Courant Algebroid Connections: Applications in String Theory

Jan Vysoký (in collaboration with Branislav Jurčo)

Higher Structures in M-theory, Durham, 12-18 August 2018

Generalized geometry and effective actions

- Main motivation: understand the geometry behind

$$
\begin{equation*}
S[g, B, \phi]=\int_{M} e^{-2 \phi}\left\{\mathcal{R}(g)-\frac{1}{2}\left\langle H^{\prime}, H^{\prime}\right\rangle_{g}+4\langle d \phi, d \phi\rangle_{g}\right\} \cdot d \mathrm{vol}_{g} . \tag{1}
\end{equation*}
$$

M a manifold, g a metric (usually Riemannian), $B \in \Omega^{2}(M)$ and $\phi \in C^{\infty}(M)$ a dilaton field. Here $H^{\prime}=H+d B$ for $H \in \Omega_{c l}^{3}(M)$. Type II supergravity with no fermions and RR fields.

- Main idea: generalize the concept of Levi-Civita connection.
- Many people have thought the same:

Coimbra, Strickland-Constable, Waldram (2011) - supergravity as generalized geometry, M-theory.
Hohm, Zwiebach (2012) - discussed in the context of DFT.
Garcia-Fernandez (2013) - modification for heterotic supergravity.

- Our approach: Modify and use the geometry to understand some intriguing relations.

Courant algebroids

Definition

Courant algebroid consists of the following data:

- Vector bundle $q: E \rightarrow M$;
- Morphism $\rho: E \rightarrow T M$ called the anchor;
- Fiberwise metric $\langle\cdot, \cdot\rangle_{E}$ on E;
- \mathbb{R}-bilinear bracket $[\cdot, \cdot]_{E}$ on $\Gamma(E)$.

All objects interplay according to some axioms:

- $[\psi,]_{E}$ is a differential operator (Leibniz rule):

$$
\begin{equation*}
\left[\psi, f \psi^{\prime}\right]_{E}=f\left[\psi, \psi^{\prime}\right]_{E}+\mathcal{L}_{\rho(\psi)}(f) \cdot \psi^{\prime} \tag{2}
\end{equation*}
$$

- $[\psi,]_{E}$ is a derivation of the bracket (Jacobi identity).
- The bracket $[\cdot, \cdot]_{E}$ and the pairing $g_{E}=\langle\cdot, \cdot\rangle_{E}$ are compatible.
- The bracket is not skew-symmetric:

$$
\begin{equation*}
\left\langle[\psi, \psi]_{E}, \psi^{\prime}\right\rangle_{E}=\frac{1}{2} \mathcal{L}_{\rho\left(\psi^{\prime}\right)}\langle\psi, \psi\rangle_{E} \tag{3}
\end{equation*}
$$

- Algebroid generalization of quadratic Lie algebras (non-degenerate compatible symmetric bilinear form). Reduce to them for $M=\{*\}$.
- Appeared as doubles of Lie bialgebroids (Mackenzie, Xu 1997)
- Every CA is an example of L^{∞}-algebra (Roytenberg 1999).
- Symplectic NQ-manifolds of degree 2 (Roytenberg 2002).

Example

$E=\mathbb{T} M \equiv\left(T \oplus T^{*}\right) M$ generalized tangent bundle, $\rho=\pi_{T M},\langle\cdot, \cdot\rangle_{E}$ is the canonical pairing of dual vector bundles and

$$
\begin{equation*}
[(X, \xi),(Y, \eta)]_{E}=\left([X, Y], \mathcal{L}_{X} \eta-i_{Y} d \xi-H(X, Y, \cdot)\right) \tag{4}
\end{equation*}
$$

where $H \in \Omega_{c l}^{3}(M)$. H-twisted Dorfman bracket.

- Geometry of $\mathbb{T M}$ and its modifications: generalized geometry.

Definition

Generalized (Riemannian metric) is a maximal positive subbundle $V_{+} \subseteq E$ with respect to $\langle\cdot, \cdot\rangle_{E}$. Gives a decomposition

$$
\begin{equation*}
E=V_{+} \oplus V_{-}, \tag{5}
\end{equation*}
$$

where $V_{-}=V_{+}^{\perp}$. Provides an involution $\tau \in \operatorname{End}(E)$, such that $\tau\left(V_{ \pm}\right)= \pm 1 \cdot V_{ \pm}$and $\mathbf{G}\left(\psi, \psi^{\prime}\right)=\left\langle\psi, \tau\left(\psi^{\prime}\right)\right\rangle_{E}$ is a positive-definite fiber-wise metric on E.

- On every orthogonal vector bundle $\left(E,\langle\cdot, \cdot\rangle_{E}\right)$, there exists a generalized metric. $\mathrm{O}\left(E, g_{E}\right)$ acts transitively on their space.
- For $E=\mathbb{T} M$, every V_{+}is a graph of a bundle map:

$$
\begin{equation*}
\Gamma\left(V_{+}\right)=\{(X,(g+B)(x)) \quad X \in \mathfrak{X}(M)\}, \tag{6}
\end{equation*}
$$

where g is a Riemannian metric on M and $B \in \Omega^{2}(M)$.

- Reduces the structure group of E from $\mathrm{O}(p, q)$ to $\mathrm{O}(p) \times \mathrm{O}(q)$, where $p=\operatorname{dim}\left(V_{+}\right)$and $q=\operatorname{dim}\left(V_{-}\right)$.

CA connections

Definition

\mathbb{R}-bilinear map $\nabla: \Gamma(E) \times \Gamma(E) \rightarrow \Gamma(E)$ is the CA connection if $\nabla_{\psi} \equiv \nabla(\psi, \cdot)$ satisfies the two axioms

$$
\begin{equation*}
\nabla_{\psi}\left(f \psi^{\prime}\right)=f \nabla_{\psi}\left(\psi^{\prime}\right)+\mathcal{L}_{\rho(\psi)}(f) \cdot \psi^{\prime}, \quad \nabla_{f \psi}\left(\psi^{\prime}\right)=f \nabla_{\psi}\left(\psi^{\prime}\right), \tag{7}
\end{equation*}
$$

and is compatible with $\langle\cdot, \cdot\rangle_{E}$, that is $\nabla g_{E}=0$.

- It contains vector bundle connections compatible with g_{E}, via the formula $\nabla_{\psi}=\nabla_{\rho(\psi)}^{\prime}$. The set of CA connections is non-empty.

Definition (Gualtieri 2007)

Every CA connection allows for a definition of a torsion 3-form T_{∇} :

$$
\begin{equation*}
T_{\nabla}\left(\psi, \psi^{\prime}, \psi^{\prime \prime}\right)=\left\langle\nabla_{\psi} \psi^{\prime}-\nabla_{\psi^{\prime}} \psi-\left[\psi, \psi^{\prime}\right]_{E}, \psi^{\prime \prime}\right\rangle_{E}+\left\langle\nabla_{\psi^{\prime \prime}} \psi, \psi^{\prime}\right\rangle_{E} \tag{8}
\end{equation*}
$$

It is $C^{\infty}(M)$-linear and completely skew-symmetric. ∇ is torsion-free if $T_{\nabla}=0$. This requires full CA connections (not just VB ones).

Definition

Let $V_{+} \subseteq E$ be a generalized metric. We say that ∇ is a Levi-Civita connection on E with respect to V_{+}and write $\nabla \in \operatorname{LC}\left(E, V_{+}\right)$if
(1) $\nabla_{\psi}\left(V_{+}\right) \subseteq V_{+}$
(2) $T_{\nabla}=0$.

One has (Garcia-Fernandez 2016) $L C\left(E, V_{+}\right) \neq \emptyset$.

- There is no closed formula, main reason is that there is quite a lot of them, namely $\mathrm{LC}\left(E, V_{+}\right) \cong \Gamma\left(L C_{0}\left(E, V_{+}\right)\right)$, where $\mathrm{LC}\left(E, V_{+}\right)$is a certain vector bundle of rank $\frac{1}{3} p\left(p^{2}-1\right)+\frac{1}{3} q\left(q^{2}-1\right)$.

Definition (Hohm, Zwiebach 2012)

There is a well-defined analogue of the curvature tensor:

$$
\begin{align*}
R_{\nabla}\left(\phi^{\prime}, \phi, \psi, \psi^{\prime}\right)= & \frac{1}{2}\left\langle\left(\left[\nabla_{\psi}, \nabla_{\psi^{\prime}}\right]-\nabla_{\left[\psi, \psi^{\prime}\right]_{E}}\right) \phi, \phi^{\prime}\right\rangle_{E} \\
& +\frac{1}{2}\left\langle\left(\left[\nabla_{\phi}, \nabla_{\phi^{\prime}}\right]-\nabla_{\left[\phi, \phi^{\prime}\right]_{E}}\right) \psi, \psi^{\prime}\right\rangle_{E} \tag{9}\\
& +\frac{1}{2}\left\langle\nabla_{\psi_{\mu}} \psi, \psi^{\prime}\right\rangle_{E} \cdot\left\langle\nabla_{\psi_{E}^{\lambda}} \phi, \phi^{\prime}\right\rangle_{E}
\end{align*}
$$

- Suspicious definition with no clear geometrical meaning. R_{∇} is $C^{\infty}(M)$-linear in all its inputs.
- However, R_{∇} has all the usual symmetries including the algebraic Bianchi identity. In particular, there is a unique partial trace:

Definition

The generalized Ricci tensor Ric $_{\nabla}$ on E is defined by

$$
\begin{equation*}
\operatorname{Ric}_{\nabla}\left(\psi, \psi^{\prime}\right)=R_{\nabla}\left(g_{E}^{-1}\left(\psi^{\mu}\right), \psi, \psi_{\mu}, \psi^{\prime}\right) . \tag{10}
\end{equation*}
$$

It is symmetric and $C^{\infty}(M)$-linear in its inputs. We say that ∇ is Ricci-compatible with V_{+}, if $\operatorname{Ric} \nabla\left(V_{+}, V_{-}\right)=0$.

- As Ric ∇_{∇} is well-defined on all sections of E, one may define two scalar curvatures using the trace and metrics g_{E} and \mathbf{G}, respectively:

Definition

We have two canonical functions called the scalar curvatures of ∇ :

$$
\begin{equation*}
\mathcal{R}_{\nabla}=\operatorname{Ric}_{\nabla}\left(\psi_{\mu}, g_{E}^{-1}\left(\psi^{\mu}\right)\right), \quad \mathcal{R}_{\nabla}^{+}=\operatorname{Ric}\left(\psi_{\mu}, \mathbf{G}^{-1}\left(\psi^{\mu}\right)\right) \tag{11}
\end{equation*}
$$

Observation

Define a divergence operator $\operatorname{div}_{\nabla}(\psi)=\left\langle\nabla_{\psi_{\mu}}(\psi), \psi^{\mu}\right\rangle$. Suppose $\nabla, \nabla^{\prime} \in L C\left(E, V_{+}\right)$satisfy $\operatorname{div}_{\nabla^{\prime}}=\operatorname{div}_{\nabla^{\prime}}$. Then

$$
\begin{equation*}
\mathcal{R}_{\nabla^{\prime}}=\mathcal{R}_{\nabla}, \quad \mathcal{R}_{\nabla^{\prime}}^{+}=\mathcal{R}_{\nabla}^{+}, \quad \operatorname{Ric}_{\nabla^{\prime}}^{+-}=\operatorname{Ric}_{\nabla}^{+-} . \tag{12}
\end{equation*}
$$

Theorem (Jurčo \& V.)

Let $E=\mathbb{T} M$ with H-twisted Dorfman. Let $V_{+} \subset E$ correspond to a pair (g, B). Suppose $\nabla \in \operatorname{LC}\left(E, V_{+}\right)$satisfies the additional condition

$$
\begin{equation*}
\operatorname{div}_{\nabla}(\psi)=\operatorname{div}_{\nabla_{g}^{L c}}(\rho(\psi))-\mathcal{L}_{\rho(\psi)}(\phi) \tag{13}
\end{equation*}
$$

for a scalar function $\phi \in C^{\infty}(M)$. We write $\nabla \in \operatorname{LC}\left(E, V_{+}, \phi\right)$.
Then (g, B, ϕ) satisfies the equations of motion given by action S iff $\mathcal{R}_{\nabla}^{+}=0$ and ∇ is Ricci compatible with V_{+}.

- By the above observation, quantities \mathcal{R}_{∇}^{+}and $\mathrm{Ric}_{\nabla}^{+-}$do not depend on the choice inside $\operatorname{LC}\left(E, V_{+}, \phi\right)$. Also $\mathcal{R}_{\nabla}=0$.
- All quantities behave as expected under CA isomorphisms, this description is very "covariant" in this sense.

Applications: Kaluza-Klein reduction

- Let $\pi: P \rightarrow M$ be a principal G-bundle with compact Lie group G, let $\mathfrak{g}_{P}=P \times_{\text {Ad }} \mathfrak{g}$ its adjoint bundle, and $c=(\cdot, \cdot)_{\mathfrak{g}}$ a corresponding negative-definite Killing form.
- Choose a connection $A \in \Omega^{1}(P, \mathfrak{g})$ and let $F \in \Omega^{2}\left(M, \mathfrak{g}_{P}\right)$ be its curvature. Let $H_{0} \in \Omega^{3}(M)$. There is a structure of a heterotic (almost) Courant algebroid on $E^{\prime}=T M \oplus \mathfrak{g}_{P} \oplus T^{*} M$:
(1) The pairing uses the canonical one and $(\cdot, \cdot)_{\mathfrak{g}}$.
(2) The anchor $\rho^{\prime}: E^{\prime} \rightarrow T M$ is the projection.
(3) The bracket is a combination of H_{0}-twisted Dorfman and the Atiyah-Lie algebroid bracket on $T M \oplus \mathfrak{g}_{P}$.
- It is an actual Courant algebroid, if H_{0} is a potential for the first Pontryagin class of P with respect to $(\cdot, \cdot)_{\mathfrak{g}}$:

$$
\begin{equation*}
d H_{0}+\frac{1}{2}(F \wedge F)_{\mathfrak{g}}=0 \tag{14}
\end{equation*}
$$

- Generalized metric $V_{+}^{\prime} \subset E^{\prime}$ corresponds to (g_{0}, B_{0}, ϑ), where g_{0} is a metric on $M, B_{0} \in \Omega^{2}(M)$ and $\vartheta \in \Omega^{1}\left(M, \mathfrak{g}_{P}\right)$.
- A direct analogue of the theorem can be used to describe the equations of motion of the effective action

$$
\begin{align*}
& S_{0}\left[g_{0}, B_{0}, \phi_{0}, \vartheta\right]=\int_{M} e^{-2 \phi_{0}}\left\{\mathcal{R}\left(g_{0}\right)+\frac{1}{2}\left\langle\left\langle F^{\prime}, F^{\prime}\right\rangle\right\rangle\right. \tag{15}\\
& \left.-\frac{1}{2}\left\langle H_{0}^{\prime}, H_{0}^{\prime}\right\rangle_{g_{0}}+4\left\langle d \phi_{0}, d \phi_{0}\right\rangle_{g_{0}}-2 \Lambda_{0}\right\} \cdot d \mathrm{vol}_{g_{0}}
\end{align*}
$$

where $F^{\prime}=F^{\prime}(\vartheta)$ and $H^{\prime}=H^{\prime}\left(B_{0}, \vartheta\right)$ and $\Lambda_{0} \in \mathbb{R}$ is a kind of a cosmological constant.

- This is sometimes called the Einstein-Yang-Mills gravity.
- By the choice of $P=P_{\mathrm{YM}} \times_{M} P_{\text {Spin }}$ where P_{YM} is a principal SO(32) or $E(8) \times E(8)$ bundle and $P_{\text {Spin }}$ is the Spin $(9,1)$-bundle and by some minor fiddling, one may fit this onto the heterotic supergravity. The above condition on the Pontryagin class leads to the anomaly cancellation condition

$$
\begin{equation*}
\left[\left(F_{\mathrm{YM}} \wedge F_{\mathrm{YM}}\right)_{\mathfrak{k}}\right]_{d R}=\left[\left(F_{\mathrm{Spin}} \wedge F_{\mathrm{Spin}}\right)_{\mathfrak{s o}}\right]_{d R} \tag{16}
\end{equation*}
$$

- Every heterotic Courant algebroid E^{\prime} can be obtained by the reduction procedure from the Courant algebroid $E=\mathbb{T} P$ equipped by the H -twisted Dorfman, where

$$
\begin{equation*}
H=\pi^{*}\left(H_{0}\right)+\frac{1}{2} \mathrm{CS}_{3}(A) \tag{17}
\end{equation*}
$$

- It resembles the symplectic reduction. There must exist a map $\Re: \mathfrak{g} \rightarrow \Gamma(E)$, such that $x \triangleright \psi=[\Re(x), \psi]_{E}$ defines a Lie algebra action, integrating to a (certain) Lie group action on E. Then set $K=\Re(P \times \mathfrak{g})$ and define

$$
\begin{equation*}
E^{\prime}=\frac{K^{\perp} / G}{\left(K \cap K^{\perp}\right) / G} \tag{18}
\end{equation*}
$$

All CA structures on E^{\prime} are naturally inherited from those of E.

- The generalized metric $V_{+} \subset E$ under some conditions reduces to the generalized metric $V_{+}^{\prime} \subset E$. We have $V_{+} \approx(g, B)$ and $V_{+}^{\prime} \approx\left(g_{0}, B_{0}, \vartheta\right)$. This "for free" provides some Kaluza-Klein like conditions on (g, B)!

Proposition

$V_{+} \approx(g, B)$ can be reduced to $V_{+}^{\prime} \approx\left(g_{0}, B_{0}, \vartheta\right)$ iff (g, B) are
G-invariant tensor fields and with respect to the decomposition
$\Gamma_{G}(T P) \cong T M \oplus \mathfrak{g}_{P}$, they have the block form

$$
g=\left(\begin{array}{cc}
1 & \vartheta^{T} \tag{19}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
g_{0} & 0 \\
0 & g_{0}^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\vartheta & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{0} & \frac{1}{2} \vartheta^{T} c \\
-\frac{1}{2} c \vartheta & 0
\end{array}\right) .
$$

- Having the LC connections theorems in mind, one may examine the spaces of Levi-Civita connections on two Courant algebroids E and E^{\prime}, respectively. This can be done.

Proposition

Let $\phi=\phi_{0} \circ \pi$. Then there is a pair of connections $\nabla \in \operatorname{LC}\left(E, V_{+}, \phi\right)$ and $\nabla^{\prime} \in \mathrm{LC}\left(E^{\prime}, V_{+}^{\prime}, \phi^{\prime}\right)$, such that ∇ reduces to ∇^{\prime}.
In particular, ∇ is Ricci compatible with V_{+}iff ∇^{\prime} is Ricci compatible with V_{+}^{\prime} and

$$
\begin{equation*}
\mathcal{R}_{\nabla}^{+}=\mathcal{R}_{\nabla^{\prime} \circ \pi+\frac{1}{6} \operatorname{dim}(\mathfrak{g})} \tag{20}
\end{equation*}
$$

Theorem (Kaluza-Klein reduction)

Fir (g, B, ϕ) and ($\left.g_{0}, B_{0}, \vartheta, \phi_{0}\right)$ related as above and cosmological constants fulfilling $\Lambda=\Lambda_{0}+\frac{1}{6} \operatorname{dim}(\mathfrak{g})$, the EOM for the action S are equivalent to those of S_{0}.

- In particular, the heterotic supergravity can be obtained from the ordinary type II supergravity (no fermions and RR fields) on $P=P_{\mathrm{YM}} \times_{M} P_{\text {Spin }}$, if we impose some symmetry on (g, B, ϕ) and compare the cosmological constants.
- Reduction of CA was discussed in detail by (Bursztyn, Cavalcanti, Gualtieri 2005), (Baraglia, Hekmati 2013) or (Ševera 2015).
- For details see the paper

Jan Vysoký: Kaluza-Klein Reduction of Low-Energy Effective Actions: Geometrical Approach, arXiv:1704.01123.

Applications: Poisson-Lie T-dual sigma models

- It is nice idea of (Ševera 2015, 2017) that the old (1994-ish) idea of Poisson-Lie T-duality (PLT duality) can be described in terms of reductions of CA.
- The simplest setting is the following. A Manin pair $(\mathfrak{d}, \mathfrak{g})$ is a pair of a quadratic LA ($\mathfrak{d},\langle\cdot, \cdot\rangle_{\mathfrak{o}},[\cdot, \cdot]_{\mathfrak{o}}$) together with its Lagrangian subalgebra $\mathfrak{g} \subset \mathfrak{d}$. Suppose it integrates to a pair (D, G) of a Lie group and its (closed) subgroup $G \subset D$.
- D can be viewed as a principal D-bundle over the point $\{*\}$ or a principal G-bundle $\pi_{0}: P \rightarrow N$ over left cosets $N=D / G$.
- The CA $E=\mathbb{T} D$ with H-twisted Dorfman, where $H=\frac{1}{2} \mathrm{CS}_{3}\left(\theta_{L}\right)$ can be reduced in two ways. We get
(1) Reducing by D, we obtain $E_{\mathfrak{d}}^{\prime}=\left(\mathfrak{d}, 0,\langle\cdot, \cdot\rangle_{\mathfrak{d}},-[\cdot, \cdot]_{\mathfrak{d}}\right)$.
(2) Reducing by G, we obtain $E_{\mathfrak{g}}^{\prime}=N \times \mathfrak{d}$, where the anchor is the extension of the generator $\#^{\triangleright}: \mathfrak{d} \rightarrow \mathfrak{X}(N)$ of the left dressing action of D on N, the rest is a fiber-wise extension.

We can now do a following procedure:
(1) Choose a generalized metric $\mathcal{E}_{+} \subset E_{\mathfrak{d}}^{\prime}=\mathfrak{d}$, that is a maximal positive subspace with respect to $\langle\cdot, \cdot\rangle_{\mathfrak{0}}$.
(2) The subbundle $V_{+}^{\prime}:=N \times \mathcal{E}_{+}$forms a GM in $E_{\mathfrak{g}}^{\prime}=N \times \mathfrak{d}$.
(3) $E_{\mathfrak{g}}^{\prime}$ is so called exact CA over N. Those are always isomorphic to the standard CA on $\mathbb{T} N$ with H-twisted Dorfman bracket for H in a unique de Rham class $[H]_{d R}$.
(9) Fix one of these isomorphism $\boldsymbol{\Psi}: \mathbb{T} N \rightarrow E_{\mathfrak{g}}^{\prime}$ and use it to induce a generalized metric $V_{+} \subseteq \mathbb{T} N$. We know that $V_{+} \approx(g, B)$

- One can now consider a sigma model (with WZW term) targeted in $N=D / G$ with backgrounds (g, B, H).

Proposition (Ševera 2017)

For fixed $\mathcal{E}_{+} \subset \mathfrak{d}$, all so constructed (for any G) sigma models are (in some sense, under some technical conditions) equivalent.

In particular, if $\left(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}^{*}\right)$ is a Manin triple integrating to $\left(D, G, G^{*}\right)$, interchanging of G and G^{*} leads to the standard PLT duality.

- One should confirm this on the "quantum level" by comparing the corresponding low-energy effective actions. This is where our machinery enters.
- Fix a a connection $\nabla^{0} \in \operatorname{LC}\left(\mathfrak{d}, \mathcal{E}_{+}\right)$. By moving it in the same fashion as before, one finds $\nabla \in \mathrm{LC}\left(\mathbb{T} N, V_{+}\right)$. By construction: $\mathcal{R}_{\nabla^{0}}^{+}=\mathcal{R}_{\nabla}^{+}$and ∇^{0} is Ricci compatible with \mathcal{E}_{+}if and only if ∇ is Ricci compatible with V_{+}.

Tiny little catch

We do not know how the remaining background $\phi \in C^{\infty}(N)$ should like. We can find it by enforcing the condition $\nabla \in \mathrm{LC}\left(\mathbb{T} N, V_{+}, \phi\right)$.

- Not every Manin triple ($\mathfrak{d}, \mathfrak{g}$) allows for such solution. It turns out that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}\right)$ must be a unimodular Lie algebra, that is $\operatorname{Tr}\left(\mathrm{ad}_{x}\right)=0$ for all $x \in \mathfrak{g}$.
- In turn, the connection ∇^{0} has to be divergence-free. This fixes it uniquely for the purposes of EOM.
- We had to make a technical assumption - (D, G) is a so called complete group double. There must exist a splitting of

$$
\begin{equation*}
0 \longrightarrow \mathfrak{g} \xrightarrow{i} \mathfrak{d} \underset{K_{-\ldots}}{i^{\prime}} \mathfrak{g}^{*} \longrightarrow 0 \tag{21}
\end{equation*}
$$

such that $\xi \mapsto \#_{s}^{\triangleright}(j(\xi)) \equiv \xi_{s}^{\triangleright}$ is an isomorphism for all $s \in N$.

- We are then able to find an explicit formula for ϕ, unique up to an additive constant in terms of \mathcal{E}_{+}, blocks of Ad and a quasi-Poisson structure $\Pi_{N} \in \mathfrak{X}^{2}(N)$.
- For Manin triple ($\mathfrak{d}, \mathfrak{g}, \mathfrak{g}^{*}$) we recover the dilaton formulas obtained from path integral formulation of PLT (von Unge 2002).

Theorem (Jurčo, V. 2017)

(g, B, ϕ) satisfy the equations of motion on N iff $\nabla^{0} \in \operatorname{LC}\left(\mathfrak{d}, \mathcal{E}_{+}\right)$is Ricci compatible with \mathcal{E}_{+}and $\mathcal{R}_{\nabla^{0}}^{+}=0$.
This is a system of algebraic equations for \mathcal{E}_{+}. By solving them, we obtain solutions of EOM on any such constructed coset space $N=D / G$.

Outlooks (a.k.a. dreams)

- It is hard to find solutions \mathcal{E}_{+}for non-trivial examples of Manin pairs $(\mathfrak{d}, \mathfrak{g})$. Maybe adding the RR fields could save the day. Six-dimensional Manin triples are classified - in principle, one can find all solutions.
- Is there a "generalized geometry" to describe the fermionic fields? Courant algebroids on supermanifolds?
- Suppose $\pi: P \rightarrow M$ is any principal D-bundle, (D, G) still integrates a Manin pair $(\mathfrak{d}, \mathfrak{g})$. There is an intriguing geometry in the diagram

In particular, reductions of CA provide relations of characteristic classes. Is this some kind of "topological" T-duality?

Branislav Jurčo, Jan Vysoký: Poisson-Lie T-duality of String Effective Actions: A New Approach to the Dilaton Puzzle, arXiv:1708.04079,

Branislav Jurčo, Jan Vysoký: Courant Algebroid Connections and String Effective Actions, arXiv:1612.0154.

Thank you for your attention!

