Extended algebras and geometries

Jakob Palmkvist

CHALMERS

Based on 1804.04377, 1711.07694 (with Martin Cederwall), 1802.05767 (with MC and Lisa Carbone) and 1507.08828

There is a way of extending geometry for any choice (\mathfrak{g}, λ) of

- a Kac-Moody algebra \mathfrak{g} of rank r (this talk: simply laced)
- and an integral dominant highest weight λ of \mathfrak{g}, with a corresponding highest weight representation $R(\lambda)$,
that gives ordinary, double and exceptional geometry in the cases $\mathfrak{g}=A_{r}, D_{r}, E_{r}$, respectively, and $\lambda=\Lambda_{1}$.

Fields depend on coordinates x^{M}, transforming in the representation $R_{1}=R(\lambda)$, subject to the section condition

$$
\partial_{\langle M} \otimes \partial_{N\rangle}=0,
$$

with the derivatives projected on the dual of $R_{2} \oplus \widetilde{R}_{2}$, where

$$
\begin{aligned}
R_{2} & =R_{1} \vee R_{1} \ominus R(2 \lambda) \\
\widetilde{R}_{2} & =R_{1} \wedge R_{1} \ominus \bigoplus_{\lambda_{i}=1} R\left(2 \lambda-\alpha_{i}\right)
\end{aligned}
$$

Under generalised diffeomorphisms, vector fields transform with the generalised Lie derivative:

$$
\begin{aligned}
\mathscr{L}_{U} V^{M} & =U^{N} \partial_{N} V^{M}-V^{N} \partial_{N} U^{M}+Y^{M N}{ }_{P Q} \partial_{N} U^{P} V^{Q} \\
& =U^{N} \partial_{N} V^{M}+Z^{M N}{ }_{P Q} \partial_{N} U^{P} V^{Q}
\end{aligned}
$$

where $Y^{M N}{ }_{P Q}=Z^{M N}{ }_{P Q}+\delta^{M}{ }_{P} \delta^{N}{ }_{Q}$ is a \mathfrak{g} invariant tensor with the upper pair of R_{1} indices in $R_{2} \oplus \widetilde{R}_{2}$:

$$
Z^{M N}{ }_{P Q}=-\left(T^{\alpha}\right)^{M}{ }_{Q}\left(T_{\alpha}\right)^{N}{ }_{P}+((\lambda, \lambda)-1) \delta^{M}{ }_{Q} \delta^{N}{ }_{P}
$$

Closure of the generalised diffeomorphisms (up to ancillary \mathfrak{g} transformations) relies on the section condition

$$
Y^{M N}{ }_{P Q}\left(\partial_{M} \otimes \partial_{N}\right)=0
$$

and the fundamental identity

$$
\begin{aligned}
& Z^{N T}{ }_{S M} Z^{Q S}{ }_{R P}-Z^{Q T}{ }_{S P} Z^{N S}{ }_{R M} \\
& -Z^{N S}{ }_{P M} Z^{Q T}{ }_{R S}+Z^{S T}{ }_{R P} Z^{N Q}{ }_{S M}=0
\end{aligned}
$$

Add two nodes -1 and 0 to the Dynkin diagram of \mathfrak{g}, corresponding to simple roots α_{0} and α_{-1}, and extend the Cartan matrix $A_{i j}=\left(\alpha_{i}, \alpha_{j}\right)$ so that

$$
\begin{array}{rlrl}
\left(\alpha_{-1}, \alpha_{-1}\right) & =0 & & \\
\left(\alpha_{0}, \alpha_{-1}\right) & =-1, & \left(\alpha_{0}, \alpha_{0}\right)=2 \\
\left(\alpha_{i}, \alpha_{-1}\right) & =0, & \left(\alpha_{i}, \alpha_{0}\right)=-\lambda_{i}
\end{array}
$$

Associate three generators e_{I}, f_{I}, h_{I} to the each node I $(I=-1,0,1, \ldots, r)$, where e_{-1}, f_{-1} are odd, the others even.

Let \mathscr{B} be the Lie superalgebra generated by all e_{I}, f_{I}, h_{I} modulo the Chevalley-Serre relations

$$
\begin{gathered}
{\left[h_{I}, e_{J}\right]=A_{I J} e_{J}, \quad\left[h_{I}, f_{J}\right]=-A_{I J} f_{J}, \quad\left[e_{I}, f_{J}\right]=\delta_{I J} h_{J}} \\
\left(\operatorname{ad} e_{I}\right)^{1-A_{I J}}\left(e_{J}\right)=\left(\operatorname{ad} f_{I}\right)^{1-A_{I J}}\left(f_{J}\right)=0 .
\end{gathered}
$$

This is a Borcherds(-Kac-Moody) superalgebra.

The Borcherds superalgebra \mathscr{B} decomposes into a $(\mathbb{Z} \times \mathbb{Z})$ grading of \mathfrak{g}-modules spanned by root vectors e_{α}, where $\alpha=n \alpha_{-1}+p \alpha_{0}+\sum_{i=1}^{r} a_{i} \alpha_{i}$, and h_{I} for $n=p=0$.

Ordinary geometry, $\mathfrak{g}=\mathfrak{s l}(r+1), \mathscr{B}=\mathfrak{s l}(r+2 \mid 1)$:

	$p=-1$	$p=0$	$p=1$
$q=1$		$\mathbf{1}$	\mathbf{v}
$q=0$	$\overline{\mathbf{v}}$	$\mathbf{1} \oplus \mathbf{a d j} \oplus \mathbf{1}$	\mathbf{v}
$q=-1$	$\overline{\mathbf{v}}$	$\mathbf{1}$	

Double geometry, $\mathfrak{g}=\mathfrak{s o}(r, r), \mathscr{B}=\mathfrak{o s p}(r+1, r+1 \mid 2)$:

	$p=-2$	$p=-1$	$p=0$	$p=1$	$p=2$
$q=1$		$\mathbf{1}$	\mathbf{v}	$\mathbf{1}$	
$q=0$	$\mathbf{1}$	\mathbf{v}	$\mathbf{1} \oplus \mathbf{a d j} \oplus \mathbf{1}$	\mathbf{v}	$\mathbf{1}$
$q=-1$	$\mathbf{1}$	\mathbf{v}	$\mathbf{1}$		

Exceptional geometry, $\mathfrak{g}=\mathfrak{s o}(5,5)$:

	$p=-1$	$p=0$	$p=1$	$p=2$	$p=3$	$p=4$	$p=5$
$q=2$					$\mathbf{1}$	$\mathbf{1 6}$	
$q=1$	$\mathbf{1}$	$\mathbf{1 6}$	$\mathbf{1 0}$	$\overline{\mathbf{1 6}}$	$\mathbf{4 5} \oplus \mathbf{1}$	$\overline{\mathbf{1 4 4}} \oplus \mathbf{1 6}$	
$q=0$	$\overline{\mathbf{1 6}}$	$\mathbf{1} \oplus \mathbf{4 5} \oplus \mathbf{1}$	$\mathbf{1 6}$	$\mathbf{1 0}$	$\overline{\mathbf{1 6}}$	$\mathbf{4 5}$	$\overline{\mathbf{1 4 4}}$
$q=-1$	$\overline{\mathbf{1 6}}$	$\mathbf{1}$					

Exceptional geometry, $\mathfrak{g}=E_{7}$:

	$p=0$	$p=1$	$p=2$	$p=3$	$p=4$
$q=3$					$\mathbf{1}$
$q=2$		$\mathbf{1}$	$\mathbf{5 6}$	$\mathbf{1 5 3 9} \oplus \mathbf{1 3 3} \oplus \mathbf{1} \oplus \mathbf{1}$	
$q=1$	$\mathbf{1}$	$\mathbf{5 6}$	$\mathbf{1 3 3} \oplus \mathbf{1}$	$\mathbf{9 1 2} \oplus \mathbf{5 6}$	$\mathbf{8 6 4 5} \oplus \mathbf{1 3 3} \oplus \mathbf{1 5 3 9} \oplus \mathbf{1 3 3} \oplus \mathbf{1}$
$q=0$	$\mathbf{1} \oplus \mathbf{1 3 3} \oplus \mathbf{1}$	$\mathbf{5 6}$	$\mathbf{1 3 3}$	$\mathbf{9 1 2}$	$\mathbf{8 6 4 5} \oplus \mathbf{1 3 3}$
$q=-1$	$\mathbf{1}$				

Back to the general case:

\ldots	$p=-1$	$p=0$	$p=1$	$p=2$	$p=3$	\ldots
$q=4$						\ldots
$q=3$					$\widetilde{\widetilde{R}}_{3}$	\ldots
$q=2$				\widetilde{R}_{2}	$\widetilde{R}_{3} \oplus \widetilde{\widetilde{R}}_{3}$	\ldots
$q=1$		$\mathbf{1}$	R_{1}	$R_{2} \oplus \widetilde{R}_{2}$	$R_{3} \oplus \widetilde{R}_{3}$	\ldots
$q=0$	\bar{R}_{1}	$\mathbf{1} \oplus \mathbf{a d j} \oplus \mathbf{1}$	R_{1}	R_{2}	R_{3}	\ldots
$q=-1$	\bar{R}_{1}	$\mathbf{1}$				

Basis elements:

\ldots	$p=-1$	$p=0$	$p=1$	$p=2$	$p=3$	\ldots
$q=4$						\ldots
$q=3$				\ldots	\ldots	
$q=2$						
$q=1$		f_{-1}	$\left.\widetilde{E}_{M}, \widetilde{E}_{N}\right]$	$\left[E_{M}, \widetilde{E}_{N}\right]$	\ldots	\ldots
$q=0$	F^{M}	\tilde{k}, T^{α}, k	E_{M}	$\left[E_{M}, E_{N}\right]$	\ldots	\ldots
$q=-1$	\widetilde{F}^{M}	e_{-1}				

We identify the internal tangent space with the odd subspace spanned by the E_{M} and write a vector field V as $V=V^{M} E_{M}$. It can be mapped to the even element $V^{\sharp}=\left[f_{-1}, V\right]=V^{M} \widetilde{E}_{M}$.

The generalised Lie derivative is now given by

$$
\mathscr{L}_{U} V=\left[\left[U, \widetilde{F}^{N}\right], \partial_{N} V^{\sharp}\right]-\left[\left[\partial_{N} U^{\sharp}, \widetilde{F}^{N}\right], V\right] .
$$

The section condition can be written

$$
\left[F^{M}, F^{N}\right] \partial_{M} \otimes \partial_{N}=\left[\tilde{F}^{M}, \tilde{F}^{N}\right] \partial_{M} \otimes \partial_{N}=0
$$

It follows from relations in the Lie superalgebra \mathscr{B} whether the transformations close or not.
[Palmkvist: 1507.08828]

If \mathfrak{g} is finite-dimensional and λ is a fundamental weight Λ_{i} such that the corresponding Coxeter number c_{i} is equal to 1 , then

$$
\mathscr{L}_{U} \mathscr{L}_{V}-\mathscr{L}_{V} \mathscr{L}_{U}=\mathscr{L}_{\llbracket U, V \rrbracket}
$$

where

$$
\llbracket U, V \rrbracket=\frac{1}{2}\left(\mathscr{L}_{U} V-\mathscr{L}_{V} U\right)
$$

This is the 2-bracket of an L_{∞} algebra.

[Cederwall, Palmkvist: 1711.07694, 1804.04377]

In addition to the vector fields in R_{1} at $(p, q)=(1,0)$, the L_{∞} algebra also contains ghosts C_{p} in R_{p} at higher levels p and $q=0$, as well as ancillary ghosts K_{p} in R_{p} at $p \geqslant p_{0}$ and $q=1$, where p_{0} is the lowest level p such that \widetilde{R}_{p+1} is nonzero.

The 1-bracket is given by $\llbracket C \rrbracket=d C$ and $\llbracket K \rrbracket=d K+K^{b}$, where $d \sim\left(\operatorname{ad} F^{M}\right) \partial_{M}$ and $b \sim \operatorname{ad} e_{-1}$.

The ancillary ghosts appear when d fails to be covariant.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884]
[Cederwall, Edlund, Karlsson: 1302.6736]

The L_{∞} degrees are given by $\ell=p+q$ (with the convention that all brackets have degree -1). Explicit expressions for all brackets can be derived from the Lie superbracket in \mathscr{B}.

\ldots	$p=-1$	$p=0$	$p=1$	$p=2$	$p=3$	\ldots
\ldots						
$q=3$						
$q=2$						

[Cederwall, Palmkvist: 1804.04377]

If \mathfrak{g} is infinite-dimensional, or if \mathfrak{g} is finite-dimensional and $(\lambda, \theta) \geqslant 2$, where θ is the highest root, then the generalised diffeomorphisms only close up to ancillary \mathfrak{g} transformations.
In order to describe these cases we need to replace the Borcherds superalgebra \mathscr{B} with a tensor hierarchy algebra.
[Cederwall, Palmkvist: 1711.07694, work in progress ...]

The tensor hierarchy algebra is a Lie superalgebra that can be constructed from the same Dynkin diagram as \mathscr{B}, but with modified generators and relations: $(i=1,2, \ldots, r)$

$$
\begin{array}{rlrl}
f_{-1} & & f_{(-1) i} \\
{\left[h_{0}, f_{-1}\right]=f_{-1}} & & \rightarrow & {\left[h_{0}, f_{(-1) i}\right]=f_{(-1) i}} \\
{\left[e_{-1}, f_{-1}\right]=h_{-1}} & & \rightarrow & {\left[e_{-1}, f_{(-1) i}\right]=h_{i}}
\end{array}
$$

- The simple root α_{-1} has multiplicity 1 as usual, but its negative has multiplicity r.
- The bracket $\left[e_{i}, f_{(-1) j}\right]$ may be nonzero. Not only positive and negative roots, but also mixed ones appear.
[Palmkvist: 1305.0018] [Carbone, Cederwall, Palmkvist: 1802.05767]

To be better understood:

- The tensor hierarchy algebras ...
- The gauge structure when ancillary transformations appear, first when \mathfrak{g}_{r} is finite-dimensional, second when \mathfrak{g}_{r} is infinite-dimensional ...
- The dynamics: Under control when \mathfrak{g}_{r+1} is affine. Maybe also when \mathfrak{g}_{r} itself is affine and \mathfrak{g}_{r+1} hyperbolic? (Henning's talk)

Obvious direction for further research: towards $\mathfrak{g}_{r}=E_{11}$

