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Motivation

• Theories of fundamental interactions (Gravity, YM, Strings,
M-Theory, Higher-spin theories . . . ) are inevitably gauge
theories.

• Batalin-(Fradkin-) Vilkovisky (BV/BFV) approach (and its
generalizations) gives a proper language for gauge gauge the-
ories. Batalin, (Fradkin), Vilkovisky, 1981 . . . . It is the framework
in which L∞ originally appeared in physics.

• The relation with Q-manifolds becomes manifest in the Alexandrov-

Kontsevich-Schwartz-Zaboronsky 1994 (AKSZ) form of BV for topo-
logical theories. In so doing the equations of motion, gauge
symmetries, etc. are encoded in a homological vector field
Q on the target space.



• AKSZ formulation has certain advantages over the usual jet-
space version of the BV formalism Henneaux; Barnich, Brandt,

Henneaux:including manifest background independence of AKSZ
useful in studying boundary values, manifest realization of
symmetries etc., close to unfolded formalism Vasiliev 1988., . . .

of higher spin (HS) theories.

• Applications: higher spin gauge theories Fronsdal, Fradkin-Vasiliev,

Fradkin-Tseytlin, Vasiliev, . . . HS theories are interesting on their
own as nontrivial extensions of gravity, which share back-
ground independence, relation to geometry, etc.

• Anti de Sitter (AdS) HS theories - holographic duals of simple
CFTs (free scalar)

• We lack first-principle understanding/derivation of Vasiliev (1991)

system
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PDEs and jet-bundles

Fiber-bundle F → X (global aspects are not discussed):

base space (independent variables or space-time coordinates):

xa, a = 1, . . . , n.

Fiber: (dependent variables or fields φi)

Jet-bundle:

A point of Jn is a pair (x, [s]), where [s] is an equivalence class

of sections s : X → F such that their partial derivatives at x

coincide to order n. In coordinates:

∂lφi(s(x))

∂xa1 . . . ∂xal
=

∂lφi(s′(x))

∂xa1 . . . ∂xal
l = 0,1, . . . n

In particular, J0(F) = F.



One can use xi, and values of above derivatives as coordinates:

J0(F) : xa, φi, J1(F) : xa, φi, φia , J2(F) xa, φi, φia, φ
i
ab , . . .

Projections:

. . .→ JN(F)→ JN−1(F)→ . . .→ J1(F)→ J0(F) = F

Useful to work with J := J∞ (projective limit).

A local function is a pull-back of a function from JN(F) for some

N . i.e. it depends on only a finite number of the coordinates.

A local function f = f(x, φ, φa, φab . . .) can be evaluated on a

section s : X → F as

f(s) := f(x, φi(s), ∂aφ
i(s), . . .)



Total derivative: (imitates the action of standard partial deriva-

tive)

∂Ta :=
∂

∂xa
+ φia

∂

∂φi
+ φiab

∂

∂φia
+ . . .

Main property:

∂a(f(s)) = (∂Ta f)(s) .

Similarly one defines local forms. These are forms that can be

obtained by pullback from finite jets.



Space-time differentials dxa. Horizontal differential:

dh ≡ dxa∂Ta , d2
h = 0 .

Differential forms:

α = α(x, dx, φ, φa, . . .)I1...Ikdvφ
I1 . . . dvφ

Ik , φI = {φia1...am
}

Vertical differential:

dv ≡ d− dh = dvφ
I ∂

∂φI

Variational bicomplex:

d2
v = 0, dvdh + dhdv = 0 , d2

h = 0

Bidegree (l, p). Locally on the jet space H(0,k)(dv) = 0 =

H(<n,0)(dh), where n = dim(X). H(n,0)(dh) = local functionals



A system of partial differential equations (PDE) is a collection

of local functions on J

Eµ[φ, x] .

The equation manifold (stationary surface): E ⊂ J singled out

by: (prolonged equation)

∂Ta1
. . . ∂TalEµ = 0 , l = 0,1,2, . . .

understood as the algebraic equations in J .

∂Ta are tangent to E and hence restricts to E. So do the differ-

entials dh and dv. ∂Ta |E determine a dim-n involutive distribution

– Cartan distribution.



Definition: [Vinogradov] PDE is a manifold E equipped with a

Cartan distribution C(E) ⊂ TE.

In addition one typically assumes regularity, constant dimension,

and E is a bundle over the spacetime.

PDEs are isomorphic when the respective distributions are.

Differential forms on E form the variational bicomplex of E. Note

that in general Hk(dh) 6= 0 for k < n.

For n = 0 PDEs are just usual manifolds.

Use the supergeometry language and define E := C[1]E so that

the equation is a Q-manifold (E, dh). C∞(E) are horizontal forms.



Example: mechanics
ODE: xtt = f(x, xt, t), as cooridnates on E one can take t, dt, x, xt
i.e. E is a phase space extended by time variable. If the equation
arise from L(x, xt, t) then E acquires (pre)symplectic (and con-
tact) structure.

Example: scalar field
Start with:

L =
1

2
ηabφaφb − V (φ) , ∂a∂

aφ+
∂V

∂φ
= 0 .

E is coordinatized by xa, dxa, φ, φa, φab, . . .. Already φab are not
independent. One can e.g. take φabc... traceless. The dh-
differential on E reads as

dhx
a = dxa , dhφ = dxaφa, , dhφa = dxb(φab −

1

n
ηab

∂V

∂φ
) , . . .

So if the system is nonlinear, i.e.
∂V

∂φ
nonlinear in φ, dh is also

nonlinear.



Linear PDE:

Eµ = Dµi(x, ∂
T
a )φi

Equation manifold is a vector bundle over X.
Formal solutions at x0 ∈ X:

φi(x0, y) = φi(x0) + ∂aφ
iya +

1

2
∂a∂bφ

i(x0)yayb + . . .

Wx0 = {φi(x0, y) : Dαi(x0 + y,
∂

∂y
)φi(x0, y) = 0}

give a fiber at x0.

Strictly speaking, in general it’s not a vector bundle. Often in
applications: there is a transitive space-time symmetry which
forces all fibers to be isomorphic.

Moreover, fiber is a module over the space-time symmetry al-
gebra. Sometimes called Weyl module in HS context (cf. talk by

Vasiliev).



Gauge PDE

Definition: Q-manifold (M,Q,gh) is a graded supermanifold M

equipped with the odd nilpotent vector field of degree 1, i.e.

Q2 = 0 , |Q| = 1 , gh(Q) = 1

Example: Odd tangent bundle: (T [1]M,d). If ξi are coordinates

on the fibres of T [1]M in the basis
∂

∂zi
:

d := ξi
∂

∂zi

Example: CE complex (g[1], QCE). If g is a Lie algebra then g[1]

is equipped with Q structure. If cα are coordinates on g[1] in the

basis eα then

QCEf = cαcβUkαβγ
∂

∂cγ
, [eα, eβ] = U

γ
αβeγ



Example: (V [1](M), Q) where V (M) Lie algebroid. Indeed generic

Q of degree 1 locally reads

Q = cαRα −
1

2
cαcβU

γ
αβ(z)

∂

∂cγ

Rα determines anchor, Uγαβ bracket on sections, Q2 encodes com-

patibility.

Gauge PDE in n = 0 (trivial Cartan distribution) is a nonnega-

tively graded Q-manifold (E, Q).

If only ghost degree 0,1 variabels are present then it is just a Lie

algebroid.

Proposition: [AKSZ, 1994] Let p ∈ E and Q|p = 0 then TpE is an

L∞ algebra.



Important feature: although this is an intrinsic definition (E is

not embedded into some “jet space”) there are infinitely many

Q-manifolds representing the same gauge PDE.

Example: Given (M,Q) take (Q′,M ′) as follows:

M ′ = M × T [1]Rk , Q′ = Q+ dT [1]Rk

It is clear that these are homotopy equivalent Q-manifolds.

In the context of gauge theories coordinates on T [1]Rk are known

as “generalized auxiliary fields” Henneaux, 1990 (in the

Lagrangian setting). In general homotopy equivalence.

Often one can find “minimal” Q-manifold describing a given

equation. In simple case it’s a direct analog of “minimal model”

in L∞ algebras.



Batalin–Vilkovisky formalism

If the theory is Lagrangian then:

Ei =
δS0

δφi
, reducibility relations/gauge generators RiαEi = 0

Natural bracket structure (antibracket)(
φi, φ∗j

)
= δij

(
cα,Pβ

)
= δαβ

BV master action

s =
(
·, SBV

)
, SBV = S0 + φ∗iR

i
αc
α + . . .

Master equation:(
SBV , SBV

)
= 0 ⇐⇒ s2 = 0



Gauge PDE n>0

If PDE (E0, dh) has gauge symmetries there are parameters εα

which are arbitary space time functions. Promote them to ghost
variables cα and consider the extension E of E0 by the jet-space
for cα:

CI = {cα, cαa , cαab, . . .}

The gauge symmetry is encoded in vector field γ satisfying

[dh, γ] = 0 , γ2 = 0 , gh(γ) = 1

It can be written as

γ = CIRAI (ψ)
∂

∂ψA
− 1

2
CICJUKIJ(ψ)

∂

∂CK

Vector fields RI determine an involutive distribution on E0 (gauge-
distribution), compatible (in the sense of [dh, γ] = 0) with Cartan
distribution.



The above motivates the following (somewhat provisional) defi-

nition:

Definition: gauge PDE (E, s, dh) is a Q-manifold (E, s) equipped

with Cartan distribution dh compatible with s and such that

Hi(s) = 0 for i < 0.

The compatibility condition reads as:

[dh, s] = 0

It turns out that any local gauge theory gives rise to (E, s, dh)

(e.g. just by constructing BV formulation). Other way around,

given (E, s, dh) one can systematically reconstruct certain explicit

realization of this system.



Subtleties:

- generic (E, s, dh) may give intractable theory with infinite amount

of fields and/or derivatives of unbounded order

- in contrast to usual PDE one and the same gauge PDE can

be described by many equivalent (E, s, dh). Possible way out is

to ask for “minimal” (E, s, dh)



Linear Gauge PDE

Work in terms of J – jet-bundle extended by ghosts and anti-

fields. Gauge PDE: (J , s, dh)

(s = δ + γ + . . .)

Linear s (i.e. a linear pieace in the expansion of s around a

“vacuum solution“)

sψA = ΩA
B(x, ∂Ta )ψB , s2 = 0 → ΩA

BΩB
C = 0

Introduce a graded vector bundle H(X) over X underlying the

space of fields, ghosts, etc. Sections:

Φ = φA(x)eA , deg(eA) = −gh(ψA)



“First quantized BRST complex”

Decompose H =
⊕
Hl and Φ =

∑
Φ(l) accordingly.

As deg Ω = 1, Ω2 = 0 we have complex: cf. talk by Hohm

. . .
Ω(−2)
−−−−→ Γ(H−1)

Ω(−1)
−−−−→ Γ(H0)

Ω(0)
−−−→ Γ(H1)

Ω(1)
−−−→ . . .

Equations of motion and gauge symmetries:

Ω(0)Φ(0) = 0 , δΦ(0) = Ω(−1)Φ(−1) , . . .

Has a clear interpretation as a (formal) quantum mechanics of
a constrained system.

If in addition Γ(H) is equipped with degree −1 inner product∫
dnx〈·, ·〉 such that Ω is formally selfadjoint:

SBV =
∫
dnx〈Ψ,ΩΨ〉 , Ψ = ψAeA – string field

(cf. quadratic SFT action) Bochicchio, Thorn 1986



Gauge ODE. BFV formalism

Typically, for n = 1 E is can be taken finite-dimensional. For

simplicity: E is symplectic, s is hamiltonian, maximal degree is

1. Use Darboux theorem to get

σ = dpi ∧ dqi + dcα ∧ dPα gh(cα) = 1 , gh(Pβ) = −1

The Hamiltonian for s (BRST charge)

Ω = cαTα −
1

2
cαcβU

γ
αβPγ + terms of degree >2 in Pα

Tα – first-class constraints.

{Ω,Ω} = 0

These are defining relations of BFV formalism

Batalin, Fradkin, Vilkovisky, 1977



Quantization: Representation space H: e.g. functions in qi, cα

(~ = 1)

p̂i =
∂

∂qi
, P̂α =

∂

∂cα

Ω → Ω̂ , Ω̂2 = 0

Physical representation space: H0(Ω̂,H)
Physical observables: H0([Ω̂, ·],operator algebra)
- so that one gets usual quantum mechanics in the cohomology
(modulo subtleties)

Note: above is correct for time reparametrization invariant sys-
tems. Otherwise in addition one has Hamiltonian Ĥ determining
the evolution.

Gives us all the data of linear gauge PDE. If there is an inner
product, it determines odd symplectic structure.



Example: relativistic particle

Pseudo-Riemanien manifold X with coordinates xa, phase space:

T ∗X × ghost space c,P. Standard Poisson bracket and BRST

charge:

{xa, pb} = δab , {c, b} = 1 , Ω = cgabpapb +m2

Upon quantization:

Φ = φ(x)+cχ(x) , 〈, 〉 =
∫ √

gdnxdc , Ω̂ = c(∇2+. . .+m2)

Equations of motion and Lagrangian:

(∇2 +m2)φ(x) = 0 , SBV = S =
∫ √

gdnxφ(∇2 +m2)φ .



AKSZ sigma models
Alexandrov, Kontsevich, Schwartz, Zaboronsky, 1994

M - supermanifold (target space) with coordinates ΨA:
Ghost degree – gh()
(odd)symplectic structure σ, gh(σ) = n− 1 and hence
(odd)Poisson bracket { · , · }, gh({ · , · }) = −n+ 1
“BRST potential”SM(Ψ) , gh(SM) = n, master equation {SM , SM} =
0
(QP structure: Q = { · , SM} and P = { · , · })

X - supermanifold (source space)
Ghost degree gh( )
d – odd vector field, d2 = 0, gh(d) = 1
Typically, X = T [1]X, coordinates xµ, θµ ≡ dxµ, d = θµ

∂

∂xµ
,

µ = 0, . . . n− 1



Φ : X →M . Fields: ΨA(x, θ) := Φ∗(ΨA).

BV master action

SBV =
∫ [

(Φ∗(χ))(d) + Φ∗(SM)
]
, gh(SBV ) = 0

χ is potential for σ = dχ. In components:

SBV =
∫
dnxdnθ

[
χA(Ψ(x, θ))dΨA(x, θ) + SM(Ψ(x, θ))

]
BV antibracket(

F,G
)

=
∫
dnxdnθ

( δRF

δΨA(x, θ)
σAB

δG

δΨB(x, θ)

)
, gh

(
,
)

= 1

σAB(Ψ) – components of the Poisson bivector.

Master equation: (
SBV , SBV

)
= 0 ,



BRST differential:

sAKSZΨA(x, θ) = dΨA(x, θ)−QA(Ψ(x, θ)) , QA =
{

ΨA, SM
}

Natural lift of Q and d to the space of maps.

Dynamical fields: those of vanishing ghost degree

ΨA(x, θ) =
0
ΨA(x) +

1
ΨA
µ (x)θµ + . . . gh(

k
ΨA
µ1...µk

) = gh(ΨA)−k

If gh(ΨA) = k with k>0 then
k
ΨA
µ1...µk

(x) is dynamical.



AKSZ equations of motion

σAB(dΨA −QA) = 0 , ⇒ (dΨA(x, θ)−QA(Ψ(x, θ))) = 0

Recall: σAB is invertible. Interesting alternative: degenerate σ –
presymplectic AKSZ Alkalaev, M.G. 2013

More invariantly, if ΨA(x, θ) = Φ∗(ψA) the equations of motion
read as:

dΦ∗(ψA) = Φ∗(QψA) ⇔ d ◦Φ∗ = Φ∗ ◦Q
so that Φ∗ is a morphism of respective complexes. Pure gauge
solutions are trivial morphisms, i.e. Φ∗ of the form

Φ∗ = d ◦ χ∗+ χ∗ ◦Q

Note: strictly speaking one needs to extract equations and gauge
symmetries for dynamical fields only



AKSZ at the level of equations of motion (nonlagrangian)

{, } , SM ⇒ Q = QA
∂

∂ΨA
Q2 = 0 .

I.e. target is a generic Q manifold.

target doesn’t know dimX! (Recall gh(SM) = n = dimX)

If gh(ΨA)>0 ∀ ΨA then BV-BRST extended FDA.

Otherwise BV-BRST extended FDA with constraints.



Examples:

Chern-Simons: AKSZ, 1994

Target space M :

M = g[1], g – Lie algebra with invariant inner product.

ei –basis in g, Ci – coordinates on g[1], gh(Ci) = 1, C = Ciei

SM =
1

6
〈C, [C,C]〉 ,

{
Ci, Cj

}
= 〈ei, ej〉−1

Source space:

X = T [1]X, X – 3-dim manifold. Field content

Ci(x, θ) = ci(x) + θµAiµ(x) + θµθνA∗iµν + (θ)3c∗i

BV action

SBV =
∫

(
1

2
〈C,dC〉+1

6
〈C, [C,C]〉) =

∫
1

2
〈A,dA〉+1

6
〈A, [A,A]〉)+. . .



1d AKSZ systems: Target space M – Extended BFV phase

space: {, } – Poisson bracket, SM = Ω, Ω – BRST charge

Source space X = T [1](R1), coordinates t, θ

BV action M.G., Damgaard, 1999

SBV =
∫
dtdθ(χAdψ

A + Ω)

Integration over θ gives BV for the Hamiltoninan action

Fisch, Henneaux, 1989, Batalin, Fradkin 1988.

Example: coordinates on M : c̃, P̃, x̃µ, p̃µ, BRST charge Ω =

c̃T (x, p),

SBV =
∫
dtdθ(p̃µdx̃

µ + P̃dc̃+ c̃T ) =
∫
dt(pµẋ

µ + λT ) + . . .

x̃µ(t, θ) = xµ(t) + θp
µ
∗(t) , p̃µ(t, θ) = pµ(t) + θx∗µ(t) ,

c̃(t, θ) = c(t) + θλ(t) , . . .



– Background-independent

– AKSZ is both Lagrangian and Hamiltonian
AKSZ model: (M,SM , {, }) and (X ,d).

Let X = XS × R1 Barnich, M.G, 2003

ΩBFV =
∫
XS

[
(Φ∗(χ))(d) + Φ∗(SM)

]
, gh(ΩBFV ) = 1

{ · , · }BFV =
∫
dn−1xdn−1θ { · , · } {ΩBFV ,ΩBFV }BFV = 0 .

– Higher BRST charges Cattaneo et. all. (2012)

Similarly: Xk ⊂ X – codimension-k submanifold

ΩXk
=
∫
Xk

(Φ∗(χ))(d) + Φ∗(SM))

In particular, ΩBFV = ΩXS , SBV = ΩX



– At the level of EOMs AKSZ is closely related to unfolded

formalism of HS theories Vasiliev 1988,. . . and FDA approach of

SUGRA D’Auria, Fre,. . .

– At the level of EOMs the same target space gives an AKSZ

model for any Z ⊂ X or even different X.

– (asymptotic) boundary values, e.g. in the context of AdS/CFT

for HS theories Vasiliev, 2012; Bekaert M.G. 2012

– Locally in X and M : Barnich, M.G. 2009

Hg(sAKSZ, local functionals) ∼= Hg+n(Q,C∞(M))

The isomorphism sends f ∈ C∞(M) to functional F =
∫

Φ∗(f).

Generalization to nontrivial X, G.Bonavolonta, A.Kotov, 2013



– For M finite dimensional and n > 1 – the model is topological.

What about non-topological? Examples of non-topological sys-

tems whose equations of motion have the form of FDA in the

context of HS theories

Vasiliev 1988,. . . .



AKSZ form of gauge PDE

Gauge PDE (E, s, dh).

Rename dxa → ξa and rename xa → za. Setting gh(ξa) = 1

consider E as a Q-manifold (E, Q) with

Q = −dh + s

The total differential familiar in the local BRST cohomology

Stora 1983, Barnich, Brandt, Henneaux 1993,. . . .



Take X = T [1]X with coordinates xµ, θµ and consider AKSZ
model with source (X ,d) and target (E, Q).

Note that now za is promoted to a dynamical field za(x) and ξa

to dynamical field eaµ(x)dxµ and ghost field
0
ξa

In fact: we are dealing with parametrized version.
za(x) – space-time coordinates understood as fields
eaµ(x) – frame field components.

Gauge transf. for za: δza = ξa + . . .. i.e. dh is the BRST
differential implementing reparametrization invariance.
Gauge condition za = δaµx

µ gives un-parametrized version where
eaµ = δaµ. In the simplest case s = 0 the EOM’s take the form

∂

∂xa
ΨA(x)− (∂Ta ΨA)(x, θ) = 0

where ΨA are all the coordinates on E. This is an equivalent
representation of the original system.



Parent formulation: AKSZ sigma model with source (X ,d) and

target (E, Q) , where Q = −dh + s.

(Locally on X , E) parent formulation is equivalent to the param-

eterized form of (E, s, dh). G. Barnich, M.G.

2010

In the case of linear system the parent construction amounts

to Fedosov-type extension applied to the BRST first-quantized

complex of the theory. Barnich, M.G., Semikhatov, Tipunin, 2004.

If the theory is diffeomorphism-invariant (E,−dh + s) ∼= (E0, s)×
(T [1]X, d) and the parent formulation is equivalent to AKSZ with

source (X ,d) and target (E0, s)) (space-time is ”gauged away”)



Equivalence: homotopy equivalent target space Q-manifolds lead

to equivalent gauge field theories.

Example: contractible pairs for Q: suppose by local invertible

change of coordinates:

Qwa = va, Qψα = Qα(ψ)

then wa, va are contractible pairs. Their elimination results in the

reduced Q-manifold (Q̃, Ẽ).

Often one can arrive at “minimal” Q-manifold associated the

gauge system

Known as manifold of generalized connections and tensor fields.

Brandt, 1996

Similar formulations are known in the HS context for a long time

Vasiliev 1988,. . .



What contractible pairs for Q look like in field theoretical terms?

For the AKSZ model trivial pairs give rise to generalized auxiliary

fields: These comprise usual auxiliary fields, algebraically pure

gauge (Stueckelberg) fields, their associated ghosts/antifields

analogous fields in the sector of reducibility relations.

Lagrangian: Dresse, Grégoire, Henneaux, 1990

EOM: Barnich, M.G., Semikhatov, Tipunin, 2004

Nonlocal “equivalence”: if X = X0 × Rk then AKSZ model on

X is “closely related” to that on X0. Can be “pulled back”.

Boundary values.



CFT with HS symmetry

Consider as a simplest and standard example free conformal
scalar

2φ = 0

Symmetries:

[2, A] = B2 , A,B– differential operators

Associated conserved HS currents:

Ja1...as = φ̄∂a1...∂asφ+ . . .

Sources:

〈h, J〉 =
∑
s
Ja1...ash

a1...as

∂a1J
a1a2...as = 0 → δha1...as = ∂(a1ξa2...as) − traces



These sources are infinitesimal in the sense that the action

S[φ, h] = 〈φ,2φ〉+ 〈J, h〉
is only invariant under gauge transformations

δh = ∂ · ξ + ηω , δφ = 0 .

at 2φ = 0. This symmetry is not enough to fix the correlation
functions.

The enhanced gauge symmetry can be found using the different
base for the currents and the sources (background fields)
Segal 2002

S[φ, F ] = 〈φ, Fφ〉 ,

F =
∑
s
F a1...as∂a1 . . . ∂as , δF = FU + U†F , U = U(x, ∂) .

Writing F = 2+h′ note that h′ is related to h through a nontrivial
and nonlinear redefinition.



Integrating out the scalar results in the effective action:

eW [F ] =
∫
DφDφ̄ e−

∫
〈φ, Fφ〉 , W [F ] = −tr logF ,

Its invariance with respect to

δF = FU + U†F , U = U(x, ∂) .

encodes HS invariance of the correlation functions of Ja..., which
in known to fix them Maldacena, Zhiboedov . HS algebra show up
as the algebra of Killings.

It follows, all the information about free CFT is encoded in the
gauge theory of background fields (finite sources).

- These fields are off-shell
- Subject to nonlinear gauge symmetries



Usual understanding of HS holography:

Nonlinear HS in the bulk ⇔ CFT with HS symmetry

The idea is to replace it with:

Nonlinear HS in the bulk ⇔ Nonlinear background fields

It’s easier to relate objects of the same nature.

Somewhat implicitly, was employed in the case of theory of sym-

metric HS fields (Vasiliev theory) in Bekaert, M.G., Skvortsov, 2017

Earlier relevant developments: Alkalaev, M.G. Skvortsov 2014,

Bekaret, MG 2013, MG 2012, MG 2006



Background fields from constrained system

Given a quantum constrained system:

F̂i|Φ〉 = 0 , (More generally: Fa|Φ〉 = 0 , |Φ〉 ∼ Fα|Ξ〉)

The consistency condition (switching to star product notations):

[Fi, Fj]? = Ukij ? Fk

Natural equivalence transformations for the constraints:

δFi = λ
j
i ? Fj + [ε, Fi]?

Fi(x, p) can be seen as a generating function of background fields:

Fi = Fi(x) + F ai (x)pa + F abi (x)papb + . . .

while the above consistency and the equivalence, as resp. equa-

tions of motion and gauge symmetries.



Background fields for a scalar

Phase space:

[xa, pb]? = δab

First class constraint F (x, p). Although the consistency condition
is trivial the gauge symmetries are

δF = [F , ξ]? + F ? ω

These are precisely gauge symmetries for background fields for
a conformal scalar Segal 2002.

Upon linearizing around F0 = p2 one gets

δF = p · ∂
∂x
ξ + p2 ? ω

Off-shell conformal fields Fradkin, Tseytlin 1985. HS algebra arise
as that of global reducibility parameters.



BV-like description M.G. 2006

Associate a pair of ghosts ci, bj, [ci, bj] = δij to each constraint
Fi. Denote by A the ?-product algebra generated by xa, pb, c

α, bα.
A generic element of A

Φ = ΦA(x)eA , Φ = φ(x) + φapa + cαφα + . . .

Equations of motion and gauge symmeries:

[Ω,Ω]? = 0 , δΩ = [Ω,Ξ]? , gh(Ω) = 1 , gh(Ξ) = 0

Q-manifold picture: promote ΦA to fields ΨA with gh(ΨA) =
1− gh(eA). String field:

Ψ = ΨA(x)eA , gh(Ψ) = 1

BRST differential:

sΨ =
1

2
[Ψ,Ψ]? ,



Ambient description of the conformal scalar

In terms of ambient space Rd+2 with coordinates XA, flat metric

ηAB:

(X · ∂X +
d− 2

2
)Ψ = 0 , ∂X · ∂XΨ = 0 ,

Ψ ∼ Ψ +X2α ,

The above operators

X2 , ∂2
X , (X · ∂X + d+2

2 ) ,

form sp(2).



Background Fields in Ambient Space

Phase space: [XA, PB]? = δAB ,

Generating functions:

Fi(X,P ) , i = {+,0,−}
Equations:

[Fi, Fj]? = Ukij ? Fk , Ukij – sp(2) structure constants

Gauge symmetries: δFi = λ
j
i ? Fj + [ε, Fi]?

HS extension of the Fefferman-Graham (1985) construction. Natural
vacuum solution:

F0
+ =

1

2
P2 , F0

0 = X · P , F0
− =

1

2
X2 ,

Linearization around just reproduces the background conformal
fields.



Bulk fileds: free Level

Field content:

φ =
∑
s
φA1...As(x)PA1

. . . PAs

Ambient space description:

(X · ∂P )φ = 0 , (X · ∂X − P · ∂P + 2)φ = 0

(∂X · ∂X)φ = (∂X · ∂P )φ = (∂P · ∂P )φ = 0

δφ = (P · ∂X)ξ

Boundary values of these fields coincide with the linearized back-

ground conformal fields (modulo holographic anomaly in even d).

Obvious using the technique of Bekaert, MG 2012.



Holographic reconstruction

The theory is determined by its on-shell gauge transformations

In the case at hand background fields on the boundary are 1:1
with on-shell bulk fields. Moreover, we know nonlinear gauge
transformations for background fields!

We can in some sense reconstruct the bulk theory.

In the ambient approach bulk/boundary relation amounts to con-
sidering the same system either around X2 = −1 or X2 = 0
Bekaert, MG 2012.

A proper language is that bulk theory and boundary theory “live”
around two different vacua (in some precise sense X is a back-
ground field)



The proposal for HS theory is the same sp(2) system

[Fi, Fj]? = Ukij ? Fk , δFi = λ
j
i ? Fj + [ε, Fi]?

considered in the vicinity of the hyperboloid X2 = −1.

Clearly requires regularization if considered around the vacuum

F0
− = X2. Can be analyzed by switching to the parent formula-

tion.



Parent formulation

Field content:

A = dxµAµ(x|Y, P ) , Fi = Fi(x|Y, P ) ,

“Internal” ambient space:

[Y A, PB]? = δAB ,

Full on-shell system:

dA− 1

2
[A,A]? = ui ? Fi , δA = dξ − [A, ξ]? + λj ? Fj ,

dFi − [A,Fi]? = u
j
i ? Fj , δFi = [ξ, Fi]? + λ

j
i ? Fj ,

[Fi, Fj]? − CkijFk = ukij ? Fk .



Vacuum solution:

A0 = dxµωµA
BTAB , V A = constA– compensator

F0
− =

1

2
(Y + V ) · (Y + V ) , F0

+ =
1

2
P · P , F0

0 = (Y + V ) · P ,

TAB = −(Y A + V A) · PB − (A� B) ,

Cartan description of conformally-flat geometry: ωBA – flat o(d,2)-
connection, V A, V 2 = 0

For AdS-geometry: V 2 = −1 and all fields are defined on AdS

Passage to the bulk Bekaert, M.G. 2012

A,Fi(x
a, Y, P ) → A,Fi(x

µ, Y, P )

∇Conf → ∇AdS

V AConf → V AAdS (V 2
AdS = −1, V 2

Conf = 0)



Disgregarding gauge symmetry:

δfi = λ
j
i ? F

0
j , δa = λiF0

i

the linearized system (after homological reduction):

D0a = 0 , δa = D0ξ ,

D0f+ = [a, F0
+]? , δf+ = [F0

+, ξ]? ,

[F0
−, f+]? = [F0

0 , f+]? − 2f+ = 0 , [F0
−, a]? = [F0

0 , a]? = 0 ,

If a, f+ were totally traceless this is precisely the system from

Barnich, MG, 2006 describing the Fronsdal fields on AdS.



If we could use gauge symmetry:

δfi = λ
j
i ? F

0
j , δa = λi ? F0

i

to set fi, a totally traceless, we would conclude that the proposed

theory properly describes free limit.

For the linearized system it’s true provided we pick a proper

functional class C: polynomials in P , formal series in Y such that

(∂Y · ∂Y )lφ = 0

Then there is a twisted traceless projector Π′:

φ = φ0+(Y+V0)2φ10+(Y+V )·Pφ11+. . . , φ...– totally traceless

Π′φ = φ0

In this class Tr·(a) = Tr·(fi) = 0 is a legitimate gauge condition.



HS-flat connection

The system admits vacuum solution (belonging to C):

F0
i , A0(x, P, Y, θ)

[F0
i , A

0]? = 0 dA0 − 1

2
[A0, A0]? = ui ? F0

i ,

i.e. A0 is a flat connection of Type-B HS algebra.

Higher spin algebra hs:

hs = {a ∈ C : [a, F0
i ]? = 0 , a ∼ a + λi ? F0

i } ,

Representatives can be taken traceless. ?-descends to hs.



Linearized system (after homological reduction):

D0a = 0 , D0f+ = [a, F0
+]? ,

δa = D0ξ , δf+ = [ξ, F0
+]? ,

[F0
−, f+]? = [F0

−, a]? = 0 , [F0
0 , f+]? − 2f+ = [F0

0 , a]? = 0 ,

where D0• ≡ d • −Π′[A0, •]?.

This gives a concise formulation of the multiplet of fields prop-

agating on the background of generic flat connection of the

Type-A higher spin algebra.



This can be reduced to unfolded form (e.g. using the homologi-

cal reduction of Barnich, MG (2006)). It should have the structure:

dā+ Π′([A0, ā]) = µ(A0, A0, C) note: A0 ∈ hsB

P · ∂Y ā = 0 and C parametrises the quotient f+ ∼ f+ + P · ∂Y ε.

Recent work by Sharapov, Skvortsov shows that such µ is a Hochshild

cocycle of the HS algebra and it fully determines the complete

deformation (the deformation is unobstructed due to the absence

of higher cohomology).

This gives an extra argument in support that the proposed sys-

tem “knows everything” about the HS gravity.



Conclusions

• Parent formulation – AKSZ formulation of generic gauge

PDE. In particular, systematic way to “unfold” any gauge

theory.

• Concise consistent system of equations describing formal

Type-A (totally symmetric) HS theory, reproducing all the

structures of Vasiliev theory.

• Straightforward generalization to extended HS theory con-

taining partially-massless fields Bekaert, M.G. 2013

• Straightforward generalization to a new HS theory (Type-B)

dual to conformal spinor on the boundary M.G. Skvortsov 2018



- sp(2)→ osp(1|2)
- spectrum (hook-type fields):

φa1...as,b1...bq(x) ∼
s

q

• byproduct: nonlinear theory of conformal HS fields. Being
supplemented with divergent part of the effective action for
spinor should produce CHS nonlinear HS theory (Type-B ver-
sion of CHS theory of Segal, Tseytlin, 2002).

• Build in terms of boundary conformal spinor. HS holography
automatically built in thanks to the ambient formalism Non-
linear CHS fields are reproduced on the boundary. Classical
version of holographic reconstruction?

• HS (and osp(1|2)) generalization of the Fefferman-Graham con-
struction. Proper language for HS geometry?



• Unifies metric-like and frame-like formalism. In particular,

F+ is an ambient version of the metric-like HS field

• Likely to provide a framework for studying nonlocality issue

at more invariant level


