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Pavol Ševera

1 / 15



Integration and differentiation in “higher Lie theory”

The integration/differentiation problem

Upgrade the correspondence

Lie algebra ↔ Lie group
Lie algebroid ↔ (local) Lie groupoid

to higher Lie theory

A part of the motivation:

• Poisson manifolds ↔ (local) symplectic groupoids

• Courant algebroids ↔ (local) symplectic 2-groupoids
+ other symplectic manifolds coming from CAs (phase spaces
of 2-dim sigma-models)
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NQ-manifolds, or higher Lie algebroids

NQ-manifold = a Z≥0-graded manifold with a homological vector
field Q (Q2 = 0, degQ = 1)
(C∞(X ) is a differential Z≥0-graded commutative algebra)
examples:

• T [1]M: C∞(T [1]M) = Ω(M), Q = d

• g[1] for a Lie algebra g: C∞(g[1]) =
∧
g∗, Q = dCE

• A[1] for a Lie algebroid A→ M: C∞(A[1]) = Γ(
∧
A∗),

Q = dCE
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NQ-ideology: generalized manifolds
(and their homotopy groups/oids)

ideology (Sullivan): see NQ-maps(T [1]M,X ) as maps(M, X̂ ) for a
“generalized manifold” X̂ (for X = T [1]N we have X̂ = N)
in particular: a path in X̂ is T [1]I → X , a homotopy of paths is
T [1](I × I )→ X , etc.

Example

X = g[1]: T [1]M → g[1] = a flat g-connection on M,

π1(ĝ[1]) = G the 1-connected Lie group

X = A[1]: Π1(Â[1]) = Γ the source-1-connected (or local) Lie
groupoid

degX := the highest degree of a coordinate of X

πlocal
n (X̂ ) = 0 for n > degX , i.e. X̂ is a “local homotopy

(degX )-type” (we should expect a local Lie (degX )-groupoid)
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Solving the Maurer-Cartan PDE
Joint work with Michal Širaň

Is NQ-maps(T [1]N,X ) a manifold?

Describing NQ-maps: if Qξi = C i (ξ) (ξ coordinates on X ) then an

NQ-map T [1]N → X is Ai ∈ Ωdeg ξi (N) s.t. dAi = C i (A)
(generalized MC equation)

Theorem

Suppose N is contractible, h the de Rham homotopy operator.
Then dA = C (A) iff dB = 0, where B = A− hC (A). A 7→ B is an
open embedding (of Banach or Fréchet manifolds).

Corollary

maps(∆•, X̂ ) := NQ-maps(T [1]∆•,X ) is a Kan simplicial (Banach
or Fréchet) manifold

maps(∆•, X̂ ) is the “big version” of the higher groupoid
integrating X
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Homotopies are easy
Joint work with Michal Širaň

Problem: find/describe all the NQ-maps T [1](N × I )→ X starting
at a given NQ-map T [1]N → X

Theorem

An NQ-map A : T [1](N × I )→ X , Ai = Ai
t + dt H i

t , is uniquely
specified by A0 : T [1]N → X and by H i

t ∈ Ω(N). Namely,
At ∈ Ω(N) is the solution of the ODE

d

dt
Ai
t = dH i

t + H j
t
∂C i

∂ξj
(At).

A0 and Ht are arbitrary (such that the ODE has a solution).

Corollary

Local homotopy groups are manifolds, they vanish in dimensions
higher than degX
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Local Lie n-groupoid (following E. Getzler)
Joint work with Michal Širaň

Problem: replace the simplicial manifold (“big integration” of X )
NQ-maps(T [1]∆•,X ) with an equivalent finite-dimensional one
Idea (Getzler): impose a gauge condition sA = 0, dA = C (A) (and
use only small A’s)

Theorem

The gauge-fixed NQ-maps T [1]∆• → X form a finite-dimensional
local degX -groupoid ∫X , equivalent to the big integration. It is
functorial up to coherent homotopies.
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Differentiation

Main idea (Kontsevich): T [1]M = maps(R0|1,M),
NQ-structure = the action of End(R0|1)op

Ideology

Any NQ-manifold should be of the form maps(R0|1,Z ) for some
“generalized manifold” (i.e. contravariant functor) Z

Example (tautological): if X is an NQ-manifold then
X = maps(R0|1, X̂ )
Any Lie n-groupoid K (a simplicial manifold) determines a
generalized manifold: maps(M, K̂ ) := mapssimpl(EM,K )

Differentiation: DK := maps(R0|1, K̂ ) is an NQ-manifold
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Differentiation is inverse to the integration
Joint work with Michal Širaň

Want to show D ∫X ∼= X :

X = maps(R0|1, X̂ ) = NQ-maps(T [1]R0|1,X )→

→ mapssimpl(ER0|1, ∫X ) = maps(R0|1, ∫̂X ) = D ∫X

One can show that → is bijective (Dold-Kan correspondence +
deformation)
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Symplectic structures

If X is an NQ-manifolds, ω ∈ Ω2(X ) a symplectic form, degω = n,
LQω = 0, and N a compact oriented n-dim manifold, then

maps(N, X̂ )/homotopy rel ∂N (1)

is (formally) symplectic (a symplectic manifold if N is contractible
and homotopies are small)
[∫X has a symplectic and simplicially closed form on (∫X )n - a
“symplectic n-groupoid”]

Example

X = g[1], n = 2: moduli space of flat g-connections on N
X = T ∗[1]M (M Poisson), n = 1, N = I : the (local) symplectic
groupoid integrating M

(1) is a great source of Hamiltonian systems (e.g. for T-duality)
(Hamiltonians are suitable functions of the boundary fields)

10 / 15



AKSZ model and its boundary
A space-time picture for the Hamiltonian systems

AKSZ: symplectic NQ manifold (X , ω) (degω = n) ;

n + 1-dim TFT (in BV formulation); classical solutions =
NQ-maps T [1]Kn+1 → X

Example

X = g, ω = 〈, 〉, n = 2 ; Chern-Simons
X = T ∗[1]M, n = 1, Q = [π, ·] ; Poisson σ-model

Boundary condition = an (exact) Lagrangian submanifold in the
space of boundary fields
; a boundary field theory (non-topological, n-dimensional; cf.
CS/WZW)
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Example: Chern-Simons and Poisson-Lie T-duality

S(A) =

∫
K

(1

2

〈
A, dA

〉
+

1

6

〈
[A,A],A

〉)
A ∈ Ω1(K , g)

δS =

∫
K
〈δA,F 〉+

1

2

∫
∂K
〈δA,A〉

Boundary condition: (exact) Lagrangian submanifold in Ω1(∂K , g)

σ-model type boundary condition

needs a pseudo-Riemannian metric on Σ ⊂ ∂K and V+ ⊂ g

∗(A|Σ) = VA|Σ

where V : g→ g is the reflection w.r.t. V+ (generalized metric)
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Example: Chern-Simons and Poisson-Lie T-duality

Hollow cylinder: The σ-model with the target G/H

τ

σ
Σinn

Σ

Boundary condition: ∗(A|Σ) = VA|Σ, A|Σinn
∈ h

S(A) = “

∫
p dq −Hdτ ”, H =

1

2

∫
S1

〈Aσ,V(Aσ)〉 dσ

Phase space: moduli space of flat g-connections
on an annulus ∼= T ∗(L(G/H))

Full cylinder: The duality-invariant part (reduced phase space)
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General picture and an open problem

Ingredients: symplectic NQ manifold X with degω = n

Phase space = NQ-maps(T [1]Dn,X )/htopy rel boundary
+ a Hamiltonian (a function of the boundary field)

Space-time picture: n + 1-dim AKSZ model given by X , with a
(non-topological) boundary condition

n = 1: X = T ∗[1]M, Hamiltonian evolution on (the symplectic
groupoid of) M.

X = T ∗[n]T [1]M - n-dim σ-model with the target M

Lagrangian relations between X ’s give equivalencies/dualities

Problem for n ≥ 3

Make it compatible with gauge symmetries, find non-trivial
dualities of (higher) gauge theories
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Open problem: quantization

Kramers-Wannier duality = Poincaré + Poisson

3-dim K
Σ = gray part of ∂K
A finite Abelian group
f : H1(Σ, ∂Σred ;A)→ C
(Boltzmann weight)

Zred(f ,A) :=
∑

α∈H1(Y ,∂Yred ;A)

f (i∗α) Zred(f ,A) = Zblue(f̂ ,A∗)

Quantum: 3d TFT with
colored boundary (RT TFT
given by the double of H)
[H semisimple: Turaev-Viro
(Freed&Teleman)]

H = Z
( )

Hopf algebra
h, h∗ ⊂ g

Thanks for your attention!
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