
Markov chain questions motivated by MCMC I:
Complexity and Optimality

Gareth Roberts

University of Warwick
Durham, July/August 2017

including work mainly with many people ....



Contents

1 Introduction 3

2 Scaling 5

3 The regular Metropolis case 15

4 Metropolis-within-Gibbs 30

5 Discrete distributions 34

6 Eccentricity of target distribution 38

7 Discontinuous target density 51

8 Scaling for Langevin algorithms 53

9 Scaling for the transient period 56

10 Scaling for Simulated Tempering 67

11 Infinite dimensional targets 82



1 Introduction

Metropolis-Hastings algorithm

Given a target density π(·) that we wish to sample from, and a Markov chain
transition kernel density q(·, ·), we construct a Markov chain as follows. Given Xn,
generate Yn+1 from q(Xn, ·). Now set Xn+1 = Yn+1 with probability

α(Xn, Yn+1) = 1 ∧ π(Yn+1)q(Yn+1, Xn)

π(Xn)q(Xn, Yn+1)
.

Otherwise set Xn+1 = Xn.



Two first scaling problems

• RWM
q(x,y) = q(|y − x|)

The acceptance probability simplifies to

α(x,y) = 1 ∧ π(y)

π(x)

For example q ∼MVNd(x, σ
2Id), but also more generally.

• MALA

Y ∼MVN(x(k) +
hV∇ log π(x(k))

2
, hV ) .



2 Scaling
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Scaling problems and diffusion limits

Choosing σ in the above algorithms to optimise efficiency. For ‘appropriate choices’
the d-dimensional algorithm has a limit which is a diffusion. The faster the diffusion
the better!

• How should σd depend on d for large d?

•What does this tell us about the efficiency of the algorithm?

• Can we optimise σd in some sensible way?

• Can we characterise optimal (or close to optimal) values of σd in terms of ob-
servable properties of the Markov chain?

For RWM and MALA (and some other local algorithms such as Hamiltonian Monte
Carlo) and for some simple classes of target distributions, a solution to the above
can be obtained by considering a diffusion limit (for high dimensional problems).



Are lower dimensional updates better?

At each iteration, choose d× cd components at random, and update these compo-
nents according to a Metropolis algorithm which preseves the conditional distribu-
tion of those co-ordinates given the rest. The remaining d(1− cd) components stay
unchanged.

This is not really a generalisation of the Metropolis algorithm, but sometimes called
Metropoplis-within-Gibbs.

How should be jointly choose (cd, σ
2) to optimise the Markov chain?



Simulated tempering

Consider a d-dimensional target density fd(x), and suppose it is possible to construct

MCMC on fd,β = fβd , 0 ≤ χ ≤ β ≤ 1.

Simulated tempering produces a Markov chain on X × B where B denotes a finite
collection of temperatures.

But which temperatures should we choose?

This typically would mix better for small β. However we are interested in fd,1.

Problem: Choose a finite collection of inverse temperatures, B = {βi} such
that we can construct a Markov chain on Rd × B which “optimally” permits the
exploration of fd,1.

This is also a scaling problem: chosing how large to make βi − βi−1 for each i.



What is “efficiency”?

Let X be a Markov chain. Then for a π-integrable function f , efficiency can be
described by

σ2(g, P ) = lim
n→∞

nVar

(∑n
i=1 g(Xi)

n

)
.

Under weak(ish) regularity conditions

σ2(g, P ) = Varπ(g) + 2

∞∑
i=1

Covπ(g(X0), g(Xi))

In general relative efficiency between two possible Markov chains varies depending
on what function of interest g is being considered. As d → ∞ the dependence on
g disappears, at least in cases where we have a diffusion limit as we will see....



How do we measure “efficiency” efficiently?

What is a good way to compare MCMC algorithms, and to identify whether they
can be improved by changing proposal distribution scaling?

Common to resort to monitoring ESJD (as advocated strongly by Andrew Gelman)

ESJD = E((Xt+1 −Xt)
2)

What is the justification for this?

Optimising this is just like considering only linear functions g and ignoring all but
the first term in ∞∑

i=1

Covπ(g(X0), g(Xi))
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MCMC sample paths and diffusions.

Here ESJM is the quadratic variation

lim
ε→0

[tε−1]∑
i=1

(Xiε −X(i−1)ε)
2



Reminicent of diffusion quadratic variation.

It will turn out that in fact many MCMC algorithms in high dimensions can be
well-approximated by diffusion like the Langevin diffusion

dX i
t = σdBt + σ2∇ log π(X i

t)/2, i = 1, 2,

giving us a natural framework to consider optimisation (in this case for σ).



“Efficiency” for diffusions

Consider two Langevin diffusions, both with stationary distribution π.

dX i
t = h

1/2
i dBt + hi∇ log π(X i

t)/2, i = 1, 2,

with h1 < h2.

0 500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Index

th
in

(y
, 5

)

X2 is a “speeded-up” version of X1.



A more powerful diffusion comparison result

R + Rosenthal 2012

Consider two Langevin diffusions, both with stationary distribution π.

dX i
t = hi(X

i
t)
1/2dBt + Vi(X

i
t)dt, i = 1, 2,

with h1(x) ≤ h2(x) for all x. (Here Vi(x) = (hi(x)∇ log π(x) + h′i(x))/2.)

Then X2 dominates X1 in Peskun order sense:

lim
t→∞

tVar

(∫ t
0 g(X1

s )ds

t

)
≥ lim

t→∞
tVar

(∫ t
0 g(X2

s )ds

t

)



3 The regular Metropolis case

The first diffusion comparison result (R Gelman Gilks, 1997)

Consider the Metropolis case.

Theorem 1 Suppose π ∼
∏d

i=1 f (xi), q(x, ·) ∼ N(x, σ2dId), X0 ∼ π.

Set σ2d = `2/d. Consider

Zd
t = X

(1)
[td] . Speed up time by factor d

Zd is not a Markov chain, however in the limit as d goes to ∞, it is Markov:

Zd ⇒ Z

where Z satisfies the SDE,

dZt = h(`)1/2dBt +
h(`)∇ log f (Zt)

2
dt ,

for some function h(`).
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h(`) = `2 × 2Φ

(
−
√
I`

2

)
,

and I = Ef [((log f (X))′)2]. So

h(`) = `2 × A(`) ,

where A(`) is the limiting overall acceptance rate of the algorithm, ie the proportion
of proposed Metropolis moves ultimately accepted. So

h(`) =
4

I

(
Φ−1(A(`))

)2
A(`) ,

and so the maximisation problem can be written entirely in terms of the algorithm’s
acceptance rate.
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When can we ‘solve’ the scaling problem for Metropolis?

We need a sequence of target densities πd which are sufficiently regular as d→∞
in order that meaningful (and optimisable) limiting distributions exist. Eg.

1. π ∼
∏d

i=1 f (xi).(NB for discts f , mixing is O(d2), rate 0.13, (Neal).)

2.
∏d

i=1 f (cixi), q(x, ·) ∼ N(x, σ2dId). for scales ci. (Bedard, Rosenthal, Voss).

3. Elliptically symmetric target densities (Sherlock, Bedard).

4. The components form a homogeneous Markov chain.

5. π is a Gibbs random field with finite range interactions (Breyer).

6. Discretisations of an infinite-dimensional system absolutely cts wrt a Gaussian
measure (eg Pillai, Stuart, Thiery).

7. Purely discrete product form distributions.

8. New methodology based on Dirichlet forms (Zanella, Kendall).



A basic analysis of Metropolis

Write Y(d) = X(d) + h1/2Z(d).

α(X(d),Y(d)) = 1 ∧ β(X(d),Y(d)) = 1 ∧ π
(d)(Y(d))

π(d)(X(d))

Now in the case of product form IID target densities:

log β((X(d), (X(d) + h1/2(Z(d))) =

d∑
i=1

log f (X
(d)
i + h1/2Z

(d)
i )− log f (X

(d)
i )

so components decouple, we can take a Taylor series expansion and as long as certain
moments are finite, we can get a CLT for log β. See later.



What about more generally when π does not take the IID product form case?

log β((X(d), (X(d) +h1/2(Z(d)))

≈ h1/2∇ log π(X(d)) · Z(d) +
1

2
hZ(d)′∇∇′ log π(X(d))Z(d)

β ≈ exp{h1/2G(d)−hV (d)/2}
G is Gaussian and if V (d) converges in probability to a constant V (with h scaling
appropriately with d), then the variance of G is V (as β has to have unit mean.).

In fact that is all we need for the 0.234 framework to hold!



Why?

Suppose now G is a standard Gaussian and ` incorporates scaling choice:

ESJD ≈ `2E
(

1 ∧ exp
{
`V 1/2G− `2V/2

})
= `2 × 2Φ

(
−
√
V `

2

)
= `2A(`)

ESJD =
4

I

(
Φ−1(A(`))

)2
A(`) ,

which is maximised by taking A(`) = 0.234.



Some remarks about the proof

Use generator approach to weak convergence.

First component is not Markov but has Markov limit. Standard approach (Ethier
and Kurtz, 1986) requires that for the approximate generator applied to all functions
in a core for the generator of the limiting process (in our case smooth functions with
bounded support) converges to its appropriate limit in supremum norm.

How to cope with dependence on other d− 1 components?

Let V be a test function (of first component only) and let Gd be the generator
of the continuous time process which makes a Metropolis move at times generated
through a Poisson process of rate d:

GdV (xd) = dE
[

(V (Y1)− V (x1))

{
1 ∧ π(Y)

π(xd)

}]
= dE

[
(V (Y1)− V (x1))E

[{
1 ∧ eBd

}
|Y1
]]
,

where

Bd = log f (Y1)− log f (x1) +

d∑
i=2

(log f (Yi)− log f (xi)).



But the blue term can be approximated by a Taylor expansion, LLN, and CLT
(setting g = log f ):

d∑
i=2

(log f (Yi)− log f (xi)) ≈
d∑
i=2

g′(xi)(Yi − xi) +
1

2
g′′(xi)(Yi − xi)2

≈ N(Hd, Kd)

where

Hd =

∑d
i=2 g

′′(xi)`
2

2d
and

Kd =

∑d
i=2(g

′(xi))
2`2

d
.

For large d, Hd and Kd are close to their respective limits H and K with the simple
identities H = −K/2 and K = I`2.



Now need to use a large deviation bound to show that Hd and Kd are uniformly
close to their limits for a time period which is at least O(d) at least when the chain
is started in stationarity.

Then we can approximate:

GdV (xd) = dE
[
(V (Y1)− V (x1))E

[{
1 ∧ eBd

}
|Y1
]]

≈ dE
[
(V (Y1)− V (x1))E

[{
1 ∧ exp{N(D1 − I`2/2, I`2)}

}
|Y1
]]

where D1 = log f (x1 + d−1/2`Z1)− log f (x1).

Therefore to compute the inner expectation, we need the following calculation. (See,
R Gelman and Gilks (1997)).

Proposition 2 If A ∼ N(µ, σ2), then

E[1 ∧ eA] = Φ(
µ

σ
) + exp(µ +

σ2

2
)Φ(−σ − µ

σ
)

and

E[eA;A < 0] = exp(µ +
σ2

2
)Φ(−σ − µ

σ
).



Now we can perform a Taylor series expansion for the first component.

GdV (xd) ≈ l2

2
V ′′(x1)E[1 ∧ eBd] + l2g′(x1)V

′(x1)E[eBd;Bd < 0]

≈ l2

2
V ′′(x1)

(
2Φ

(
−l
√
I

2

))
+ l2g′(x1)V

′(x1)Φ

(
−l
√
I

2

)
= h(`)

{
1

2
V ′′(x1) +

1

2
g′(x1)V

′(x1)

}
= GV (x1)

which is the generator of the required limiting diffusion.



Complexity

Need to unify limit algorithm theory with Markov chain complexity theory.

Cannot (for instance) use

Td = sup
x∈Rd
{t; ‖P t

d(x, ·)− π‖ < ε}

For any probability measures µ and π, let

‖µ− π‖KR = sup
f∈Lip1

1

(µ(f )− π(f )).

The Kantorovich-Rubinstein metric metricises weak convergence.



The following comes from R+Rosenthal, 2016, JAP.

Theorem 3 Let Xd = {Xd
t }t≥0 be a stochastic process on (X ,F , ρ), for each

d ∈ N, which converges weakly to X∞ = {X∞t }t≥0. Assume these processes all
have the same stationary probability distribution π. Then for any ε > 0, there
are D <∞ and T <∞ such that

EXd
0∼π
‖LXd

0
(Xd

t )− π‖KR < ε , t ≥ T, d ≥ D .

The main point here is that for Markov chains the KR distance from stationarity is
not necessarily non-increasing, but IS INCREASING when integrated with respect
to π.



Can we use this to provide a formal complexity result for RWM?

Theorem 4 Let Xd be a RWM algorithm satisfying technical conditions slightly
stronger than R et al. (1997). Then for any ε > 0, there is D <∞ and T <∞
such that

EXd
0∼π
‖LXd

0
(Xd
bdtc,1)− h‖KR < ε , t ≥ T, d ≥ D .

Hence, the RWM algorithm takes O(d) iterations to converge to within ε of
stationarity in any one coordinate.

Can produce analogous statements for the subsequent diffusion scaling results.



4 Metropolis-within-Gibbs

Metropolis-within-Gibbs

Update cdd components at a time, components picked by random scan at each
iteration.

How should be jointly choose (cd, σ
2) to optimise the Markov chain?

This is a slightly simplified version of the commonly used strategy to update (usually
deterministically) a subset of the d coordinates.

We again turn to the IID target distribution case for a rigorous result.



Theorem 5 Suppose that cd → c, as d → ∞, for some 0 < c ≤ 1. Then, as
d→∞,

Ud ⇒ U,

where U0 is distributed according to f and U satisfies the Langevin SDE

dUt =
√
hc(l)dBt + hc(l)

f ′(Ut)

2f (Ut)
dt

with hc(l) = 2cl2Φ(−l
√
cI
2 ) and I ≡ Ef [(f

′(X)
f(X) )2].

The important part of the theorem is hc(l), the speed of the limiting diffusion. The
aim is to maximise hc(l).

Note that

hc(l) = c× l2 × 2Φ(−l
√
cI

2
).



Corollary 6 Let cd → c as d→∞ for some 0 < c ≤ 1. Then,

(i) limd→∞ a
cd
d (l) = ac(l) = 2Φ(−l

√
cI
2 ).

(ii) Let l̂ be the unique value of l which maximises h1(l) = 2l2Φ(−l
√
I

2 ), and

let l̂c be the unique value of l which maximises hc(l). Then l̂c = c−
1
2 l̂ and

hc(l̂c) = h1(l̂).

(iii) For all 0 < c ≤ 1, the optimal acceptance rate ac(l̂c) = 0.234 (to three
decimal places).

The key consequence of Corollary 6 is that updating any proportion c > 0 of the
components is asymptotically equivalent to full RWM (i.e. c = 1).



Let V be any bounded, continuous, sufficiently differentiable, real valued function.

Let

GV (x) = hc(l){
1

2
V ′′(x) +

1

2
g′(x)V ′(x)},

Then G is the generator of the Langevin SDE described in Theorem 5.

Let V be a function of the first component only and

GdV (xd) = dE[(V (Y)− V (xd)){1 ∧ π(Y)

π(xd)
}].

Then to prove the Theorem 5, it is sufficient to show that

sup
xd∈Fd

|GdV (xd)−GV (x1)| → 0 as d→∞

where dP(F c
d)→ 0 as d→∞.



5 Discrete distributions

Is this just a continuous state space phenomenon?

Recall π(x) = p#0′s(1− p)#1′s.

Fix r and let d go to infinity along coprime (to r) values. Let Sdt = X
[dt]
1 . So Sd

is a continuous time binary process (not Markov) making jumps at times which are
integer multiples of 1/d.

Theorem 7 Assume X0 is distributed according to π. Then as d→∞
Sd ⇒ S

where S is a two state continuous time Markov chain with stationary distri-
bution (p, 1− p). In fact the Q−matrix for S has the following form:

Q = e(r)×
(
−(1− p) 1− p

p −p

)
where with B ∼Binomial(r − 1, p)),

e(r) =
r

1− p
× E

[
1 ∧
(

1− p
p

)2B+2−r
]
.



What happens in the smooth limit?

e(r) = r ×

[
r−1∑
i≥r/2

(
r − 1
i

)
pi−1(1− p)r−2−i

+1
r odd

(
r − 1

(r − 1)/2

)
p(r−1)/2(1− p)(r−3)/2

]
.

The overall acceptance rate of the algorithm is given by

a(p, r) = 2pE

[
1 ∧
(

1− p
p

)2B+2−r
]
.

Set λ = (1/2− p)2r and let p ↑ 1/2 in such a way that λ remains constant,

2B + 2− r ⇒ N(−8λ, 16λ)

and
a(p, λ/(1/2− p)2)→ 2Φ(−2

√
λ) .



Thus for p close to 1/2, we can write

e(r) ≈ 2r × a(p, r)

≈ 2

(1/2− p)2
λ× 2Φ(−2

√
λ) .

The optimal choice of r is thus approximately that achieving acceptance rate 0.234
and the efficiency curve e(·) against a(·) converges to that of the continuous problem.
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6 Eccentricity of target distribution

Targets with heterogenous scaling

Suppose

π(x) =

d∏
i=1

Ci f (Cixi) ,

and q(y) ∼ N(0, Idσ
2
d), with σ2d = `2/d for some ` > 0.

Theorem 8 Consider a random-walk Metropolis algorithm, with target density
of this form, where {Ci} are i.i.d. with E(Ci) = 1, and set b ≡ E(C2

i ) <∞.

Let W d
t = C1X

(1)
[td]. Then as d → ∞, W d

t converges to a limiting diffusion
process Wt satisfying

dWt =
1

2
g′(Wt)(C1s)

2dt + (C1s)dBt ,

where Bt is standard Brownian motion, and where

s2 = 2`2Φ(−`b1/2I1/2/2) =
1

b
× 2(`2b)Φ(−(`2b)1/2I1/2/2) ,

with I = Ef [(g′(X))2].



Hence, the efficiency of the algorithm (when considering functionals of the first
coordinate only), as a function of acceptance rate, is identical to that for i. i. d.

target densities, except multiplied by the global factor of
C2
1
b . In particular, the

optimal acceptance rate is still equal to 0.234. For a fixed function f , the optimal

asymptotic efficiency is proportional to
C2
1
bd .

b (in general defined as E(C2
i )/E(Ci)

2) acts as a term to measure average costs of
heterogeneity
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The convergence time of RWM in a hereogeneous environment, in dimensions 5, 30,
50 and 200. Here the plotting number indicates a particular random collection of
Ci’s.
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(a) A bimodal (mixture of normals) example, with modes separated by 3 sds in
the first component (b) O(d1/2) separation (where diffusion limits exist but are
reducible). In this case, the 0.234 guideline is misleading!



Example: exchangeable MVN

π ∼MVN(0,Σ) where Σii = 1, Σij = ρ > 0, i 6= j. The eigenvalues of Σ are just
1− ρ, d− 1 times and dρ + 1− ρ.

By an orthogonal transformation, we can write π as a collection of d independent
normals with variances equal to the eigenvalues of Σ. Therefore can put in above
framework with C1 = (dρ+1−ρ)−1/2 and Ci = (1−ρ)−1/2 otherwise. The principle
eigenfunction here is x̄ so we’d expect this to coverge in time O(db/C2

1) = O(d2).
Orthogonal functions (to x̄ converge like d).
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The convergence of x̄ for the exchangeable normal example, demonstrating that it
is in fact O(d2).



Picturing RWM in high dimensions

eg consider X ∼ N(0, Id): X′X has mean d and s.d. (2d)1/2, so

O(1)
O(sqrt(d))

Target distribution lies concentrated around the surface of a d-dim hyper-sphere.

Two independent processes, the radial process (1-dimensional), needing to move
O(1)) and the angular one (with a need to move distances O(d1/2)). Which process
converges quickest?



Spherical symmetry (Sherlock and R, 2009, Bernoulli)

Theorem 9 Let {X(d)} be a sequence of d−dimensional spherically symmet-
ric unimodal target distributions and let {Y(d)} be a sequence of jump proposal

distributions. If there exist sequences {k(d)x } and {k(d)y } such that the marginal

radial distribution function of X(d) satisfies |X(d)|/kd
D−→ R where R is a

non-negative random variable with no point mass at 0, |Y(d)|/k(d)y
m.s.−→ 1, and

provided there is a solution to an explicit integral equation involving the dis-
tribution of R, then suppose that αd denotes the optimal acceptance probability
(in the sense of minimising the expected squared jumping distance satisfies

0 < lim
d→∞

αd = α∞ ≤ 0.234

with α∞ = 0.234 if and only if R equals some fixed positive constant with
probability 1. If R does have a point mass at 0, OR the integral condition does

not hold (essentially R has a heavy tailed distribution) then α∞ = 0.



O(1)
O(sqrt(d))

Where the radial component does not converge to a point mass, the target distri-
bution has heterogenous roughness. See also recent work by Kamatani.

Does this happen in other situations?



Eccentricity

Theorem 10 Suppose we can write X(d) = T
−1/2
d Z(d) for matrices {Td} each

having collections of (positive) eigenvalues {ν(d)i ; 1 ≤ i ≤ d}, and where {Z(d)}
be a sequence of d−dimensional spherically symmetric unimodal target distri-
butions and let {Y(d)} be a sequence of jump proposal distributions. If the
conditions of previous theorem hold (on Z(d) rather than Z(d) this time). Sup-
pose that {Td} are not too eccentric:

lim
d→∞

sup1≤i≤d ν
(d)
i∑d

1 ν
(d)
i

= 0 ,

then suppose that αd denotes the optimal acceptance probability (in the sense
of minimising the expected squared jumping distance satisfies

0 < lim
d→∞

αd = α∞ ≤ 0.234

with α∞ = 0.234 if and only if R equals some fixed constant with probability 1.

See also work by Mylene Bedard.



Another example of different speeds

A caricature of MCMC on models with unidentifiable parameters (eg certain inverse
problems).

Consider the target distribution πε : Rdx × Rdy 7→ R:

πε(x, y) = π(x) πε(y|x) =
1

εdy
eA(x)+B(x,y/ε) ,

with ε > 0 being ‘small’. Propose(
x′

y′

)
=

(
x
y

)
+ ` h(ε)

(
Zx
Zy

)
, (1)

for constant ` > 0, scaling factor h(ε) and noise (Zx, Zy)
> ∼ N(0, Idx+dy).

α = α(x, Y, Zx,Zy) = 1 ∧ eA(x′)−A(x)+B(x′,Y ′)−B(x,Y ) (2)

where we have set:
Y = y/ε ; Y ′ = Y + ` h(ε)ε Zy .



Theorem 11 Consider the continuous-time process:

xε,t = xb t/h(ε)2c , t ≥ 0 , (3)

started in stationarity, x̄0 ∼ π(x). Assume that h(ε) → 0 as ε → 0. Then,
as ε → 0, we have that xε,t ⇒ xt with xt the diffusion process specified as the
solution of the stochastic differential equation:

dxt = `2

2

(
a0(xt, `)∇A(xt)dt +∇a0(xt, `)

)
+
√
a0(xt, `)`2 dWt ,

where a0 denotes the acceptance probability of moves around x:

a0(x, `) = 1

(2π)dy/2

∫
Rdy×Rdy

(
1 ∧ eB(x,Y+`Z)−B(x,Y )

)
eB(x,Y )dY dZ . (4)



Optimal scaling for the diverging scales problem

By analysing the form of the acceptance probability a0, we get a surprise!

• If dY = 1, it is optimal to propose jumps of size 0(1), the limiting optimal
algorithmis a continuous time pure jump process. Cost of heterogeneity = ε−1/2.
optimal acceptance probability is 0!

• If dY ≥ 3, the diffusion regime is optimal, cost of heterogeneity is O(ε−1),
optimal acceptance probability can be anything.

• If dy = 2, anything can happen ..



7 Discontinuous target density

Discontinuous target density

Can significantly weaken the smoothness assumptions needed for the original result
(Theorem 1), eg to π is differentiable in Lp mean, (Durmus et. al., 2016). But
smoothness is not completely redundant ..

Suppose π ∼
∏d

i=1 f (xi) is supported on the unit hypercube, with

f (x) = exp(g(x)), 0 < x < 1

where g ∈ C1[0, 1]. We assume that g is suitable differentiable and at least one of
g(0) or g(1) is not 0.

q(x, ·) ∼
∏d

i=1U(xi − σd, xi + σd), X0 ∼ π.

Is there any penalty for the discontinuity?



Theorem 12 Set σ2d = `2/d2. Consider

Zd
t = X

(1)

[td2]
. Speed up time by factor d2

Zd ⇒ Z

where Z satisfies the reflected Langevin SDE on [0, 1],

dZt = h(`)1/2dBt +
h(`)∇ log f (Zt)

2
dt ,

with

h(`) =
2`2

3
exp

(
−f

∗`

2

)
and f ∗ = limx↓0

(
f(x)+f(1−x)

2

)
So algorithm is now O(d2).

Optimal limiting acceptance probability is now 0.13



8 Scaling for Langevin algorithms

Suppose π ∼
∏d

i=1 f (xi), and we assume that f is ‘sufficiently’ smooth.

We consider the MALA proposal given by

Yn+1 ∼ N(Xn +
σ2d
2
∇ log π(Xn), σ2dId). (5)

The scaling σ2d = O(d−1/3) was suggested in the physics literature The following
result is taken from R + Rosenthal, 1998.

Theorem 13 Consider a Metropolis-Hastings chain X0,X1, . . . for a target
distribution having density π, and with MALA proposals as above.

Let σ2d = `2/d1/3 and set

Zd
t = X

(1)

[d1/3t]
,

where X
(1)
n is the first component of Xn. Then, assuming various regularity

conditions on the densities f (described in detail in R + Rosenthal, 1998), as
d→∞, we have the following:



1. Zd converges weakly to the continuous-time process Z satisfying

dZt = g(`)1/2dBt +
g(`)∇ log π(Zt)

2
dt ,

where
g(`) = 2`2Φ(−J`3), (6)

and J is given by

J =

√
E

(
5(log f )′′′(X)2 − 3(log f )′′(X)3

48

)
, (7)

where the expectation is with respect to f .

2. The acceptance rate, a, of the algorithm is given by 2Φ(−J`3), and the
scaling which gives optimal asymptotic efficiency is that having asymptotic
acceptance rate equal to 0.574.

For componentwise Langevin strategies, the conclusion is the opposite of that for
Metropolis: the optimal is to update as many components as possible.

Similar limits exist for other Langevin schemes.

Hamiltonian Monte Carlo has pure jump process limit.



A comparison of MALA to RWM
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9 Scaling for the transient period

Non-stationary initial distribution
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Gaussian example

Set π ∼MVNd(0, Id). Suppose we apply ‘optimally scaled’ RWM.

Consider W d
t = |X[td]|2/d

Theorem 14 When W d
0 = w0 6= 1, then as d → ∞, we have W d ⇒ f , where

f is a deterministic function satisfying f (0) = w0 and

f ′(t) = a`(f (t))

with function a`(·) which can be explicitly calculated.
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Langevin case

Using the ‘optimal’ scaling it gets stuck...

Though using the scaling σ2d = `2/d1/2, we get a similar deterministic limit result.
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Deterministic convergence speed, a`(·), the Langevin case.

These ideas recently generalised significanty by Jourdain, Lelievre and Miasojedow



A Point Process Example

From Møller, Syversveen and Waagepetersen (1998 Sc. J. Stat.) Locations of 126
Scots pine saplings in a Finnish forest

Observed point pattern modelled as a Poisson point process X with intensity

Λ(s) = exp(Y (s)),

where Y (·) = {Y (s) | s ∈ R2} is a Gaussian process with mean E[Y (s)] = µ and
covariance

Cov(Y (s), Y (s′)) = σ2 exp(−‖s− s′‖/β).

The latent Gaussian process is discretised on a 64× 64 regular grid.
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Scotish pine saplings. Left : locations of trees. Right : the estimated intensity
E[Λ(s) | x].



Updating latent Gaussian field requires MALA updates.

Compare the performance of the algorithm for three different starting values. The
starting values expressed in terms of Y (which have to be transformed to starting
values for Γ) are

I : Yi,j = µ for i, j = 1, . . . , 64.

II : a random starting value, simulated from the prior Y ∼ N(µ,Σ).

III : a starting value near the posterior mode. Let Yi,j solve the equation 0 =
xi,j − exp(Yi,j)− (Yi,j − β)/σ2.

In all three cases we use the scaling ˆ̀2/(4096)1/3 = 0.16 where ˆ̀ = 1.6 is derived
using ‘optimal scaling’ criteria.
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Scots pine saplings. Traceplots log(γ | x) when using the scaling 0.16. Left :
starting value I. Middle : starting value II. Right : starting value III.



Now using the scaling ˆ̀2/(4096)1/2 = 0.034. The acceptance rate for all algorithms
was around 95%.
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Scots pine saplings. Traceplots log(γ | x) when using the scaling 0.034. Left :
starting value I. Middle : starting value II. Right : starting value III.



Heavy-tailed proposals

If proposal variance is infinite, all the above theory fails and diffusion limits cannot
exist!
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To fix ideas, consider RWM, and replace independent Gaussian proposals in each
direction by independent Cauchy proposals in each direction.

Evidence from other results that heavy-tailed proposals improve mixing (eg Jarner
and R, 2003, 2006)



Discontinuous targets, heavy-tailed proposals

Suppose π ∼Unif(0, 1)d.

q(x, ·) ∼ Cauchy(x, σ2dId), X0 ∼ π.

Set σ2d = `2/d log d. Consider

Zd
t = X

(1)
[td log(d)] . Speed up time by factor d log d

Zd ⇒ a scaled truncated Cauchy process

with an associated explicit optimal scaling problem.

Here, light-tailed proposals are O(d2) while Cauchy proposals are O(d log d)).



10 Scaling for Simulated Tempering

Simulated tempering

Consider a d-dimensional target density

fd(x) = edK
d∏
i=1

f (xi) ,

for some unnormalised one-dimensional density function f : R → [0,∞), where
K = − log(

∫
f (x)dx).

Consider simulated tempering in d dimensions, with inverse-temperatures chosen as

follows: β
(d)
0 = 1, and β

(d)
i+1 = β

(d)
i −

`(β
(d)
i )

d1/2
for some fixed C1 function ` : [0, 1]→ R.

To stop adding new temperature values, we fix some χ ∈ (0, 1) and keep going until

the inverse temperatures drop below χ, i.e. we stop at temperature β
(d)
k(d) where

k(d) = sup{i : β
(d)
i ≥ χ}.

The optimal temperature spacing problem asks what is the optimal choice of the
function `.



We shall consider a joint process (y
(d)
n , Xn), with Xn ∈ Rd, and with y

(d)
n {β(d)

i ; 0 ≤
i ≤ k(d)} defined as follows.

Choose Xn−1 ∼ fβ, then proposing Zn to be βi+1 or βi−1 with probability 1/2
each, and then accepting Zn with the usual Metropolis acceptance probability. We
assume (unrealistically!) that the chain then immediately jumps to stationary at the
new temperature, i.e. that mixing within a temperature is infinitely more efficient
than mixing between temperatures.

The process (y
(d)
n , Xn) is thus a Markov chain with stationary density

fd(β, x) = edK(β)
d∏
i=1

fβ(xi) ,

where K(β) = − log
∫
fβ(x)dx is the normalising constant.



A diffusion limit for inverse temperature

Theorem 15 {y(d)n } speeded up by a factor of d, converges weakly as d → ∞
to a diffusion limit {Xt}t≥0 satisfying

dXt =

[
2`2Φ

(
−`I1/2

2

)]1/2
dBt

+

[
`(X)`′(X)Φ

(
−I1/2`

2

)
− `2

(
`I1/2

2

)′
ϕ

(
−I1/2`

2

)]
dt ,

for Xt in (χ, 1) with reflecting boundaries at both χ and 1.

Theorem 16 The speed of this diffusion is maximised, and the asymptotic
variance of all L2 functionals is minimised, when the ` is chosen so that the
asymptotic temperature acceptance probability at each and every temperature
is equal to 0.234.



Simulating from high-dimensional multi-modal distributions

Hard even for some relatively small-dimensional problems.

Very hard for moderate to high-dimensional problems.



Simulating from high-dimensional multi-modal distributions



Does it work?

Simulated tempering has been extremely successful on many hard problems, al-
though mostly for relatively low-dimensional distributions.

Woodard, Schmidler and Huber (2009) show negative results to show that conver-
gence times are usually exponential in dimension.

WHY?

To understand consider some simple examples again.



The symmetric mode case:





The non-symmetric case:

The weight in each mode is not (even approximately) stable to powering.



Another example ...

The problem is exacerbated in high-dimensional contexts.



Understanding how simulated tempering moves between modes



WeSt weight-stable tempering

Ordinary tempering
fβ(x) ∝ fβ(x)

WeSt tempering:

fβ(x) ∝ f (x) exp

{
−1− β

2
(∇ log f (x))′(∇2 log f (x))−1∇ log f (x)

}





High-dimensional behaviour

Can show that high-dimensional limit of the algorithm behaves like Walsh Brownian
motion (or just skew-Brownian motion when there are 2 modes).

P2P1

P3



Conclusions

Active area with many directions

• Other algorithms: Hamiltonian Mone Carlo, Delayed Acceptance MCMC, Multiple-
Try MCMC, more sophisticated Langevin schemes, pseudo-marginal MCMC ...

• Relaxing smoothness conditions

• Infinite dimensional algorithms

• Multi-scale limits

• methodology: heterogeneity of proposals, adaptive MCMC ...

• ....

Hopefully I have convinced you that this is an interesting area for probability!



11 Infinite dimensional targets

An important infinite dimensional case

Target distribution π can be expressed as a change of measure from a Gaussian
process on an (infinite-dimensional) Hilbert space H

dπ

dπ0
(x) = exp

(
−Φ(x)

)
, π0 ∼ N (0, C).

This arises naturally in many situations.

Calculations generally involve approximation/truncation to some finite-dimensional
problem.

big advantage to constructing algorithms in H: robustness to the choice of trunca-
tion.



Bayesian density estimation

X is a Gaussian process on Rn with covariance operator C.

Observations: {yi} from density proportional to eX giving rise to log-likelihood
−Φ(X, y).

Prior π0, posterior π.
dπ

dπ0
(X) ∝ exp{−Φ(X, y)}



Discretely observed diffusions

Eg
dXt = dBt + αθ(Xt)dt

observations Y1, . . . Yn where Yi = Xti.

Standard MCMC strategy alternates between updating

• α|X[0,t]; and

• X [0, T ]|Y, θ.

The second step involves simulating from a collection of conditionally independent
densities

dπ

dπ0
(x) ∝ exp

(∫ ti

ti−1

αθ(Xs)dXs −
1

2

∫ ti

ti−1

α2
θ(Xs)ds

)
,

where π0 denotes the Gaussian measure given by the law of a Brownian bridge
conditioned to respect the endpoints prescribed by the data.



Data Assimilation in Fluid Mechanics

• Sample x ∈ H = L2(Ω,R2) initial condition for Navier-Stokes equation:

dX

dt
+ νAX + B(X,X) = f, X(z, 0) = x(z)

• Conditioned on noisy observations y = {zj(tk)} of

yjk = X(zj, t), zj(0) = zj,0 + εjk

• Given prior π0, sample x ∈ L2(Ω,R2) from posterior µ :

dπ

dπ0
(x) ∝ exp

(
−1

2

∣∣Σ−1
2(y − G(x))

∣∣2).



Oil Recovery

• Sample permeability k ∈ H = L2(Ω,R3).

∇z ·
(
k∇zp

)
= 0,

• Conditioned on indirect observations y of p.

• Let k(z) = exp(x(z)) and sample x ∈ L2(Ω,R3) from posterior µ :

dπ

dπ0
(x) ∝ exp

(
−1

2

∣∣Σ−1
2(y − G(x))

∣∣2).



Common Structure

• Change of Measure from Gaussian in H
dπ

dπ0
(x) = exp

(
−Φ(x)

)
, π0 ∼ N (0, C).

• There exist constants M± and k ≥ 0 such that the standard deviations λi in π0
satisfy

M− ≤ ikλi ≤M+.

• Φ satisfies some kind of smoothness/boundedness conditions, frequently ex-
pressed in terms of an appropriate Sobolev norm.



The Karhunen-Loéve expansion

Hilbert spaceH containing X , where X is a Hilbert space on which π0 is supported.
The eigenpairs solve the problem

Cϕi = λ2iϕi, i = 1, 2, . . . .

Let {ξi}∞i=1 denote an IID N (0, λ2i ) and

x =

∞∑
i=1

ξiϕi(x). (8)

This series converges in L2(Ω;H).

Expansion is useful conceptually as well as a guide to algorithm construction.



Improving on Euler-Maruyama

Xt+h −Xt =

∫ t+h

t

V∇ log π(Xs)

2
ds + MVN(O, hV )

so the Euler-Maruyama approximation estimates the integral by its value at the left
hand endpoint.

We introduce the (partially) implicit discretisation, which estimates the drift term
by

(1− θ)
V∇ log π(x(k))

2
+ θ

V∇ log π(x(k+1))

2
θ = 1 is called the fully implicit case, θ = 0 is the explicit or Euler discretisation,
and θ = 0.5 is the Crank-Nicolson approach.



Partially implicit proposals for MCMC

Partially implicit discretisation schemes are widely known and used in deterministic
and stochastic numerical analysis.

Consider implicit proposal on Rd:

g(Y ) = f (X)

where g is one-to-one then Y has density f (g(y))|J(g−1(y))| where J is the appro-
priate Jacobian matrix of partial derivatives of g.

• Need g to be one-to-one;

• need g−1 to be rapidly calculable, if necessary by a stable iterative algorithm.

Well-known in numerical analysis that partially implicit methods can be more stable
than explicit ones.

Casella, R + Stramer (2011, MCAP) studies MCMC methods and their properties
constructed in this way. A general theory is not available.



The Multivariate Gaussian case

π ∼MVN(0,Σ). Can solve the implicit equation to give proposal

Y =

(
I +

hV Σ−1θ

2

)−1(
I − hV Σ−1(1− θ)

2

)
X+

MVN

0,

(
I +

hV Σ−1θ

2

)−1
hV

((
I +

hV Σ−1θ

2

)−1)T


This exactly preserves the invariance of π if and only if θ = 0.5 (Crank-Nicolson).

”Error” is O(h2) for all other θ values in [0, 1].



Optimality in general

• No unique measure of optimality!

• Optimise proposal variance to maximise:

M(d) = E
∥∥∥x(k+1) − x(k)

∥∥∥2
.

• Equivalent to minimising time one correlation.

• Formal justification critically requires diffusion and SPDE limit results.

•Where limiting behaviour is not ‘diffusion-like’, squared jumping distance criteria
are not appropriate.



Optimality in the Gaussian case

(mainly from R + Rosenthal, 2001, Stat Sci)

It seems intuitively clear that the optimal shape for proposals should take V = Σ.
But how bad is it when V and Σ have different shapes?

Let {λi} denote the eigenvalues of Σ−1/2V 1/2, and define

R =

∑d
i=1 λ

6
i/d

(
∑d

i=1 λi/d)6
.

Then R gives an inefficiency factor quantifying how much worse it is to use a shape
V proposal rather than a shape Σ one.



Complexity

Consider simple Gaussian target: π(x) ∝ exp{−
∑d

i=1 x
2
i}, and consider best pos-

sible choice of proposal scaling h.

• Random walk Metropolis “Error” in proposal is O(h) and cost of dimensionality
is O(d).

• (Fully explicit) Langevin “Error” in proposal isO(h2) and cost of dimensionality
is O(d1/3).

• Partially implicit Langevin, θ 6= 0.5 “Error” in proposal is O(h2) and cost of
dimensionality is O(d1/3).

• Crank-Nicolson Langevin, θ = 0.5 No “Error” in proposal, and no cost of di-
mensionality.



Moving away from Gaussian ....

Change of Measure from Gaussian in Rd

π(x) = exp
(
−Φ(x)− 1

2
〈x,Σ−1x〉

)
.

Langevin SDE:

dXt = −V (∇Φ(Xt)− Σ−1Xt)

2
dt + V 1/2dt

A tractable alternative to the pure implicit method is to be implicit only for the
linear part of this SDE:

Y =
−V h∇Φ(x)

2
− V Σ−1h(θY + (1− θ)x)

2



Random walk Metropolis

Consider sampling from
π ∼ N

(
0, C−1

)
Propose a move to

Y = X + N
(
0, hA−1

)
Turns out that for all possible choices of h and A has acceptance probability = 0
for almost all proposed moves.

The same is true for all explicit Langevin schemes, higher order Langevin, Hybrid
Monte Carlo, etc...



Langevin Proposals

• The Langevin SPDE is π0-invariant:

dx

dt
=
A∇ log π0(x)

2
+
√
AdW
dt

,

where dW/dt is space time white noise.

• Here A∗ = A, A > 0.



SPDE proposal

SPDE suggests candidate proposals x −→ y. Suppose we could implement propos-
als and accept-reject mechanisms without error on H. However lessons from finite
dimensions:

• If we use an Euler-Maruyama approximation of SPDE, acceptance probability
is identically 0.

• If we use a partially implicit Euler-Maruyama approximation of SPDE with
θ 6= 1/2 then acceptance probability is identically 0.

• If we use a partially implicit Euler-Maruyama approximation of SPDE with
θ = 1/2, acceptance probability may still be 0 if we do not match up C with A
sufficiently well.



Discretisation

• Optimise over choice of discretisation, A and ∆t.

• It is usually the case that M(d) ∝ ∆topt. (Related to diffusion process limits

of algorithms in high-dimensions).

• Required number of steps is proportional to M(d)−1.

(Recall M(d) = E
∥∥∥x(k+1) − x(k)

∥∥∥2.)



IID Products

π0(x) = Πd
i=1f (xi).

Proposal
y − x

∆t
=
β∇ log π0(x)

2
+

√
1

∆t
ξ, ξ ∼ N (0, I).

Theorem 17 (Roberts et al 97, Roberts/Rosenthal 98)

• β = 0 then M(d) = O(d−1). (Eα = 0.234 . . . ).

• β = 1 then M(d) = O(d−1/3). (Eα = 0.574 . . . ).



Scaled Product

π(x) = π0(x) = Πd
i=1

1

λi
f
(xi
λi

)
.

M− ≤ ikλi ≤M+.

Proposal
y − x

∆t
=
A∇ log π0(x)

2
+

√
A
∆t
ξ, ξ ∼ N (0, I).

Theorem 18 • A = I then M(d) = O(d−(2k+1/3)). (Eα = 0.574 . . . ).

• A = C then M(d) = O(d−1/3). (Eα = 0.574 . . . ).



Change of Measure

π(x) = exp
(
−Φd(x)

)
π0(x) = exp

(
−Φd(x)

)
Πd
i=1

1

λi
f
(xi
λi

)
.

Proposal
y − x

∆t
=
A∇ log π0(x)

2
+

√
A
∆t
ξ, ξ ∼ N (0, I).

Theorem 19 • A = I then M(d) = O(d−(2k+1/3)). (Eα = 0.574 . . . ).

• A = C then M(d) = O(d−1/3). (Eα = 0.574 . . . ).

Change of Measure Does Not Affect Optimality



Change of Measure from Gaussian

π(x) = exp
(
−Φn(x)− 1

2
〈x, C−1x〉

)
.

y − x
∆t

+
A
(
θC−1y + (1− θ)C−1x

)
2

=

√
A
∆t
ξ, ξ ∼ N (0, I).

Theorem 20 • θ 6= 1
2 and A = C then M(d) = O(d−1/3). (Eα = 0.574 . . . ).

• θ = 1
2 and A = I, C then M(n) = O(1). (Eα not identified).

Implicitness Impacts Optimality



Example: Diffusion bridge Sampling

Average acceptance probability in equilibrium for the signal processing problem
(d = 1000).



Comparison between RWM and pCN
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Summary

We have shown that:

• Applications: Measures which have density with respect to a Gaussian arise
naturally in many applications where the solution is a measure on functions.

• Algorithms: Optimised algorithms for the dominating Gaussian measure.

• SPDEs: Langevin SPDEs form natural basis for MCMC propoals.

• Algorithms: Using these SPDEs, MCMC methods can be constructed in
function space.

• Numerical Analysis: Ideas such as steepest descents, preconditioning and
implicitness have crucial impact on complexity of MCMC algorithms, corre-
sponding to the multivariate proposal scaling problem well known in statistical
MCMC.



Ongoing and future things ..

• Priors: More flexible families of priors, eg sieve priors can have theoretical and
algorithmic advantages.

• Applications: are numerous in physics, data assimilation, signal processing
and econometrics. Much needs to be done - hence EQUIP project (led by
Andrew Stuart in Warwick).

• Robustification of algorithms for large datasets. Understanding the interplay
between discrete approximation in the parameter space and size of data set.

•Working with exact algorithms on the Hilbert space using retrospective simula-
tion methods. May be possible, might be computationally efficient ...



Other things going on in scaling

• Most results need smoothness conditions on the target. Need more precise results
on relationship between smoothness and mixing rates (and algorithm limits)
(Durmus, LeCorff, Moulines). (0.13)

• Hamiltonian MCMC (Hybrid Monte Carlo) (0.651), pseudo-marginal MCMC
(0.07).

• Scaling in different ways in different parts of the space more generally.

• Integration into adaptive schemes.

Hopefully I have convinced you that this is an interesting area for probability!



THE END!

Thank you for listening
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