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The aim of the talk:

To give very brief introduction to L∞: definition and relation
to gauge theories.
Explain the idea of L∞ bootstrap programe as a generalization
of a Gauge Principle. We promote the existence of L∞ to a
guiding principle for bootsrapping unknown gauge theories or
consistent deformation of well defined theories.
Exemplify the proposed ideas constructing the gauge theories
on the general NC space, with non-constant NC parameter Θ.
Construction of Lgauge

∞ algebra + recurrence relations.
Explicit expressions for the non-commutative su(2)-like and
non-associative octonionic-like deformations of the abelian
gauge transformation in slowly varying field approximation.
Construction of Lfull

∞ algebra for NC Chern-Simons theory.
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Definition of L∞ in `-picture

is a graded vector space: X =
⊕

n Xn,
endowed with multi-linear maps: `n(x1, . . . , xn), of degree

deg
(
`n(x1, . . . , xn)

)
= n − 2 +

n∑
i=1

deg(xi ) ,

which are graded anti-symmetric,

`n(. . . , x1, x2, . . . ) = (−1)1+deg(x1)deg(x2) `n(. . . , x2, x1, . . . ) ,

and satisfy the relations (generalized Jacobi identities):

Jn(x1, . . . , xn) :=
∑

i+j=n+1(−1)i(j−1)
∑

σ(−1)σ χ(σ; x)

`j
(
`i (xσ(1) , . . . , xσ(i)) , xσ(i+1), . . . , xσ(n)

)
= 0 ,

where the permutations are restricted to the ones with:
σ(1) < · · · < σ(i), σ(i + 1) < · · · < σ(n), and the sign
χ(σ; x) = ±1 can be determined from graded anti-symmetry.
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Definition of L∞

The first L∞ relations read

`1
(
`1(x)

)
= 0 ,

`1
(
`2(x1, x2)

)
= `2

(
`1(x1), x2

)
+ (−1)x1`2

(
x1, `1(x2)

)
,

meaning that `1 is a nilpotent derivation with respect to `2, i.e.,
the Leibniz rule is satisfied.

0 = `1
(
`3(x1, x2, x3)

)
+ `3

(
`1(x1), x2, x3

)
+(−1)x1`3

(
x1, `1(x2), x3

)
+ (−1)x1+x2`3

(
x1, x2, `1(x3)

)
+`2

(
`2(x1, x2), x3

)
+ (−1)(x2+x3)x1`2

(
`2(x2, x3), x1

)
+(−1)(x1+x2)x3`2

(
`2(x3, x1), x2

)
,

the Jacobi identity for `2 is violated up to `1 exact terms.
Any Lie algebra g can be represented as L∞, setting X0 = g ,
and all other Xn empty. Then `1 = 0, and `2(x1, x2) = [x1, x2].
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Relation to gauge transformations, Lgauge
∞ algebra

Consider X = X0 ⊕ X−1, with X0 being the space of gauge
parameters f , and X−1 the space of gauge fields Aa.
The graded anti-symmetry in this case means:

`n(. . . , f , g , . . . ) = (−1)1+|f |·|g |`n(. . . , g , f , . . . ) = −`n(. . . , g , f , . . . ) ,

`n(. . . , f ,A, . . . ) = −`n(. . . ,A, f , . . . ) ,

`n(. . . ,A,B, . . . ) = `n(. . . ,B,A, . . . ) .

Since, deg
(
`n
)

= n − 2, the only non-vanishing brackets can be

`n+1(f ,An) ∈ X−1 and `n+2(f , g ,An) ∈ X0 ,

satisfying the relations

Jn+2(f , g ,An) = 0 and Jn+3(f , g , h,An) = 0 ,

with Jn+2(f , g ,An) ∈ X−1, and Jn+3(f , g , h,An) ∈ X0.
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Gauge transformations

Gauge variations are given by:

δf A =
∑

n≥0
1
n! (−1)

n(n−1)
2 `n+1(f ,A, . . . ,A︸ ︷︷ ︸

n times

) = `1(f ) + `2(f ,A) + . . . .

Off-shell closure condition,

[δf , δg ]A = δ−C(f ,g ,A)A ,

C (f , g ,A) =
∑
n≥0

1
n!

(−1)
n(n−1)

2 `n+2(f , g ,A, . . . ,A︸ ︷︷ ︸
n times

) ,

follows from the L∞ relations, Jn+2(f , g ,An) = 0.
While the Jacobi identity∑

cycl

[
δf , [δg , δh]

]
≡ 0 ,

is equivalent to the L∞ relations, Jn+3(f , g , h,An) = 0.
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Gauge field theory and Lfull
∞ algebra

It is remarkable that L∞ defines not only kinematics but also
dynamics. Extend the vector space by X−2, containing the eom Fa,
and so obtain Lfull

∞ with

X = X0 ⊕ X−1 ⊕ X−2 .

Non-empty X−2, implies additional non-vanishing brackets

`n(An) and `n+2(f ,E ,An+1) ,

as well as (infinitely) many non-trivial identities

Jn+1(f ,An) = 0 and Jn+2(f ,E ,An) = 0 .

The equations of motion can be written as

F :=
∑
n≥1

1
n!

(−1)
n(n−1)

2 `n(An) = 0 ,

δfF = `2(f ,F) + `3(f ,F ,A)− 1
2
`4(f ,F ,A2) + . . .
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L∞ bootstrap, arXiv: 1803.00732

We have an infinite number of brackets `n, which are not arbitrary,
since they should satisfy an infinite tower of L∞ relations.

Proposal: represent initial undeformed theory as well as
deformation as a part of new L∞ algebra; solving L∞ relations
one completes L∞ algebra describing the consistent
deformation of a given gauge theory.
Start with Lgauge

∞ algebra. Bootstrap input: `1(f ) ∈ X−1, and
`2(f , g) ∈ X0.
Then from, J2(f , g) = 0, one finds `2(f ,A).
After that, J3(f , g , h) = 0, defines `3(f , g ,A), etc.
Once Lgauge

∞ is constructed we specify the undeformed gauge
theory by setting `1(A) ∈ X−2, with `21 = 0.
Then solving the corresponding L∞ relations we construct Lfull

∞
algebra.
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Problem: non-constant Θ

Given undeformed gauge theory, e.g., abelian Chern-Simons. The
problem is to construct the consistent gauge theory on the NC
space defined by [x i , x j ] = iΘij(x), which in the commutative limit,
Θ→ 0, reproduces the undeformed one.
One cannot simply substitute all point-wise products with a star
products in the action, since the Leibniz rule is violated,

∂a(f ? g) = ∂af ? g + f ? ∂ag +
i

2
(∂aΘij)∂i f ∂jg +O(Θ2) ,

and the standard gauge principle is no longer applicable.
Old: Hopf-algebra approach, generalized Leibniz rule
(deformed co-product using twist); the corresponding twist
element is known for very few Θij(x).
One may use the inner derivatives, Di = c[xi , ·]?, leading to
the problems with the commutative limit.
New: Consider this problem in the framework of L∞.
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Construction of Lgauge
∞ algebra, X = X0 ⊕ X−1

Let: `1(f ) = ∂af ∈ X−1; (`1(A) = 0, since X−2 = ∅) and

`2(f , g) = i [f , g ]? = −{f , g}+O(Θ3) ∈ X0 .

`2(f ,A) can be non-zero and should be found from J2(f , g) = 0,

`1(`2(f , g)) = −{

∈X−1︷ ︸︸ ︷
`1(f ), g} − {f ,

∈X−1︷ ︸︸ ︷
`1(g)} − (∂aΘij) ∂i f ∂jg +O(Θ3) ,

= `2(`1(f ), g) + `2(f , `1(g)) .

which implies that

`2(f ,A) = i [f ,Aa]? −
1
2

(∂aΘij) ∂i f Aj +O(Θ3) .

• Note that the solution is not unique, one may also set, e.g.,

`′2(f ,A) = `2(f ,A) + s ija (x) ∂i f Aj , s ija (x) = s jia (x) .

However, the symmetric part s ija (x) ∂i f Aj can be always “gauged
away” by L∞-QISO, physically equivalent to SW map, for more
details see arXiv:1806.10314, and Matthias talk today.
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Lgauge
∞ algebra

Next step is to check, J3(f , g , h) = 0, and define `3(f , g ,A),

0 = `2(`2(f , g), h) + `2(`2(g , h), f ) + `2(`2(h, f ), g) +

`3(`1(f ), g , h) + `3(f , `1(g), h) + `3(f , g , `1(h)) .

The first line is a Jacobiator, which in the leading order reads,

`2(`2(f , g), h) + `2(`2(g , h), f ) + `2(`2(h, f ), g) = −Πijk∂i f ∂jg∂kh ,

Πijk := Θil∂lΘ
jk + Θkl∂lΘ

ij + Θjl∂lΘ
ki .

For associative NC deformations we may just set, `3(A, f , g) = 0,
while for non-associative one needs non-vanishing `3(A, f , g) to
satisfy it,

`3(A, f , g) =
1
3

ΠijkAi∂j f ∂kg +O(Θ3) .
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Lgauge
∞ algebra

Then, we have to analyze J3(f , g ,A) = 0, given by

0 = `2(`2(A, f ), g) + `2(`2(f , g),A) + `2(`2(g ,A), f ) +

`1(`3(A, f , g))− `3(A, `1(f ), g)− `3(A, f , `1(g)).

We replace it with J3(g , h, `1(f )) = 0, written in the form

`3(`1(f ), `1(g), h)− `3(`1(f ), `1(h), g) = G (f , g , h) ,

G (f , g , h) := `1(`3(`1(f ), g , h))

+`2(`2(`1(f ), g), h) + `2(`2(g , h), `1(f )) + `2(`2(h, `1(f )), g) .

By construction, G (f , g , h) = −G (g , f , h). The graded symmetry
of `3(`1(f ), `1(g), h) implies the graded cyclicity (consistency
condition) of G (f , g , h):

G (f , g , h) + G (h, f , g) + G (g , h, f ) = 0 .

Below we show that it holds true as a consequence of the previous
“Jacobi identities”, J2(f , g) = 0 and J3(f , g , h) = 0.
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Lgauge
∞ algebra

G (f , g , h) + G (h, f , g) + G (g , h, f ) =

`2(`2(`1(h), f ), g) + `2(`2(f , g), `1(h)) + `2(`2(g , `1(h)), f ) +

`2(`2(`1(g), h), f ) + `2(`2(h, f ), `1(g)) + `2(`2(f , `1(g)), h) +

`2(`2(`1(f ), g), h) + `2(`2(g , h), `1(f )) + `2(`2(h, `1(f )), g)

`1(`3(`1(f ), g , h)) + `1(`3(f , `1(g), h)) + `1(`3(f , g , `1(h))) .

Using J2(f , g) = 0, we rewrite it as

`1
[
`2(`2(f , g), h) + `2(`2(g , h), f ) + `2(`2(h, f ), g) +

`3(`1(f ), g , h) + `3(f , `1(g), h) + `3(f , g , `1(h))
]

=

`1 [J3(f , g , h)] = 0 .

Thus, the combination (symmetrization in f and g):

`3(`1(f ), `1(g), h) = −1
6

(
G (f , g , h) + G (g , f , h)

)
,

has required graded symmetry and solves J3(g , h, `1(f )) = 0.
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Lgauge
∞ algebra

Setting

`3(A,B, h) = `3(`1(f ), `1(g), h)|`1(f )=A; `1(g)=B ,

one gets in the leading order,

`3(A,B, f ) = −1
6

(
Ga

ijk + Ga
jik
)
AiBj∂k f

+
1
6

Πijk(∂aAiBj∂k f − Ai∂aBj∂k f )− 1
2

Πijk(∂iAaBj∂k f − Ai∂jBa∂k f )

+O(Θ3) .

with

Ga
ijk =

1
3
∂aΠijk −Θim∂m∂aΘjk − 1

2
∂aΘjm∂mΘki − 1

2
∂aΘkm∂mΘij .

The consistency condition (graded cyclicity) holds true as a
consequence of L∞ construction.
Even in the associative case one needs higher brackets to
compensate the violation of the Leibnitz rule.
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Higher relations

Non-associative case: J4(f , g , h,A) = 0, we substitute with
J4(f , g , h, `1(k)) = 0, written as

`4(`1(f ), g , h, `1(k)) + `4(f , `1(g), h, `1(k)) + `4(f , g , `1(h), `1(k))

= F (f , g , h, k) ,

with

F (f , g , h, k) := `2(`3(f , g , `1(k)), h) + `2(g , `3(f , h, `1(k)))

−`2(f , `3(g , h, `1(k))) + `3(`2(f , g), h, `1(k))− `3(`2(f , h), g , `1(k))

+`3(`2(f , `1(k)), g , h)− `3(f , `2(g , h), `1(k)) + `3(f , `2(g , `1(k)), h)

+`3(f , g , `2(h, `1(k))) .

By the construction F (f , g , h, k) is antisymmetric in first three
arguments and the graded symmetry of `4(`1(f ), g , h, `1(k))
implies the graded cyclicity (consistency condition):

F (f , g , h, k)− F (k , f , g , h) + F (h, k , f , g)− F (g , h, k , f ) = 0 .
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Higher relations

Again, the consistency condition holds true as a consequence of the
previous Jacobi identities, graded symmetry and multi-linearity of
the products `n. One finds,

`4(`1(f ), g , h, `1(k)) =
1
8

(F (f , g , h, k) + F (k , g , h, f )) .

Then,

`4(A, g , h,B) = `4(`1(f ), g , h, `1(k))|`1(f )=A; `1(k)=B .

The explicit form in the leading oder,

`4(A, g , h,B) =

[
1
16

Πjlm∂mΘki +
1
16

Πjkm∂mΘli − 1
16

Πilm∂mΘkj

− 1
16

Πikm∂mΘlj − 1
24

Θkm∂mΠijl − 1
24

Θlm∂mΠijk

]
∂ig∂j fAkBl .
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Recurrense relations for Lgauge
∞ algebra

For, Jn+2(g , h,An) = 0, n > 1 we proceed in the similar way. First
we substitute them by Jn+2(g , h, `1(f )n) = 0,

`n+2(`1(f )n, `1(g), h)− `n+2(`1(f )n, `1(h), g) = G (f1, . . . , fn, g , h) ,

The graded symmetry of `n+2(`1(f )n, `1(g), h) implies the
consistency condition,

G (f1, . . . , fn, g , h)+G (f1, . . . , fn−1, g , h, fn)+G (f1, . . . , fn−1, h, fn, g) = 0 ,

which follows from the previous L∞ relations and can be proved by
the induction.
The solution is constructed by taking the symmetrization of the
r.h.s. in the first n + 1 arguments, i.e.,

`n+2
(
`1(f )n, `1(g), h

)
= − 1

(n + 1)(n + 2)

(
G (f1, . . . , fn, g , h)

+ G (f2, . . . , fn, g , f1, h) + · · ·+ G (fn, . . . , fn−1, h)
)
.
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Recurrense relations for Lgauge
∞ algebra

Identities: Jn+3(f , g , h,An) = 0, n > 1, are substituted by,
Jn+3(f , g , h, `1(k)n) = 0, written as:

`n+3(`1(f ), g , h, `1(k)n) + `n+3(f , `1(g), h, `1(k)n)

+`n+3(f , g , `1(h), `1(k)n) = F (f , g , h, k1, ..., kn) .

The r.h.s. should satisfy the graded cyclicity which follows from the
previous Jacobi identities, graded symmetry and multi-linearity of
the products `n.
The solution is constructed by taking the corresponding
symmetrization of r.h.s.:

`n+3
(
f , g , `1(h), `1(k)n

)
= − 1

n(n + 2)

(
F (f , g , h, k1, ..., kn)

+ F (f , g , k1, ..., kn, h) + · · ·+ F (f , g , kn, h, k1, ..., kn−1)
)
,

see arXiv:1805.12040 for details.
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Slowly varying field approximation

The main aim here is to do some explicit calculations to illustrate
the proposed ideas. Consider the limit of slowly varying, but not
necessarily small gauge fields. We discard the higher derivatives
terms and take, `2(f , g) = −{f , g}, as a Poisson bracket. Then

`2(f ,A) = −{f ,Aa} −
1
2

(∂aΘij) ∂i fAj .

For some particular choices of Θ we may do the all orders
calculation. Taking, e.g., Θij(x) = 2εijkxk , we may see that

δf Aa = ∂af + {Aa, f }ε + εabcAb∂c f +
(
∂afA

2 − ∂bfAbAa

)
χ(A2) .

From the gauge closure condition, [δf , δg ]A = δ{f ,g}εA , one finds,

χ(t) =
1
t

(√
t cot

√
t − 1

)
, χ(0) = −1

3
.

NC su(2)-like deformation of the abelian gauge
transformations in the slowly varying field approximation.
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Slowly varying field approximation

One can do the same with the quasi-Poisson structure isomorphic
to the commutator algebra of the imaginary octonions,

{ξA, ξB}η = 2 ηABC ξC ,

ηABC = +1 for ABC = 123, 435, 471, 516, 572, 624, 673 .
Since, {ξA, ξB , ξC} = −12ηABCDξD , we have, `n+2(f , g ,Φn) 6= 0,
implying the modification of the closure condition,

[δf , δg ]Φ = δ−C(f ,g ,Φ)Φ ,

with, see arXiv:1805.12040 for details,

C (f , g ,Φ) = −{f , g}η

−2 ηABCD ∂Af ∂Bg ΦC

(
sin 2
√

Φ2
√

Φ2
ξD + 2

sin2
√

Φ2

Φ2 ηDEFΦE ξF

)
.

In 3D, ηABCD = 0, and {f , g}η = {f , g}ε.
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Slowly varying field approximation

The expression for the gauge variation reads,

δf ΦA = ∂Af +{ΦA, f }η+ηABC ΦB ∂C f +
(
∂Af Φ2 − ∂B f ΦBΦA

)
χ(Φ2) .

Non-associative octonionic-like deformation of the abelian
gauge transformations for slowly varying fields.

Defining the coordinates and momenta in terms of ξA as,

x i =

√
λ `3s R
2~ ξ3+i , pi = −λ

2 ξi , x4 =

√
λ3 `3s R
2~ ξ7 ,

we obtain from {ξA, ξB}η = 2 ηABC ξC :

{x i , x j}λ = `3s
~2 R

4,ijk4 pk and {x4, x i}λ = λ `3s
~2 R4,1234 pi ,

{x i , pj}λ = δij x
4 + λ εi jk x

k and {x4, pi}λ = λ2 xi ,

{pi , pj}λ = −λ εijk pk .
with λ being the M-theory radius. Sending λ→ 0 one recover the
constant R-flux algebra, see [Günaydin, Lüst, Malek’ 16].
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we obtain from {ξA, ξB}η = 2 ηABC ξC :

{x i , x j}λ = `3s
~2 R

4,ijk4 pk and {x4, x i}λ = λ `3s
~2 R4,1234 pi ,

{x i , pj}λ = δij x
4 + λ εi jk x

k and {x4, pi}λ = λ2 xi ,

{pi , pj}λ = −λ εijk pk .
with λ being the M-theory radius. Sending λ→ 0 one recover the
constant R-flux algebra, see [Günaydin, Lüst, Malek’ 16].
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NC Chern-Simons theory, Lfull
∞ algebra; X = X0⊕X−1⊕X−2

The lower brackets (derivatives) are:

`1(f ) = ∂af , `2(f , g) = −θ{f , g}ε `1(A) = εc
ab ∂aAb .

Corresponding EOM are

Fa := εabc∂bAc + θ
(
εabc{Ab,Ac}+ 2Ab∂aAb − Aa∂bAb − Ab∂bAa

)
+θ2

(
1
4
εabcAc∂b(A2)− 8

3
εabcA2∂bAc − 2εabcAcAi∂iAb

− 2εijbAaAj∂iAb − {A2,Aa}
)

+ O(A4) = 0 .

In the limit θ → 0, reproduce undeformed CS eom and transform
covariantly,

δfF = `2(f ,F) = θ{f ,F}ε .

We don’t have yet all order expression for F (open problem).
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Discussion

Given undeformed gauge theory and anti-symmetric bi-vector
field Θij(x) describing the non-commutativity of the space, we
have iterative procedure of the construction of NC gauge
theory, which reproduce in the limit Θ→ 0 the undeformed
one.
Our construction is based on the principle that gauge
symmetry should be realized by L∞ and works for any given Θ.
NC-YM is constructed taking `1(A) = �Aa − ∂a(∂ · A).
Open questions:

The relation with the previous approaches needs to be better
understood.
Physical consequences: interaction with the meter fields,
quantization, etc.
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