S is
well-defined. Pullbacks do not depend on a choice of coordinates.

Theodore Voronov Thick morphisms and homotopy bracket structures 8 / 33
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Key fact: derivative of pullback

Theorem

Let Φ: M1 →M2 be a thick morphism. Consider the pullback

Φ∗ : C∞(M2)→ C∞(M1) .

Then for every g ∈ C∞(M2), the derivative TΦ∗[g ] is given by

TΦ∗[g ] = ϕ∗g ,

where ϕ∗g : C∞(M2)→ C∞(M1) is the usual pullback with respect

to the map ϕg : M1 → M2 defined by y i = (−1)ı̃ ∂S∂qi (x ,
∂g
∂y (y))

(depending perturbatively on g, ϕg = ϕ0 + ϕ1 + ϕ2 + . . .) .

Corollary

For every g, the derivative TΦ∗[g ] of Φ∗ is an algebra
homomorphism C∞(M2)→ C∞(M1).

Theodore Voronov Thick morphisms and homotopy bracket structures 9 / 33
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Composition law

Consider thick morphisms Φ21 : M1 →M2 and Φ31 : M2 →M3 with
generating functions S21 = S21(x , q) and S32 = S32(y , r).

Theorem

The composition Φ32 ◦ Φ21 is well-defined as a thick morphism
Φ31 : M1 →M3 with the generating function S31 = S31(x , r), where

S31(x , r) = S32(y , r) + S21(x , q)− y iqi

and y i and qi are expressed through (xa, rµ) from the system

qi =
∂S32

∂y i
(y , r) , y i = (−1)ı̃

∂S21

∂qi
(x , q) ,

which has a unique solution as a power series in rµ and a
functional power series in S32.

Theodore Voronov Thick morphisms and homotopy bracket structures 10 / 33
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Further facts

Formal category

Composition of thick morphisms is associative and and
(Φ32 ◦ Φ21)∗ = Φ∗21 ◦ Φ∗32. In the lowest order, the composition is
as in SManoC∞, whose arrows are pairs (ϕ21, f21) with the
composition (ϕ32, f32) ◦ (ϕ21, f21) = (ϕ32 ◦ ϕ21, ϕ

∗
21f32 + f21).

Thick morphisms form a formal category (“formal thickening” of
SManoC∞). Denote it EThick.

“Fermionic version”

There is a fermionic version based on anticotangent bundles
ΠT ∗M and odd generating functions S(x , y∗): “odd thick
morphisms” Ψ: M1 ⇒M2 induce nonlinear pullbacks
Ψ∗ : ΠC∞(M2)→ ΠC∞(M1) of odd functions (“fermionic
fields”) and their composition gives another formal category,
OThick, which contains SManoΠC∞.

Theodore Voronov Thick morphisms and homotopy bracket structures 11 / 33
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Recollection: L∞-algebras and L∞-morphisms – 1

We consider Z2-graded version. (One can include a Z-grading.)

There are two parallel notions: “symmetric” and “antisymmetric”.

Definition (L∞-algebra: antisymmetric version)

A vector space L = L0 ⊕ L1 with a collection of multilinear
operations

[−, . . . ,−] : L× . . .× L︸ ︷︷ ︸
k times

→ L (for k = 0, 1, 2, . . .)

such that

the parity of the kth bracket is k mod 2;

all brackets are antisymmetric (in Z2-graded sense);∑
r+s=n

∑
shuffles(−1)α+σ[[xσ(1), . . . , xσ(r)], . . . , xσ(r+s)] = 0,

for all n = 0, 1, 2, 3, ...

(here (−1)α comes from parities and (−1)σ = signσ).

Theodore Voronov Thick morphisms and homotopy bracket structures 12 / 33
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Recollection: L∞-algebras and L∞-morphisms – 2

A parallel notion is as follows.

Definition (L∞-algebra: symmetric version)

A vector space V = V0 ⊕ V1 with a collection of multilinear
operations

{−, . . . ,−} : V × . . .× V︸ ︷︷ ︸
k times

→ V (for k = 0, 1, 2, . . .)

such that

all brackets are odd;

all brackets are symmetric (in Z2-graded sense);∑
r+s=n

∑
shuffles(−1)α{{vσ(1), . . . , vσ(r)}, . . . , vσ(r+s)} = 0,

for all n = 0, 1, 2, 3, ...

(here (−1)α comes from parities only).
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Recollection: L∞-algebras and L∞-morphisms – 3

L

ΠL ΠL∗

L∗

�
�
�
��

A
A
A
AA

@
@

�
�

Equivalent structures:

Antisymmetric L∞-algebra structure on L

Symmetric L∞-algebra structure on ΠL

Homological vector field Q ∈ Vect(ΠL), i.e., Q̃ = 1, Q2 = 0

(Also: P∞- on L∗ and S∞- on ΠL∗, to be discussed later.)
NB: we identify super vector spaces with supermanifolds.

Theodore Voronov Thick morphisms and homotopy bracket structures 14 / 33
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Recollection: L∞-algebras and L∞-morphisms – 4

Relation between brackets in L and ΠL

{Πx1, . . . ,Πxk} = (−1)(k−1)x̃1+...x̃k−1Π[x1, . . . , xk ] .

Relation with Q

Q(ξ) =
∑ 1

n!{ξ, . . . , ξ︸ ︷︷ ︸
n

}, where ξ ∈ V = ΠL

Higher derived bracket formula:
ι([x1, . . . , xk]) = ±[. . . [Q, ι(x1)], . . . , ι(xk)](0), for
x = x iei ∈ L, and ι(x) := (−1)x̃x i∂/∂ξi ∈ Vect(ΠL) (sign
fixed by linearity condition).

Description of L∞-morphisms

An L∞-morphism L1  L2 is given by a sequence ΛnL1 → L2 or
Sn(ΠL1)→ ΠL2 satisfying a sequences of identities (“higher
homotopies”). It is equivalent to a Q-map ΠL1 → ΠL2.

Theodore Voronov Thick morphisms and homotopy bracket structures 15 / 33
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Digression: P∞- and S∞-structures

Let M be a (super)manifold. Then a P∞- (S∞-) structure on M is
an antisymmetric (resp., symmetric) L∞-structure on C∞(M) such
that the brackets are multiderivations.

A P∞-structure on M is specified by an even
P ∈ C∞(ΠT ∗M) satisfying [P,P] = 0, by the formula:

{f1, . . . , fk}P = [. . . [P, f1], . . . , fk ]|M .

An S∞-structure on M is specified by an odd H ∈ C∞(T ∗M)
satisfying (H,H) = 0, by the formula:

{f1, . . . , fk}H = (. . . (H, f1), . . . , fk)|M .

Homological vector fields (“Hamilton–Jacobi”) :

QP =
∫
M Dx P(x , ∂ψ∂x ) δ

δψ(x) ∈ Vect(ΠC∞(M))

QH =
∫
M Dx H(x , ∂f∂x ) δ

δf (x) ∈ Vect(C∞(M))

Theodore Voronov Thick morphisms and homotopy bracket structures 16 / 33
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Key theorem: pullback as an L∞-morphism

Let M1 and M2 be S∞-manifolds, with Hi ∈ C∞(T ∗Mi ), i = 1, 2.

Definition of an S∞ (“homotopy Schouten”) thick morphism

A thick morphism Φ: M1 →M2 is S∞ if π∗1H1 = π∗2H2 on Φ.

Note: this is expressed by the Hamilton–Jacobi equation

H1

(
x ,
∂S

∂x

)
= H2

(∂S
∂q
, q
)
.

Theorem

If a thick morphism of S∞-manifolds Φ: M1 →M2 is S∞, then the
pullback

Φ∗ : C∞(M2)→ C∞(M1)

is an L∞-morphism of the homotopy Schouten brackets.
In greater detail: Φ∗ intertwines the homological vector fields
QH2 ∈ Vect(C∞(M2)) and QH1 ∈ Vect(C∞(M1)).

Theodore Voronov Thick morphisms and homotopy bracket structures 17 / 33



Introduction Main construction Applications Quantum version Conclusion

Another application: adjoint for a nonlinear transformation

Theorem

1. For a fiberwise map of vector bundles Φ: E1 → E2, there is a
fiberwise thick morphism

Φ∗ : E ∗2 →E ∗1 ,

with the same properties as the usual adjoint and coinciding with it
if Φ is fiberwise-linear. Construction:
Φ∗ :=

(
κ× κ)(Φ

)op ⊂ T ∗E ∗1 × (−T ∗E ∗2 ), where
κ : T ∗E → T ∗E ∗ is the Mackenzie–Xu diffeomorphism.
2. The obtained pushforward of functions on the dual bundles

Φ∗ := (Φ∗)∗ : C∞(E ∗1 )→ C∞(E ∗2 )

if restricted on the space of sections C∞(M,E1) takes it to
C∞(M,E2) and coincides on sections with Φ∗(v) = Φ ◦ v .

Theodore Voronov Thick morphisms and homotopy bracket structures 18 / 33
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Recollection: L∞-algebroids

An L∞-algebroid is a vector bundle E → M with an
antisymmetric L∞-algebra structure on sections and a
sequence of n-ary anchors E ×M . . .×M E → TM so that the
Leibniz identities hold:

[u1, . . . , un−1, fun] = a(u1, . . . , un−1)(f ) un+(−1)αf [u1, . . . , un] ,

where (−1)α = (−1)(ũ1+...+ũn−1+n)f̃ .

An L∞-algebroid structure on E → M is equivalent to a
(formal) homological vector field on the supermanifold ΠE .

An L∞-morphism of L∞-algebroids Φ: E1  E2 is specified
by a map (in general, nonlinear) Φ: ΠE1 → ΠE2 such that
the corresponding homological vector fields are Φ-related.

Example: all anchors assemble into an L∞-morphism
ΠE → ΠTM .

Theodore Voronov Thick morphisms and homotopy bracket structures 19 / 33
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L∞-morphisms of Lie-Poisson and Lie-Schouten brackets

Theorem

An L∞-morphism of L∞-algebroids over a base M induces
L∞-morphisms of the homotopy Poisson and homotopy Schouten
algebras of functions on the dual and antidual bundles respectively.

Corollary

The anchor for an L∞-algebroid E → M induces L∞-morphisms

C∞(ΠE ∗)→ C∞(ΠT ∗M)

for the homotopy Schouten brackets, and

ΠC∞(E ∗)→ ΠC∞(T ∗M) .

for the homotopy Poisson brackets.

Theodore Voronov Thick morphisms and homotopy bracket structures 20 / 33
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Application to a homotopy Poisson manifold

In particular, we have the following:

Corollary

On a homotopy Poisson manifold M, there is an L∞-morphism

Ω(M) = C∞(ΠTM)→ C∞(ΠT ∗M) = A(M) ,

between the higher Koszul brackets on forms (induced by a
homotopy Poisson structure) and the canonical Schouten bracket
on multivector fields.

(This was our initial problem discussed in the beginning.)

Theodore Voronov Thick morphisms and homotopy bracket structures 21 / 33
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Quantum pullbacks and quantum thick morphisms

Definition

A quantum pullback Φ̂∗ : OC∞~ (M2)→ OC∞~ (M1) is defined by

(Φ̂∗[w ])(x) =

∫
T∗M2

DyD̄q e
i
~ (S~(x ,q)−y iqi ) w(y) .

A quantum thick (or microformal) morphism Φ̂ : M1 →~M2 is the
corresponding arrow in the dual category.

Here S~(x , q) is a quantum generating function :

S~(x , q) = S0
~ (x) + ϕi

~(x)qi +
1

2
S ij
~ (x)qjqi +

1

3!
S ijk
~ (x)qkqjqi + . . .

OC∞~ (M) is the algebra of oscillatory wave functions, i.e. sums of

formal expressions w(x) = a~(x)e
i
~b~(x), where a~(x) and b~(x)

are formal power series in ~.
(D̄q := (2π~)−n(i~)mDq in dimension n|m. )

Theodore Voronov Thick morphisms and homotopy bracket structures 22 / 33
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Classical limit

Theorem

Let Φ̂ : M1 →~M2 be a quantum thick morphism with a quantum
generating function S~. Consider S0(x , q) := lim

~→0
S~(x , q) as the

(classical) generating function of a (classical) thick morphism
Φ: M1 →M2. Then for any oscillatory wave function of the form

w(y) = e
i
~g(y) on M2, the quantum pullback given by

Φ̂∗
[
e

i
~g
]
= e

i
~ f~(x) ,

where f~ = Φ∗[g ] + O(~), and Φ∗ is the pullback by the classical
microformal morphism Φ: M1 →M2 defined by S0(x , q).

We say that Φ = lim
~→0

Φ̂ .

Theodore Voronov Thick morphisms and homotopy bracket structures 23 / 33
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Explicit formula for quantum pullback

Suppose

S~(x , q) = S0
~ (x) + ϕi

~(x)qi + S+
~ (x , q) ,

where S+
~ (x , q) is the sum of all terms of order > 2 in qi .

Theorem

The action of Φ̂∗ defined by S~(x , q) can be expressed as follows:

(
Φ̂∗w

)
(x) = e

i
~S

0
~(x)

(
e

i
~S

+
~

(
x , ~

i
∂
∂y

)
w(y)

)∣∣∣∣∣ y i=ϕi
~(x)

.

Hence the quantum pullback Φ̂∗ is a special type formal linear
differential operator over a ‘quantum-perturbed’ map
ϕ~ : M1 → M2. Here S0

~ (x) gives the phase factor, ϕi
~(x)qi gives

the map, and S+
~ (x , q) is responsible for “quantum corrections”.
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Digression: brackets generated by an operator

Let A be a commutative algebra with 1 over C[[~]]. Let ∆ be a
linear operator on A. Consider two sequences of multilinear
operations (of parity ∆̃ and symmetric in the supersense):

Definition (a modification of Koszul’s)

Quantum brackets generated by ∆ :

{a1, . . . , ak}∆,~ := (−i~)−k [. . . [∆, a1], . . . , ak ](1) ;

classical brackets generated by ∆ :

{a1, . . . , ak}∆,0 := lim
~→0

(−i~)−k [. . . [∆, a1], . . . , ak ](1)

∆ is a formal ~-differential operator if all quantum brackets
are defined;
∆ is an ~-differential operator of order 6 n if all quantum
brackets vanish for k > n.
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More on brackets generated by ∆

Remark (Explicit formulas)

For k = 0, {∅}∆,~ = ∆(1) ;

for k = 1, {a}∆,~ = (−i~)−1
(
∆(a)−∆(1)a

)
;

for k = 2, {a, b}∆,~ =

(−i~)−2
(
∆(ab)−∆(a)b − (−1)ãb̃∆(b)a + ∆(1)ab

)
;

for general k , {a1, . . . , ak}∆,~ = (−i~)−k

k∑
s=0

(−1)s
∑

(k−s,s)-shuffles

(−1)α ∆(aτ(1) . . . aτ(k−s)) aτ(k−s+1) . . . aτ(k) ,

where (−1)α = (−1)α(τ ;ã1,...,ãk ) is the Koszul sign.

~-differential operators

ord~ ∆ 6 k iff for all a ∈ A, [∆, a] = i~B where ord~ B 6 k − 1.
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S∞,~-algebras

Let ∆ on A be odd. If ∆2 = 0, then the quantum brackets define
an L∞-algebra (in the odd symmetric version). They additionally
satisfy the modified Leibniz identity

{a1, . . . , ak−1, ab}∆,~ = {a1, . . . , ak−1, a}∆,~b±
a{a1, . . . , ak−1, b}∆,~ + (−i~){a1, . . . , ak−1, a, b}∆,~︸ ︷︷ ︸

extra term

.

We call such an algebraic structure an S∞,~-algebra.
Note: the operator ∆ and the whole S∞,~-structure are fully
defined by 0- and 1-brackets.

Lemma

The quantum brackets generated by ∆ correspond to a
“Batalin-Vilkovisky homological vector field” on A (regarded as a
supermanifold)

Q = e−
i
~a∆

(
e

i
~a
) δ
δa
.
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BV-manifolds and BV quantum morphisms

Definition

(1) A BV-manifold: a supermanifold M equipped with an odd
formal ~-differential operator ∆, ∆2 = 0. The operator ∆ is the
BV-operator.
(2) A (quantum) BV-morphism of BV-manifolds (M1,∆1) and
(M2,∆2): a quantum thick morphism Φ̂: M1 →~M2 such that

∆1 ◦ Φ̂∗ = Φ̂∗ ◦∆2 .

Since ∆ induces a sequence of quantum brackets, and is defined by
the 0- and 1-brackets, a BV-structure and an S∞,~-structure on M
are equivalent.

Question

How to obtain an L∞-morphism of quantum brackets generated by
BV-operators? (Note: the operator Φ̂∗ is linear, so cannot be the
answer.)
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L∞-morphism of quantum brackets induced by a quantum
BV-morphism

Define Φ̂! : C∞~ (M2)→ C∞~ (M1) by

Φ̂! :=
~
i

ln ◦ Φ̂∗ ◦ exp
i

~
,

or Φ̂!(g) = ~
i ln Φ̂∗

(
e

i
~g
)

, for a g ∈ C∞~ (M2) .

Theorem

If Φ̂ : M1 →~M2 is a BV quantum morphism, then Φ̂! is an
L∞-morphism of the S∞,~-algebras of functions.

Or, in greater detail: Φ̂! is a morphism of infinite-dimensional
Q-manifolds C∞~ (M2)→ C∞~ (M1), where

Q∆ =

∫
Dx e−

i
~ f ∆

(
e

i
~ f
) δ

δf (x)
.
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From a quantum BV morphism to a classical S∞ thick
morphism

Let M be a BV-manifold with a BV-operator ∆. In the limit
~→ 0, ∆ gives an S∞-structure. Its “master Hamiltonian” is

H(x , p) = lim
~→0

e−
i
~ x

apa∆(e
i
~ x

apa) .

Theorem (“analog of Egorov’s theorem”)

Let M1 and M2 be BV-manifolds and let Φ̂ : M1 →~M2 be a BV
quantum thick morphism. Then its classical limit Φ: M1 →M2 is a
homotopy Schouten morphism for the induced S∞-structures.

Explicitly: the intertwining relation ∆1 ◦ Φ̂∗ = Φ̂∗ ◦∆2 implies the
Hamilton-Jacobi equation for the classical thick morphism
Φ = lim

~→0
Φ̂ :

H1

(
x ,
∂S

∂x

)
= H2

(∂S
∂q
, q
)
.
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Some open questions

“Non-linear algebra-geometry duality”

Define a non-linear homomorphism of algebras to be a map
A1 → A2 such that its derivative at every element a ∈ A1 is
an algebra homomorphism. (Variant: a formal map
A1 → A2.) Question: how to describe such maps?

In particular, is it true that all such non-linear homomorphisms
between algebras C∞(M) are pullbacks by thick morphisms?

Other

“Thick manifolds”: if we have thick diffeomorphisms, what
can be obtained by gluing?

Action of thick morphisms on forms, cohomology, etc. ...
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FINIS

Thank you for attention!
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