Courant Algebroid Connections: Applications in String Theory

Jan Vysoký (in collaboration with Branislav Jurčo)

Higher Structures in M-theory, Durham, 12-18 August 2018

・ロト ・四ト ・ヨト ・ヨト

æ

Generalized geometry and effective actions

• Main motivation: understand the geometry behind

$$S[g, B, \phi] = \int_{M} e^{-2\phi} \{ \mathcal{R}(g) - \frac{1}{2} \langle H', H' \rangle_{g} + 4 \langle d\phi, d\phi \rangle_{g} \} \cdot d \operatorname{vol}_{g}.$$
(1)

M a manifold, *g* a **metric** (usually Riemannian), $B \in \Omega^2(M)$ and $\phi \in C^{\infty}(M)$ a **dilaton field**. Here H' = H + dB for $H \in \Omega^3_{cl}(M)$. Type II supergravity with no fermions and RR fields.

- Main idea: generalize the concept of Levi-Civita connection.
- Many people have thought the same: Coimbra, Strickland-Constable, Waldram (2011) - supergravity as generalized geometry, M-theory. Hohm, Zwiebach (2012) - discussed in the context of DFT. Garcia-Fernandez (2013) - modification for heterotic supergravity.
- **Our approach**: Modify and use the geometry to understand some intriguing relations.

Courant algebroids

Definition

Courant algebroid consists of the following data:

- Vector bundle $q: E \to M$;
- Morphism $\rho: E \rightarrow TM$ called the **anchor**;
- Fiberwise metric $\langle \cdot, \cdot \rangle_E$ on E;
- \mathbb{R} -bilinear bracket $[\cdot, \cdot]_E$ on $\Gamma(E)$.

All objects interplay according to some axioms:

• $[\psi, \cdot]_E$ is a differential operator (Leibniz rule):

$$[\psi, f\psi']_{\mathcal{E}} = f[\psi, \psi']_{\mathcal{E}} + \mathcal{L}_{\rho(\psi)}(f) \cdot \psi'.$$
(2)

- $[\psi, \cdot]_E$ is a derivation of the bracket (**Jacobi identity**).
- The bracket $[\cdot, \cdot]_E$ and the pairing $g_E = \langle \cdot, \cdot \rangle_E$ are compatible.
- The bracket is not skew-symmetric:

$$\langle [\psi, \psi]_E, \psi' \rangle_E = \frac{1}{2} \mathcal{L}_{\rho(\psi')} \langle \psi, \psi \rangle_E \tag{3}$$

- Algebroid generalization of quadratic Lie algebras (non-degenerate compatible symmetric bilinear form). Reduce to them for M = {*}.
- Appeared as doubles of Lie bialgebroids (Mackenzie, Xu 1997)
- Every CA is an example of L^{∞} -algebra (Roytenberg 1999).
- Symplectic NQ-manifolds of degree 2 (Roytenberg 2002).

Example

 $E = \mathbb{T}M \equiv (T \oplus T^*)M$ generalized tangent bundle, $\rho = \pi_{TM}$, $\langle \cdot, \cdot \rangle_E$ is the canonical pairing of dual vector bundles and

$$[(X,\xi),(Y,\eta)]_{E} = ([X,Y], \mathcal{L}_{X}\eta - i_{Y}d\xi - H(X,Y,\cdot)),$$
(4)

where $H \in \Omega^3_{cl}(M)$. *H*-twisted Dorfman bracket.

• Geometry of $\mathbb{T}M$ and its modifications: generalized geometry.

周 ト イ ヨ ト イ ヨ ト

-

Definition

Generalized (Riemannian metric) is a maximal positive subbundle $V_+ \subseteq E$ with respect to $\langle \cdot, \cdot \rangle_{E}$. Gives a decomposition

$$E = V_+ \oplus V_-, \tag{5}$$

where $V_{-} = V_{+}^{\perp}$. Provides an involution $\tau \in \text{End}(E)$, such that $\tau(V_{\pm}) = \pm 1 \cdot V_{\pm}$ and $\mathbf{G}(\psi, \psi') = \langle \psi, \tau(\psi') \rangle_{E}$ is a positive-definite fiber-wise metric on E.

- On every orthogonal vector bundle (E, ⟨·, ·⟩_E), there exists a generalized metric. O(E, g_E) acts transitively on their space.
- For $E = \mathbb{T}M$, every V_+ is a graph of a bundle map:

$$\Gamma(V_+) = \{ (X, (g+B)(x)) \mid X \in \mathfrak{X}(M) \}, \tag{6}$$

くぼう くちゃ くちゃ

where g is a Riemannian metric on M and $B \in \Omega^2(M)$.

 Reduces the structure group of E from O(p, q) to O(p) × O(q), where p = dim(V₊) and q = dim(V₋).

CA connections

Definition

$$\nabla_{\psi}(f\psi') = f\nabla_{\psi}(\psi') + \mathcal{L}_{\rho(\psi)}(f) \cdot \psi', \ \nabla_{f\psi}(\psi') = f\nabla_{\psi}(\psi'), \quad (7)$$

and is compatible with $\langle \cdot, \cdot \rangle_E$, that is $\nabla g_E = 0$.

It contains vector bundle connections compatible with g_E, via the formula ∇_ψ = ∇'_{ρ(ψ)}. The set of CA connections is non-empty.

Definition (Gualtieri 2007)

Every CA connection allows for a definition of a torsion 3-form T_{∇} :

$$T_{\nabla}(\psi,\psi',\psi'') = \langle \nabla_{\psi}\psi' - \nabla_{\psi'}\psi - [\psi,\psi']_{E},\psi''\rangle_{E} + \langle \nabla_{\psi''}\psi,\psi'\rangle_{E}.$$
 (8)

It is $C^{\infty}(M)$ -linear and completely skew-symmetric. ∇ is **torsion-free** if $T_{\nabla} = 0$. This requires full CA connections (not just VB ones).

Definition

Let $V_+ \subseteq E$ be a generalized metric. We say that ∇ is a **Levi-Civita** connection on E with respect to V_+ and write $\nabla \in LC(E, V_+)$ if

$$T_{\nabla} = 0.$$

One has (Garcia-Fernandez 2016) $LC(E, V_+) \neq \emptyset$.

• There is no closed formula, main reason is that there is quite a lot of them, namely $LC(E, V_+) \cong \Gamma(LC_0(E, V_+))$, where $LC_0(E, V_+)$ is a certain vector bundle of rank $\frac{1}{3}p(p^2-1) + \frac{1}{3}q(q^2-1)$.

Definition (Hohm, Zwiebach 2012)

There is a well-defined analogue of the curvature tensor:

$$R_{\nabla}(\phi',\phi,\psi,\psi') = \frac{1}{2} \langle ([\nabla_{\psi},\nabla_{\psi'}] - \nabla_{[\psi,\psi']_{\mathcal{E}}})\phi,\phi'\rangle_{\mathcal{E}} + \frac{1}{2} \langle ([\nabla_{\phi},\nabla_{\phi'}] - \nabla_{[\phi,\phi']_{\mathcal{E}}})\psi,\psi'\rangle_{\mathcal{E}} + \frac{1}{2} \langle \nabla_{\psi_{\mu}}\psi,\psi'\rangle_{\mathcal{E}} \cdot \langle \nabla_{\psi_{\mathcal{E}}^{\lambda}}\phi,\phi'\rangle_{\mathcal{E}}.$$
(9)

- Suspicious definition with no clear geometrical meaning. R_{∇} is $C^{\infty}(M)$ -linear in all its inputs.
- However, R_∇ has all the usual symmetries including the algebraic Bianchi identity. In particular, there is a unique partial trace:

Definition

The generalized Ricci tensor $\operatorname{Ric}_{\nabla}$ on E is defined by

$$\operatorname{Ric}_{\nabla}(\psi,\psi') = R_{\nabla}(g_E^{-1}(\psi^{\mu}),\psi,\psi_{\mu},\psi').$$
(10)

It is symmetric and $C^{\infty}(M)$ -linear in its inputs. We say that ∇ is **Ricci-compatible** with V_+ , if $\operatorname{Ric}_{\nabla}(V_+, V_-) = 0$.

 As Ric_∇ is well-defined on all sections of *E*, one may define two scalar curvatures using the trace and metrics g_E and G, respectively:

Definition

We have two canonical functions called the scalar curvatures of ∇ :

$$\mathcal{R}_{\nabla} = \mathsf{Ric}_{\nabla}(\psi_{\mu}, g_{E}^{-1}(\psi^{\mu})), \quad \mathcal{R}_{\nabla}^{+} = \mathsf{Ric}(\psi_{\mu}, \mathbf{G}^{-1}(\psi^{\mu})). \tag{11}$$

Observation

Define a **divergence operator** div_{∇}(ψ) = $\langle \nabla_{\psi_{\mu}}(\psi), \psi^{\mu} \rangle$. Suppose $\nabla, \nabla' \in LC(E, V_{+})$ satisfy div_{∇'} = div_{∇}. Then

$$\mathcal{R}_{\nabla'} = \mathcal{R}_{\nabla}, \quad \mathcal{R}_{\nabla'}^+ = \mathcal{R}_{\nabla}^+, \quad \operatorname{Ric}_{\nabla'}^{+-} = \operatorname{Ric}_{\nabla}^{+-}. \tag{12}$$

Theorem (Jurčo & V.)

Let $E = \mathbb{T}M$ with H-twisted Dorfman. Let $V_+ \subset E$ correspond to a pair (g, B). Suppose $\nabla \in LC(E, V_+)$ satisfies the additional condition

$$\operatorname{div}_{\nabla}(\psi) = \operatorname{div}_{\nabla_{g}^{LC}}(\rho(\psi)) - \mathcal{L}_{\rho(\psi)}(\phi)$$
(13)

ъ.

for a scalar function $\phi \in C^{\infty}(M)$. We write $\nabla \in LC(E, V_{+}, \phi)$.

Then (g, B, ϕ) satisfies the **equations of motion** given by action S iff $\mathcal{R}^+_{\nabla} = 0$ and ∇ is Ricci compatible with V_+ .

- By the above observation, quantities \mathcal{R}^+_{∇} and $\operatorname{Ric}^{+-}_{\nabla}$ do not depend on the choice inside LC(E, V_+, ϕ). Also $\mathcal{R}_{\nabla} = 0$.
- All quantities behave as expected under CA isomorphisms, this description is very "covariant" in this sense.

Applications: Kaluza-Klein reduction

- Let π : P → M be a principal G-bundle with compact Lie group G, let g_P = P ×_{Ad} g its adjoint bundle, and c = (·, ·)_g a corresponding negative-definite Killing form.
- Choose a connection A ∈ Ω¹(P, g) and let F ∈ Ω²(M, g_P) be its curvature. Let H₀ ∈ Ω³(M). There is a structure of a heterotic (almost) Courant algebroid on E' = TM ⊕ g_P ⊕ T*M:
 - **1** The pairing uses the canonical one and $(\cdot, \cdot)_{\mathfrak{g}}$.
 - 2 The anchor $\rho': E' \to TM$ is the projection.
 - In the bracket is a combination of H₀-twisted Dorfman and the Atiyah-Lie algebroid bracket on TM ⊕ g_P.
- It is an actual Courant algebroid, if H₀ is a potential for the first Pontryagin class of P with respect to (·, ·)_g:

$$dH_0 + \frac{1}{2}(F \wedge F)_{\mathfrak{g}} = 0. \tag{14}$$

• Generalized metric $V'_+ \subset E'$ corresponds to (g_0, B_0, ϑ) , where g_0 is a metric on M, $B_0 \in \Omega^2(M)$ and $\vartheta \in \Omega^1(M, \mathfrak{g}_P)$.

• A direct analogue of the theorem can be used to describe the equations of motion of the effective action

$$S_{0}[g_{0}, B_{0}, \phi_{0}, \vartheta] = \int_{M} e^{-2\phi_{0}} \{ \mathcal{R}(g_{0}) + \frac{1}{2} \langle \langle F', F' \rangle \rangle$$

$$-\frac{1}{2} \langle H'_{0}, H'_{0} \rangle_{g_{0}} + 4 \langle d\phi_{0}, d\phi_{0} \rangle_{g_{0}} - 2\Lambda_{0} \} \cdot d \operatorname{vol}_{g_{0}},$$
(15)

where $F' = F'(\vartheta)$ and $H' = H'(B_0, \vartheta)$ and $\Lambda_0 \in \mathbb{R}$ is a kind of a cosmological constant.

- This is sometimes called the Einstein-Yang-Mills gravity.
- By the choice of $P = P_{YM} \times_M P_{Spin}$ where P_{YM} is a principal SO(32) or $E(8) \times E(8)$ bundle and P_{Spin} is the Spin(9, 1)-bundle and by some minor fiddling, one may fit this onto the **heterotic** supergravity. The above condition on the Pontryagin class leads to the anomaly cancellation condition

$$[(F_{\mathbf{YM}} \wedge F_{\mathbf{YM}})_{\mathfrak{k}}]_{dR} = [(F_{\mathbf{Spin}} \wedge F_{\mathbf{Spin}})_{\mathfrak{so}}]_{dR}.$$
 (16)

 Every heterotic Courant algebroid E' can be obtained by the reduction procedure from the Courant algebroid E = TP equipped by the H-twisted Dorfman, where

$$H = \pi^*(H_0) + \frac{1}{2}CS_3(A)$$
(17)

 It resembles the symplectic reduction. There must exist a map ℜ : g → Γ(E), such that x ▷ ψ = [ℜ(x), ψ]_E defines a Lie algebra action, integrating to a (certain) Lie group action on E. Then set K = ℜ(P × g) and define

$$E' = \frac{K^{\perp}/G}{(K \cap K^{\perp})/G}$$
(18)

All CA structures on E' are naturally inherited from those of E.

• The generalized metric $V_+ \subset E$ under some conditions reduces to the generalized metric $V'_+ \subset E$. We have $V_+ \approx (g, B)$ and $V'_+ \approx (g_0, B_0, \vartheta)$. This "for free" provides some Kaluza-Klein like conditions on (g, B)!

Proposition

 $V_+ \approx (g, B)$ can be reduced to $V'_+ \approx (g_0, B_0, \vartheta)$ iff (g, B) are *G*-invariant tensor fields and with respect to the decomposition $\Gamma_G(TP) \cong TM \oplus \mathfrak{g}_P$, they have the block form

$$g = \begin{pmatrix} 1 & \vartheta^{\mathsf{T}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g_0 & 0 \\ 0 & g_0^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \vartheta & 1 \end{pmatrix}, \quad B = \begin{pmatrix} B_0 & \frac{1}{2}\vartheta^{\mathsf{T}}c \\ -\frac{1}{2}c\vartheta & 0 \end{pmatrix}.$$
(19)

• Having the LC connections theorems in mind, one may examine the spaces of Levi-Civita connections on two Courant algebroids *E* and *E'*, respectively. This can be done.

Proposition

Let $\phi = \phi_0 \circ \pi$. Then there is a pair of connections $\nabla \in LC(E, V_+, \phi)$ and $\nabla' \in LC(E', V'_+, \phi')$, such that ∇ reduces to ∇' . In particular, ∇ is Ricci compatible with V_+ iff ∇' is Ricci compatible with V'_+ and

$$\mathcal{R}_{\nabla}^{+} = \mathcal{R}_{\nabla'} \circ \pi + \frac{1}{6} \dim(\mathfrak{g}).$$
⁽²⁰⁾

Theorem (Kaluza-Klein reduction)

Fir (g, B, ϕ) and $(g_0, B_0, \vartheta, \phi_0)$ related as above and cosmological constants fulfilling $\Lambda = \Lambda_0 + \frac{1}{6} \dim(\mathfrak{g})$, the EOM for the action S are equivalent to those of S_0 .

- In particular, the heterotic supergravity can be obtained from the ordinary type II supergravity (no fermions and RR fields) on $P = P_{YM} \times_M P_{Spin}$, if we impose some symmetry on (g, B, ϕ) and compare the cosmological constants.
- Reduction of CA was discussed in detail by (Bursztyn, Cavalcanti, Gualtieri 2005), (Baraglia, Hekmati 2013) or (Ševera 2015).
- For details see the paper

Jan Vysoký: Kaluza-Klein Reduction of Low-Energy Effective Actions: Geometrical Approach, arXiv:1704.01123.

白 とう アン・ション

Applications: Poisson-Lie T-dual sigma models

- It is nice idea of (Ševera 2015, 2017) that the old (1994-ish) idea of Poisson-Lie T-duality (PLT duality) can be described in terms of reductions of CA.
- The simplest setting is the following. A Manin pair (∂, g) is a pair of a quadratic LA (∂, ⟨·, ·⟩_∂, [·, ·]_∂) together with its Lagrangian subalgebra g ⊂ ∂. Suppose it integrates to a pair (D, G) of a Lie group and its (closed) subgroup G ⊂ D.
- D can be viewed as a principal D-bundle over the point {*} or a principal G-bundle π₀ : P → N over left cosets N = D/G.
- The CA $E = \mathbb{T}D$ with *H*-twisted Dorfman, where $H = \frac{1}{2}CS_3(\theta_L)$ can be reduced in two ways. We get
 - Reducing by *D*, we obtain $E'_{\mathfrak{d}} = (\mathfrak{d}, 0, \langle \cdot, \cdot \rangle_{\mathfrak{d}}, -[\cdot, \cdot]_{\mathfrak{d}}).$
 - Preducing by G, we obtain E'_g = N × ∂, where the anchor is the extension of the generator #[▷] : ∂ → X(N) of the left dressing action of D on N, the rest is a fiber-wise extension.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

We can now do a following procedure:

- Ochoose a generalized metric E₊ ⊂ E'₀ = 0, that is a maximal positive subspace with respect to ⟨·, ·⟩₀.
- **2** The subbundle $V'_+ := N \times \mathcal{E}_+$ forms a GM in $E'_{\mathfrak{g}} = N \times \mathfrak{d}$.
- E'_g is so called exact CA over N. Those are always isomorphic to the standard CA on TN with H-twisted Dorfman bracket for H in a unique de Rham class [H]_{dR}.
- Fix one of these isomorphism $\Psi : \mathbb{T}N \to E'_{\mathfrak{g}}$ and use it to induce a generalized metric $V_+ \subseteq \mathbb{T}N$. We know that $V_+ \approx (g, B)$
- One can now consider a sigma model (with WZW term) targeted in N = D/G with backgrounds (g, B, H).

Proposition (Ševera 2017)

For fixed $\mathcal{E}_+ \subset \mathfrak{d}$, all so constructed (for any G) sigma models are (in some sense, under some technical conditions) equivalent.

In particular, if $(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}^*)$ is a Manin triple integrating to (D, G, G^*) , interchanging of G and G^* leads to the standard PLT duality.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

- One should confirm this on the "quantum level" by comparing the corresponding low-energy effective actions. This is where our machinery enters.
- Fix a a connection ∇⁰ ∈ LC(∂, E₊). By moving it in the same fashion as before, one finds ∇ ∈ LC(TN, V₊). By construction:
 R⁺_{∇⁰} = R⁺_∇ and ∇⁰ is Ricci compatible with E₊ if and only if ∇ is Ricci compatible with V₊.

Tiny little catch

We do not know how the remaining background $\phi \in C^{\infty}(N)$ should like. We can find it by **enforcing** the condition $\nabla \in LC(\mathbb{T}N, V_+, \phi)$.

- Not every Manin triple (∂, 𝔅) allows for such solution. It turns out that (𝔅, [·, ·]𝔅) must be a unimodular Lie algebra, that is Tr(ad_x) = 0 for all x ∈ 𝔅.
- In turn, the connection ∇⁰ has to be divergence-free. This fixes it uniquely for the purposes of EOM.

・回り イラト イラト

• We had to make a technical assumption - (*D*, *G*) is a so called **complete group double**. There must exist a splitting of

$$0 \longrightarrow \mathfrak{g} \xrightarrow{i} \mathfrak{d} \xrightarrow{i'} \mathfrak{g}^* \longrightarrow 0, \qquad (21)$$

such that $\xi \mapsto \#_s^{\triangleright}(j(\xi)) \equiv \xi_s^{\triangleright}$ is an isomorphism for all $s \in N$.

- We are then able to find an explicit formula for φ, unique up to an additive constant in terms of *E*₊, blocks of Ad and a quasi-Poisson structure Π_N ∈ X²(N).
- For Manin triple $(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}^*)$ we recover the dilaton formulas obtained from path integral formulation of PLT (von Unge 2002).

Theorem (Jurčo, V. 2017)

 (g, B, ϕ) satisfy the equations of motion on N iff $\nabla^0 \in LC(\mathfrak{d}, \mathcal{E}_+)$ is Ricci compatible with \mathcal{E}_+ and $\mathcal{R}^+_{\nabla^0} = 0$. This is a system of algebraic equations for \mathcal{E}_+ . By solving them, we obtain solutions of EOM on any such constructed coset space N = D/G.

Outlooks (a.k.a. dreams)

- It is hard to find solutions \$\mathcal{E}_+\$ for non-trivial examples of Manin pairs (\vec{d}, \vec{g}). Maybe adding the RR fields could save the day.
 Six-dimensional Manin triples are classified in principle, one can find all solutions.
- Is there a "generalized geometry" to describe the fermionic fields? Courant algebroids on supermanifolds?
- Suppose $\pi : P \to M$ is any principal *D*-bundle, (D, G) still integrates a Manin pair $(\mathfrak{d}, \mathfrak{g})$. There is an intriguing geometry in the diagram

$$\begin{array}{c} P \\ \downarrow^{\pi_0} & \downarrow^{\pi} \\ P/G & \longrightarrow M \end{array}$$
(22)

In particular, reductions of CA provide relations of characteristic classes. Is this some kind of "topological" T-duality?

1

Branislav Jurčo, Jan Vysoký: **Poisson-Lie T-duality of String Effective Actions: A New Approach to the Dilaton Puzzle**, arXiv:1708.04079,

Branislav Jurčo, Jan Vysoký: Courant Algebroid Connections and String Effective Actions, arXiv:1612.0154.

Thank you for your attention!