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Why now?

Traditionally power systems have mostly been deterministic:

Very large population leads to highly predictable demand.
Conventional power station generation is deterministic.
Main issue was reliability, plant failure or line failure.
Solution is run to a N − 1 standard.

Changes from decarbonisation:

Renewable generation is highly variable
Renewable generation is highly uncertain

Changes from technology:

Smart and Micro grids
Electric Vehicles
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Where do the differences come from?

No control over flows:

There is no control over links used.
Flows obey Kirchoff’s laws.
Only control is generation and demand amounts.

Slow to react:

Conventional generation is slow to change
Takes hours to change output level often
Takes about a day to turn on a plant
Can be done quicker but is more expensive

Supply must always match Demand
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There are natural multiple scales in power systems
problems

Spatial Scales:

Micro grid (small collection
of house/offices)

Distribution Network

Transition Network

Temporal Scales:

Frequency (milliseconds)

Fast responses (seconds)

Balancing (minutes)

Market (hours)

Planning (years)
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Why do we want electricity storage?

Need to balance supply and demand at all times.

Wind power can fluctuate substantially on a short timescale.

Thermal power plants slow to react.

Can either use expensive alternatives.

Alternatively can use electricity storage.

There are many other uses:

Arbitrage

Frequency regulation

Reactive power support

Voltage support

Black start
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Storage Policy



Dinorwig: capacity: 9 GWh rate: 1.8 GW efficiency 0.75–0.80



Storage comes in many forms.

There are many types of storage with different properties:

Pumped storage

Battery Storage

Compressed gas storage

Fuel Cells

Thermal

Fly wheels

As well we can consider dynamic demand as storage:

Control of fridges.

Thermal inertia of buildings.

Washing machines.

Aluminum smelting.
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A simple aggregated model

E

P

E = size of store — capacity constraint

P = max input/output rate — rate constraint

Value of storage when used for arbitrage and ancillary services.

How do parameters effect value?

How do competing stores behave?

‘Optimal control of storage incorporating market impact and with energy applications’,

J.R.Cruise, L.Flatley, R.Gibbens, S.Zachary arXiv:1406.3653



Example: Real prices with Dinorwig parameters

E/P = 5 hrs Efficiency = 0.85 (ratio of sell to buy price).
Solution is bang-bang: red points buy, blue points sell
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Example: Competition example
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Open questions

How do we optimally control multiple stores?

No network.
Connected by a single link.
Embedded in a larger network.

What is the optimal position and size of store?

For maximum profit?
For social welfare?

How do we model storage within distribution networks?

Storage for network reinforcement.
Optimal placement within distribution network.



Electric Vehicle



Electric Vehicle



Electric vehicles are a challenge for distribution networks

Number of vehicles expected to increase.

People want to charge at home and have it available on
demand.

Distribution network operators want to avoid upgrading
infrastructure.

Lack of control would lead to network failure.

This leads to a number of questions:

1 How many cars can we charge?

2 What classes of charging schemes obtain this?

3 What is a fair charging scheme?



Toy model

Consider a small part of the distribution
network, for example a street.

Assume a tree structure to the network.

Model as a rooted tree.

Root is local transformer, power constraint.
Cars connect at other nodes to charge.

Cars arrive as a Poisson process.

Select charging node uniformly at random.

Each car has a random battery level.

Cars leave when fully charged.
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Initial computational study

Since we use a tree network a simplification of Kirchhoff’s laws can
be used to define feasible allocations.

Consider two fairness criteria to allocate resources:

Max-flow
Proportional fairness

Explored two networks, one containing 47 nodes and the other
56 nodes.

Interested in phase transition from under-loaded to
over-loaded.

Also explored time to charge vehicles and associated fairness.

‘Critical behaviour in charging of electric vehicles’, R.Carvalho, L.Buzna, R.Gibbens,

F.Kelly New J. Phys. 17(9)



Open questions

What is the stability region?

How does the network structure effect the stability region?

Are there decentralized algorithms which achieve the stability
region?

What is an appropriate measure of fairness?

(Seems to have natural analogues to flow models for network
traffic)



Alternative Model of Charging

Alternatively swap batteries in and out of vehicles at charging
stations.

Network of charging stations

Arrive at a charging station:

Empty battery removed
Full battery slotted in

Empty batteries charged ready for a different car



Modelling and Open questions

Model as a closed queueing system. Easy to analyse under
Markovian assumptions.

Obtain quality of service metrics,

Use to guide provisioning, number of batteries and rate of
charging.

Open questions:

Incorporate battery degradation.

Integrate in an economic framework.

Large N asymptomatics for generalised model.



What is a cascade failure?

Number of examples:

Northern India 2012
Europe 2006
Italy 2003
London 2003
Northeast America 2003

Single failure leads to
cascade.

Line failure
Relay failure
Generator failure



Open questions for islanding and cascades

Number of open questions:

Can we understand what makes a power network susceptible
to cascade failure?

Can we understand how reinforce a given network to minimize
the probability of a cascade failure?

Related problem is ‘Islanding’

Aim to is isolate a failing resource before it causes a cascade
failure.

Minimize disruption to rest of grid.

Need to be able to identify cut set quickly.

Is there a randomized algorithm to do this?

‘Constrained spectral clustering-based methodology for intentional controlled islanding

of large-scale power systems’, J.Quirós-Tortós, R.Sánchez-Garćıa, J.Brodzki, J.Bialek,

V.Terzija, IET Generation, Transmission & Distribution, 9(1)
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