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Introduction and Motivation

Martin Wolf Higher Gauge Theory from Twistor Space



Problem

One of the big challenges in M-theory is the formulation of the
N = (2,0) theory. This a chiral superconformal gauge theory in
six dimensions with maximal N = (2,0) supersymmetry. At the
linearised level, we have:

A potential 2-form B with curvature 3-form H = dB such
that H = ?6H

Five scalars φIJ such that �φIJ = 0

Four Weyl fermions ψI such that DψI = 0

Problem: How can this be promoted to an interacting
non-Abelian theory?
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Proposal: Combine twistor theory and categorified principal
bundles.
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Higher Gauge Algebras
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NQ-Manifolds—Higher Gauge Algebras

An NQ-manifold is a non-negatively graded manifold
quipped with a nil-quadratic degree-one vector field Q.

An NQ-manifold concentrated in degree one is a Lie
algebra. Indeed, let ξα be local coordinates. The most
general degree-one vector field Q is of the form

Q := ξαξβfαβγ
∂

∂ξγ
,

with fαβγ constant. Then Q2 = 0 is equivalent to requiring
fαβγ to satisfy Jacobi. Thus, we obtain a Lie algebra with Q
as its Chevalley–Eilenberg differential.
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NQ-Manifolds—Higher Gauge Algebras

An NQ-manifold in degree zero and one is a Lie algebroid.
Indeed, such a manifold must be of the form E [1]→ X . Let
(x i , ξα) be local coordinates so that

Q := ξαρi
α

∂

∂x i + ξαξβfαβγ
∂

∂ξγ
.

Now fαβγ ∈ C∞(X ) are structure functions of a Lie bracket
[−,−] on Γ(E) and the ρi

α ∈ C∞(X ) encode a map
ρ : E → TX . Then Q2 = 0 implies that the fαβγ satisfy
Jacobi, ρ is a Lie algebra homomorphism, and
[s1, fs2] = (ρ(s1)f )s2 + f [s1, s2] for all f ∈ C∞(M) and
s1,2 ∈ Γ(E). Hence, this describes a Lie algebroid with Q
as its Chevalley–Eilenberg differential.

A k -term L∞-algebroid is an NQ-manifold concentrated in
degrees 0,1, . . . , k . When concentrated in degrees
1, . . . , k we call it a k -term L∞-algebra.
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NQ-Manifolds—Higher Gauge Algebras

For k = 1,2, let (ξα, ηi) be local coordinates. Then,

Q := ξαξβfαβγ
∂

∂ξγ
+fi

αηi ∂

∂ξα
+fiα

jξαηj
∂

∂ηi +fαβγ iξαξβξγ
∂

∂ηi ,

where fαβγ , fi
α, fiα

j , and fαβγ i are constants. Letting w be a
vector space with basis wα and v a vector space with basis
vi we may thus write

µ1(vi) := fi
αwα , µ2(wα,wβ) := fαβγwγ ,

µ2(vi ,wα) := fiα
jvj , µ3(wα,wβ,wγ) := fαβγ ivi ,

i.e. we obtain a 2-term complex v
µ1−→ w with

µ2 : w∧w → w , µ2 : v∧w → v , µ3 : w∧w∧w → v

and Q2 yields higher homotopy Jacobi identities e.g.

µ1(µ3(W1,W2,W3)) = µ2(µ2(W1,W2),W3)

+ µ2(µ2(W3,W1),W2) + µ2(µ2(W2,W3),W1)
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Higher Gauge Group(oid)s
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Simplex Category

The simplex category ∆ is the category that has finite
totally ordered sets [p] := {0,1, . . . ,p} as objects and
order-preserving maps as morphisms.

The objects of ∆ have a geometric realisation as standard
topological simplices.

The morphisms of ∆ are generated by the coface maps,
φp

i , and codegeneracy maps, δp
i , defined by

φp
i : [p − 1] → [p]

0
1

...
...

i − 1
i

... ...p − 1

0
1

i − 1
i
i + 1

p

δp
i : [p + 1] → [p]

0
1

i
i + 1
i + 2

p + 1

0
1

i
i + 1

p

...

...

...

...
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Simplicial Sets and Manifolds

A simplicial set (manifold) is a functor X : ∆op→Set (Mfd).

Hence, X =
⋃

p Xp and Xp := X ([p]) is the set of
simplicial p-simplices; the elements of X0 are the vertices
of X . We obtain the face maps, fpi := X (φp

i ) : Xp→Xp−1,
and the degeneracy maps, dp

i := X (δp
i ) : Xp →Xp+1

subject to the simplicial identities

fi ◦ fj = fj−1 ◦ fi for i < j , di ◦ dj = dj+1 ◦ di for i ≤ j ,
fi ◦ dj = dj−1 ◦ fi for i < j , fi ◦ dj = dj ◦ fi−1 for i > j + 1 ,

fi ◦ di = id = fi+1 ◦ di .

Depict simplicial sets by writing arrows for the face maps,{
· · · −→−→−→−→ X2

−→−→−→ X1 −→−→ X0
}
.

For a ordinary set X write
{
· · · −→−→−→−→ X −→−→−→ X −→−→ X

}
with all

face and degeneracy maps identities. Such a set is called
a simplicially constant simplicial set.
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Simplicial Maps and Homotopies

A simplicial map between simplicial sets is a natural
transformation between the defining functors.

The standard simplicial p-simplex, ∆p, is the simplicial set
hom∆(−, [p]) : ∆op → Set.

For any simplicial set X =
⋃

p Xp, one can show that
Xp ∼= homsSet(∆p,X ).

For two simplicial sets X and Y , a simplicial homotopy
between two simplicial maps g, g̃ : X → Y is a simplicial
map h : X ×∆1 → Y that renders

X ×∆0 ∼= X
g

))SSS
SSSS

SSSS
SSSS

SSS

id×φ1
1 ��

X ×∆1 h // Y

X ×∆0 ∼= X

g̃
55kkkkkkkkkkkkkkkk

id×φ1
0

OO

commutative. Here, φ1
0 and φ1

1 are the coface maps.
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Kan Simplicial Sets and Manifolds

For each i , the (p, i)-horn Λp
i of ∆p is the simplicial subset

of ∆p given by all faces of ∆p except for the i-th one. The
(p, i)-horns of a simplicial set X is the set homsSet(Λp

i ,X ).

The horns Λp
i of ∆p can always be filled (i.e. completed) to

∆p. For a simplicial set X this is, in general, not the case.

A Kan simplicial set is a simplicial set such that any horn
λ : Λp

i →X can be filled, that is,

Λp
i

λ //
� _

��

X

∆p

δ

>>}}}}}}}}

is commutative. Put differently, the natural restrictions

Xp ∼= homsSet(∆p,X )→ homsSet(Λp
i ,X )

are surjective. For a simplicial manifold, these are
surjective submersions.
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Quasi-Groupoids

Let X and Y be two simplicial sets. Consider the relation
g ∼ g̃ on the set of all simplicial maps between X and Y
defined by saying that g is related to g̃ whenever there
exists a simplicial homotopy from g to g̃. If Y is a Kan
simplicial set then this is an equivalence relation.

A quasi-groupoid is a Kan simplicial set. A Lie
quasi-groupoid is a Kan simplicial manifold. A Lie
k -quasi-groupoid is a Lie quasi-groupoid for which the
(p, i)-horns can be filled uniquely for p > k , i ∈ {0, . . . ,p}.

Every Lie k -quasi-groupoid differentiates to a k -term
L∞-algebroid following a method due to Ševera in which
the algebroid is given as the 1-jet of the quasi-groupoid.
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Examples k = 1

Let f : Y → X be a surjective submersion between two
manifolds Y and X . Consider

Y ×X Y := {(y1, y2) ∈ Y × Y | f (y1) = f (y2)} .
The Čech groupoid Č(Y → X ) is the Lie groupoid
Y ×X Y −→−→ Y with pairs (y1, y2) ∈ Y ×X Y as its
morphisms and

s(y1, y2) := y2 , t(y1, y2) := y1 , idy := (y , y) ,

(y1, y2) ◦ (y2, y3) := (y1, y3) .

The Čech nerve of the Čech groupoid Č(Y → X ) is the Lie
1-quasi-groupoid

N(Č(Y → X )) :=
{
· · · −→−→−→−→ Y ×X Y ×X Y −→−→−→ Y ×X Y −→−→ Y

}
,

with face and degeneracy maps given by

fpi (y0, . . . , yp) := (y0, . . . , yi−1, yi+1, . . . , yp) ,

dp
i (y0, . . . , yp) := (y0, . . . , yi−1, yi , yi , . . . , yp) .
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Examples k = 1

Let G be a Lie group.

The delooping BG is the Lie groupoid G −→−→ ∗, where the
source and target maps are trivial, id∗ = 1G, and the
composition is group multiplication in G.

The nerve N(BG) of the delooping BG is the Lie
1-quasi-groupoid

N(BG) :=
{
· · · −→−→−→−→ G ×G −→−→−→ G −→−→ ∗

}
with the obvious face and degeneracy maps.
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Higher Principal Bundles
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Principal Bundles

For G a Lie group, a principal G-bundle over a manifold X
subordinate to a surjective submersion Y → X is a
simplicial map g : N(Č(Y → X ))→ N(BG).

Take an ordinary cover
⋃

a{(x ,a)|x ∈ Ua} → X so that the
set of morphisms of the corresponding Čech groupoid is⋃

a,b{(x ,a,b)|x ∈ Ua ∩ Ub} with the composition
(x ,a,b) ◦ (x ,b, c) = (x ,a, c).

Hence, a simplicial map g : N(Č(Y → X ))→ N(BG)
consists of

ga(x) := g0(x ,a) = ∗ , gab(x) := g1(x ,a,b) ∈ G ,

gabc(x) := g2(x ,a,b, c) = (g1
abc(x),g2

abc(x)) ∈ G ×G , etc.

and as it commutes with the face and degeneracy maps,

g1
abc(x) = gab(x) , g1

abc(x)g2
abc(x) = gac(x) , g2

abc(x) = gbc(x) .
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Higher Groupoid Bundles

Since, in addition, homotopies yield equivalent bundles, we
give the following definition ...

For G a Lie quasi-groupoid, a Lie quasi-groupoid bundle or
principal G -bundle over X subordinate to a surjective
submersion Y → X is a simplicial map
g : N(Č(Y → X ))→ G . Two such principal G -bundles
g, g̃ : N(Č(Y → X ))→ G are called equivalent if and only if
there is a simplicial homotopy between g and g̃.

This can be generalised to higher bases spaces i.e. base
spaces which are Kan simplicial manifolds.
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Higher non-Abelian Deligne Cohomology

Generalising the above construction, we can also infer the
connective structure on such principal G -bundles as well its
patching transformations. The latter follow from computing
the 1-jet of the simplicial manifold hom(∆1,G ) appearing in

homsSMfd(X ×∆1,G ) ∼= homsSMfd(X ,hom(∆1,G ))

Let G be a Lie 2-quasi group with the induced 2-term L∞
algebra v

µ1−→ w. Let
⋃

a{(x ,a)|x ∈ Ua} → X . A Deligne
cocycle describing a principal G -bundle with connective
structure consists of the transition functions {gab,gabc ,Λab}
with Λab ∈ Ω1(Ua ∩ Ub)⊗w and the connective structure
{Aa,Ba} ∈ Ω1(Ua)⊗w⊕ Ω2(Ua)⊗ v with curvatures

Fa := dAa + 1
2µ2(Aa,Aa)− µ1(Ba) ,

Ha := dBa + µ2(Aa,Ba) + 1
3!µ3(Aa,Aa,Aa) .
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6D Self-Dual Higher Gauge Theory
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Twistor Space

Consider N = (2,0) superspace M := C6|16 with
coordinates (xAB, ηA

I ) with A,B, . . . = 1, . . . ,4 and
I, J, . . . = 1, . . . ,4. Then,

PAB := ∂AB , DI
A := ∂I

A − 2ΩIJηB
J ∂AB

have the non-vanishing (anti-)commutation relations

{DI
A,D

J
B} = −4ΩIJPAB .

Define the correspondence space F to be F := C4|16 ×P3

with coordinates (xAB, ηA
I , λA).

Introduce a rank-3|12 distribution 〈V A,V I AB〉 ↪→ TF by
V A := λB∂

AB and V I AB := 1
2ε

ABCDλCDI
D which is

integrable. Hence, we have foliation P := F/〈V A,V I AB〉.
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Twistor Space

On P, we may use coordinates (zA, ηI , λA) with
zAλA = ΩIJηIηJ and thus

P M

F
π1 π2�
�	

@
@R

with π2 being the trivial projection and

π1 : (xAB, ηA
I , λA) 7→ (zA, ηI , λA) =

= ((xAB + ΩIJηA
I η

B
J )λB, η

A
I λA, λA)

A point x ∈ M corresponds to a P3 in P, while a point
p ∈ P corresponds to a 3|12-superplane

xAB = xAB
0 + εABCDµCλD + 2ΩIJεCDE [AλCθIDEη0

B]
J ,

ηA
I = η0

A
I + εABCDλBθICD .
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Penrose–Ward Transform: P π1← F π2→ M

Let G be a Lie 2-quasi-group. There is a bijection between
equivalence classes

(i) of holomorphic M-trivial principal G -bundles on P and

(ii) of solutions to the constraint system on the chiral
superspace M

FA
B = µ1(BA

B) , FAB
I
C = µ1(BAB

I
C) , F IJ

AB = µ(BIJ
AB) ,

HAB = 0 ,

HA
BI

C = δB
Cψ

I
A − 1

4δ
B
Aψ

I
C ,

HAB
IJ
CD = εABCDφ

IJ , with φIJΩIJ = 0

H IJK
ABC = 0 .

This is a quasi-isomorphism of L∞-algebras.

Martin Wolf Higher Gauge Theory from Twistor Space



4D Super Yang–Mills Theory
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Ambitwistor Space

Consider M := C4|12 with coordinates (xαα̇, θiα, ηα̇i ) where
α, α̇, . . . = 1,2 and i , j , . . . = 1, . . . ,3. Then,

Pαα̇ := ∂αα̇ , Diα := ∂iα + ηα̇i ∂αα̇ , Di
α̇ := ∂ i

α̇ + θiα∂αα̇

have the non-vanishing (anti-)commutation relations

{Diα,D
j
α̇} = 2δj

i Pαα̇ .

Define F := C4|12 ×P1 ×P1 with coordinates
(xαα̇, θiα, ηα̇i , µα, λα̇).

Introduce a rank-1|6 distribution 〈V ,Vi ,V i〉 ↪→ TF by
V := µαλα̇∂αα̇, Vi := µαDiα, and V i := λα̇Di

α̇ which is
integrable. Hence, we have foliation L := F/〈V ,Vi ,V i〉.
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Ambitwistor Space

On L, we may use coordinates (zα,w α̇, θi , ηi , µα, λα̇) with
zαµα − w α̇λα̇ = 2θiηi and thus

L M

F
π1 π2�
�	

@
@R

with π2 being the trivial projection and

π1 : (xαα̇, θiα, ηα̇i , µα, λα̇) 7→ (zα,w α̇, θi , ηi , µα, λα̇) =

= ((xαα̇ − θiαηα̇i )λα̇, (xαα̇ + θiαηα̇i )µα, θ
iαµα, η

α̇
i λα̇, µα, λα̇)

A point x ∈ M corresponds to a P1 ×P1 in L, while a point
p ∈ L corresponds to a 1|6-superline

xαα̇ = xαα̇0 + tµαλα̇ + t iµαηα̇i − tiθiαλα̇ ,

θiα = θiα
0 + t iµα , ηα̇i = ηα̇0 i + tiλα̇ .
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Penrose–Ward Transform: L π1← F π2→ M

Due to Witten and Isenberg–Yasskin–Green we have the
following result. Let G be a Lie group. There is a bijection
between equivalence classes

(i) of holomorphic M-trivial principal G-bundles on L and

(ii) of solutions to the constraint system of maximally
supersymmetric Yang–Mills theory on M

Fiαjβ = εαβεijkφ
k , F ij

α̇β̇
= εα̇β̇ε

ijkφk , Fiα
j
β̇

= 0 .

To prove this theorem, one makes use of the Čech description
of holomorphic principal bundles. This is an intrinsically
on-shell approach as the holomorphicity of the bundles
encodes the equations of motion. How do we go off-shell?
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Dolbeault Approach and Higher Gauge Theory

To go off-shell, we make use of the Dolbeault approach. In
particular, a holomorphic principal G-bundle can be
described by a smooth principal G-bundle equipped with a
(0,1)-connection locally given by a Lie(G)-valued
(0,1)-form A0,1 subject to

F 0,2 = ∂̄A0,1 + 1
2 [A0,1,A0,1] = 0 .

For a three-dimensional Calabi–Yau manifold, this equation
is variational as it follows from the holomorphic
Chern–Simons action functional

S :=

∫
Ω3,0 ∧ tr

{
A0,1 ∧ ∂̄A0,1 + 2

3A0,1 ∧ A0,1 ∧ A0,1
}
.

Ambitwistor space is a Calabi–Yau supermanifold,
however, its bosonic part is five-dimensional, and so we
cannot use this action functional.
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Dolbeault Approach and Higher Gauge Theory

We propose to consider higher holomorphic
Chern–Simons theory which we can motivate from string
field theory of the B type topological sigma model on
higher-dimensional Calabi–Yau spaces.

Let G be a Lie 3-quasi-group. Consider a smooth principal
G -bundle equipped with Lie(G )-valued (0,p|0)-forms
A0,1|0, B0,2|0, and C0,3|0 with

S :=

∫
Ω5|6,0 ∧

{
〈A0,1|0, ∂̄C0,3|0〉+ 〈B0,2|0, µ1(C0,3|0)〉+

+ 1
2〈B

0,2|0, ∂̄B0,2|0〉+ 1
2〈A

0,1|0, µ2(A0,1|0,C0,3|0)〉+

+ 1
2〈A

0,1|0, µ2(B0,2|0,B0,2|0)〉+

+ 1
3!〈A

0,1|0, µ3(A0,1|0,A0,1|0,B0,2|0)〉+

+ 1
5!〈A

0,1|0, µ4(A0,1|0,A0,1|0,A0,1|0,A0,1|0)〉
}
,

where the fermionic integration is in the sense of Berezin.
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Dolbeault Approach and Higher Gauge Theory

The corresponding equations of motion are

∂̄A0,1|0 + 1
2µ2(A0,1|0,A0,1|0) + µ1(B0,2|0) = 0 ,

∂̄B0,2|0 + µ2(A0,1|0,B0,2|0) +

+ 1
3!µ3(A0,1|0,A0,1|0,A0,1|0) + µ1(C0,3|0) = 0 ,

∂̄C0,3|0 + µ2(A0,1|0,C0,3|0) + 1
2µ2(B0,2|0,B0,2|0) +

+1
2µ3(A0,1|0,A0,1|0,B0,2|0) + 1

4!µ4(A0,1|0,A0,1|0,A0,1|0,A0,1|0) = 0 .

Every L∞-algebra is quasi-isomorphic to an L∞-algebra
which has µ1 = 0 (Minimal Model Theorem). For this
algebra, the first equation turns into

∂̄A0,1|0 + 1
2µ2(A0,1|0,A0,1|0) = 0 ,

and by means of the Penrose–Ward transform this will
correspond to maximally supersymmetric Yang–Mills
theory in four dimensions.
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Conclusions and Outlook
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Summary

In general, we have seen that the area of twistor geometry and
categorified principal bundles can be fruitfully combined to
formulate self-dual higher gauge theory in six dimensions.

The advantage of twistor geometry is that the e.o.m. and the
gauge transformations follow directly from complex algebraic
data on twistor space.

Furthermore, we have seen that higher gauge theory enables
us to write down a twistor action principle for maximally
supersymmetric Yang–Mills theory in four dimensions.

Many open questions remain, such as the choice of higher
gauge group, the explicit constructions of higher bundles,
including the dimensional reductions.
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Thank You!
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