Extended algebras and geometries

Jakob Palmkvist

Based on 1804.04377, 1711.07694 (with Martin Cederwall), 1802.05767 (with MC and Lisa Carbone) and 1507.08828

There is a way of extending geometry for any choice (\mathfrak{g}, λ) of

- ▶ a Kac-Moody algebra \mathfrak{g} of rank r (this talk: simply laced)
- and an integral dominant highest weight λ of \mathfrak{g} , with a corresponding highest weight representation $R(\lambda)$,

that gives ordinary, double and exceptional geometry in the cases $\mathfrak{g} = A_r, D_r, E_r$, respectively, and $\lambda = \Lambda_1$.

Fields depend on coordinates x^M , transforming in the representation $R_1 = R(\lambda)$, subject to the section condition

$$\partial_{\langle M} \otimes \partial_{N\rangle} = 0,$$

with the derivatives projected on the dual of $R_2 \oplus \widetilde{R}_2$, where

$$R_2 = R_1 \lor R_1 \ominus R(2\lambda),$$

$$\widetilde{R}_2 = R_1 \land R_1 \ominus \bigoplus_{\lambda_i = 1} R(2\lambda - \alpha_i).$$

Under generalised diffeomorphisms, vector fields transform with the generalised Lie derivative:

$$\mathcal{L}_{U}V^{M} = U^{N}\partial_{N}V^{M} - V^{N}\partial_{N}U^{M} + Y^{MN}{}_{PQ}\partial_{N}U^{P}V^{Q}$$
$$= U^{N}\partial_{N}V^{M} + Z^{MN}{}_{PQ}\partial_{N}U^{P}V^{Q}$$

where $Y^{MN}{}_{PQ} = Z^{MN}{}_{PQ} + \delta^{M}{}_{P}\delta^{N}{}_{Q}$ is a \mathfrak{g} invariant tensor with the upper pair of R_1 indices in $R_2 \oplus \widetilde{R}_2$:

$$Z^{MN}{}_{PQ} = -(T^{\alpha})^{M}{}_{Q}(T_{\alpha})^{N}{}_{P} + ((\lambda,\lambda)-1)\delta^{M}{}_{Q}\delta^{N}{}_{P}$$

Closure of the generalised diffeomorphisms (up to ancillary \mathfrak{g} transformations) relies on the section condition

$$Y^{MN}{}_{PQ}(\partial_M \otimes \partial_N) = 0$$

and the fundamental identity

$$Z^{NT}{}_{SM}Z^{QS}{}_{RP} - Z^{QT}{}_{SP}Z^{NS}{}_{RM} - Z^{NS}{}_{PM}Z^{QT}{}_{RS} + Z^{ST}{}_{RP}Z^{NQ}{}_{SM} = 0.$$

Add two nodes -1 and 0 to the Dynkin diagram of \mathfrak{g} , corresponding to simple roots α_0 and α_{-1} , and extend the Cartan matrix $A_{ij} = (\alpha_i, \alpha_j)$ so that

$$\begin{aligned} &(\alpha_{-1}, \alpha_{-1}) = 0, \\ &(\alpha_0, \alpha_{-1}) = -1, \\ &(\alpha_i, \alpha_{-1}) = 0, \end{aligned} \qquad (\alpha_0, \alpha_0) = 2, \\ &(\alpha_i, \alpha_0) = -\lambda_i. \end{aligned}$$

Associate three generators e_I , f_I , h_I to the each node I(I = -1, 0, 1, ..., r), where e_{-1} , f_{-1} are odd, the others even. Let \mathscr{B} be the Lie superalgebra generated by all e_I , f_I , h_I modulo the Chevalley-Serre relations

$$[h_I, e_J] = A_{IJ}e_J, \quad [h_I, f_J] = -A_{IJ}f_J, \quad [e_I, f_J] = \delta_{IJ}h_J,$$

(ad $e_I)^{1-A_{IJ}}(e_J) = (ad f_I)^{1-A_{IJ}}(f_J) = 0.$

This is a Borcherds(-Kac-Moody) superalgebra.

The Borcherds superalgebra \mathscr{B} decomposes into a $(\mathbb{Z} \times \mathbb{Z})$ grading of \mathfrak{g} -modules spanned by root vectors e_{α} , where $\alpha = n \alpha_{-1} + p \alpha_0 + \sum_{i=1}^r a_i \alpha_i$, and h_I for n = p = 0.

Ordinary geometry, $\mathfrak{g} = \mathfrak{sl}(r+1)$, $\mathscr{B} = \mathfrak{sl}(r+2 \mid 1)$:

	p = -1	p = 0	p = 1
q = 1		1	\mathbf{v}
q = 0	$\overline{\mathbf{v}}$	$1 \oplus \operatorname{adj} \oplus 1$	v
q = -1	$\overline{\mathbf{v}}$	1	

Double geometry, $\mathfrak{g} = \mathfrak{so}(r, r)$, $\mathscr{B} = \mathfrak{osp}(r+1, r+1 | 2)$:

	p = -2	p = -1	p = 0	p = 1	p = 2
q = 1			1	v	1
- 0	1		1.04.0.1		1
q = 0	1	v	$1 \oplus \operatorname{adj} \oplus 1$	v	1
q = -1	1	v	1		
			Ç)	
\sim	<u> </u>				

Exceptional geometry, $\mathfrak{g} = \mathfrak{so}(5,5)$:

_	p = -1	p = 0	p = 1	p = 2	p = 3	p = 4	p = 5
q = 2						1	
q = 1		1	16	10	$\overline{16}$	$45 \oplus 1$	$\overline{144} \oplus 16$
q = 0	$\overline{16}$	$1 \oplus 45 \oplus 1$ 1	16	10	$\overline{16}$	45	$\overline{144}$
q = -1	16	1					

Exceptional geometry, $\mathfrak{g} = E_7$:

	p = 0	p = 1	p = 2	p = 3	p = 4
q = 3					1
q = 2			1	56	${\bf 1539 \oplus 133 \oplus 1 \oplus 1}$
q = 1	1	56	$133 \oplus 1$	$912 \oplus 56$	$8645 \oplus 133 \oplus 1539 \oplus 133 \oplus 1$
q = 0	$1 \oplus 133 \oplus 1$	56	133	912	$\bf 8645 \oplus 133$
q = -1	1				

Back to the general case:

	p = -1	p = 0	p = 1	p = 2	p = 3	
q = 4						
q = 3					$\widetilde{\widetilde{R}}_3$	
q = 2				\widetilde{R}_2	$\widetilde{R}_3 \oplus \widetilde{\widetilde{R}}_3$	
q = 1		1	R_1	$R_2 \oplus \widetilde{R}_2$	$R_3 \oplus \widetilde{R}_3$	
q = 0	\overline{R}_1	$1 \oplus \operatorname{adj} \oplus 1$	R_1	R_2	R_3	
q = -1	\overline{R}_1	1				

Basis elements:

	p = -1	p = 0	p = 1	p = 2	p = 3	
q = 4						
q = 3						
q = 2				$[\widetilde{E}_M, \widetilde{E}_N]$		
q = 1		f_{-1}	\widetilde{E}_M	$[E_M, \widetilde{E}_N]$		
q = 0	F^M	$\widetilde{k},T^{\alpha},k$	E_M	$[E_M, E_N]$		
q = -1	\widetilde{F}^M	e_{-1}				

We identify the internal tangent space with the odd subspace spanned by the E_M and write a vector field V as $V = V^M E_M$. It can be mapped to the even element $V^{\sharp} = [f_{-1}, V] = V^M \widetilde{E}_M$. The generalised Lie derivative is now given by

$$\mathscr{L}_U V = [[U, \widetilde{F}^N], \partial_N V^{\sharp}] - [[\partial_N U^{\sharp}, \widetilde{F}^N], V]$$

The section condition can be written

$$[F^M, F^N]\partial_M \otimes \partial_N = [\widetilde{F}^M, \widetilde{F}^N]\partial_M \otimes \partial_N = 0 .$$

It follows from relations in the Lie superalgebra $\mathcal B$ whether the transformations close or not.

[Palmkvist: 1507.08828]

If \mathfrak{g} is finite-dimensional and λ is a fundamental weight Λ_i such that the corresponding Coxeter number c_i is equal to 1, then

$$\mathscr{L}_U \mathscr{L}_V - \mathscr{L}_V \mathscr{L}_U = \mathscr{L}_{\llbracket U, V \rrbracket},$$

where

$$\llbracket U, V \rrbracket = \frac{1}{2} (\mathscr{L}_U V - \mathscr{L}_V U).$$

This is the 2-bracket of an L_{∞} algebra.

[Cederwall, Palmkvist: 1711.07694, 1804.04377]

In addition to the vector fields in R_1 at (p,q) = (1,0), the L_{∞} algebra also contains ghosts C_p in R_p at higher levels p and q = 0, as well as ancillary ghosts K_p in R_p at $p \ge p_0$ and q = 1, where p_0 is the lowest level p such that \widetilde{R}_{p+1} is nonzero.

The 1-bracket is given by $\llbracket C \rrbracket = dC$ and $\llbracket K \rrbracket = dK + K^{\flat}$, where $d \sim (\operatorname{ad} F^M) \partial_M$ and $\flat \sim \operatorname{ad} e_{-1}$.

The ancillary ghosts appear when d fails to be covariant.

[Berman, Cederwall, Kleinschmidt, Thompson: 1208.5884] [Cederwall, Edlund, Karlsson: 1302.6736] The L_{∞} degrees are given by $\ell = p + q$ (with the convention that all brackets have degree -1). Explicit expressions for all brackets can be derived from the Lie superbracket in \mathscr{B} .

[Cederwall, Palmkvist: 1804.04377]

If \mathfrak{g} is infinite-dimensional, or if \mathfrak{g} is finite-dimensional and $(\lambda, \theta) \ge 2$, where θ is the highest root, then the generalised diffeomorphisms only close up to ancillary \mathfrak{g} transformations. In order to describe these cases we need to replace the Borcherds superalgebra \mathscr{B} with a tensor hierarchy algebra.

[Cederwall, Palmkvist: 1711.07694, work in progress ...]

The tensor hierarchy algebra is a Lie superalgebra that can be constructed from the same Dynkin diagram as \mathscr{B} , but with modified generators and relations: (i = 1, 2, ..., r)

$$\begin{array}{cccc} f_{-1} & \to & f_{(-1)i} \\ [h_0, f_{-1}] = f_{-1} & \to & [h_0, f_{(-1)i}] = f_{(-1)i} \\ [e_{-1}, f_{-1}] = h_{-1} & \to & [e_{-1}, f_{(-1)i}] = h_i \end{array}$$

- The simple root α₋₁ has multiplicity 1 as usual, but its negative has multiplicity r.
- The bracket $[e_i, f_{(-1)j}]$ may be nonzero. Not only positive and negative roots, but also mixed ones appear.

[Palmkvist: 1305.0018] [Carbone, Cederwall, Palmkvist: 1802.05767]

To be better understood:

- ▶ The tensor hierarchy algebras ...
- The gauge structure when ancillary transformations appear, first when g_r is finite-dimensional, second when g_r is infinite-dimensional ...
- The dynamics: Under control when g_{r+1} is affine.
 Maybe also when g_r itself is affine and g_{r+1} hyperbolic? (Henning's talk)

Obvious direction for further research: towards $\mathfrak{g}_r = E_{11}$