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Convergence of empirical distributions in Kantorovich
metric

Lemma (eg. Fournier & Guillin (2015))

For all d > 3, there is a constant C (d) <∞ with the following
property. Let µ be a probability measure supported in
B0 = (−1, 1]d and let µN be the empirical distribution of a sample
of size N from µ. Then

E(W1(µN , µ)) 6 C (d)N−1/d .

Here, W1 is the Wasserstein–Kantorovich metric, given by

W1(µ, ν) = sup
f ∈F
〈f , µ− ν〉, µ, ν ∈M1(Rd)

where F is the set of all Lipschitz functions on B0 of Lipschitz
constant 1.



Proof

For all ` > 0, there is a set P` of 2`d translates of (−2−`, 2−`]d

which cover B0. Fix L > 0. Given f ∈ F , write

f =
L−1∑
`=0

∑
B∈P`

aB1B + g

where aB0 = 〈f 〉B0 and, for ` > 1 and B ∈ P`,

aB = 〈f 〉B − 〈f 〉π(B).

Here 〈f 〉B is the average of f over B, and π(B) is the unique
element of P`−1 containing B. It suffices to consider the case
f (0) = 1. Then, since f ∈ F , for some constant cd <∞,

|aB | 6 2−`cd , |g(v)| 6 2−Lcd .



Now, by Cauchy–Schwarz,

〈f , µN − µ〉 =
L−1∑
`=0

∑
B∈P`

aB(µN(B)− µ(B))− 〈g , µN − µ〉

6 cd

L−1∑
`=0

2(d−2)`/2

 ∑
B∈P`

(µN(B)− µ(B))2

1/2

+ 2cd2−L

The RHS does not depend on f , so is an upper bound for
W1(µN , µ). Note that var(µN(B)) 6 µ(B)/N. Take expectations
and use Cauchy–Schwarz again to obtain

E(W1(µN , µ)) 6 cd

L−1∑
`=0

2(d−2)`/2N−1/2 + 2cd2−L.

Optimize at L = dd−1 log2 Ne for the claimed estimate.



Recap: Kac’s model for a dilute gas

We denote by S the Boltzmann sphere of velocity distributions,
which is the set of probability measures µ on R3 such that

〈v , µ〉 =

∫
R3

vµ(dv) = 0, 〈|v |2, µ〉 =

∫
R3

|v |2µ(dv) = 1.

This is a convenient state-space for dynamics which preserve the
total momentum and kinetic energy, where we chose the reference
frame to make the average momentum zero and chose the units to
normalize the total kinetic energy.

We denote by SN the subset of S consisting of N-particle
normalized empirical measures

µ =
1

N

N∑
i=1

δvi .
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Kac’s model for a dilute gas

Kac’s model for particle velocities in a dilute gas is the Markov
chain (µNt )t>0 in SN with the following transition rule: for every
pair of velocities v , v∗

• at rate |v − v∗|/N, draw a sphere with poles v , v∗

• choose randomly a new axis, with poles v ′, v ′∗ say

• replace v , v∗ by v ′, v ′∗.



• This is one of a class of random processes proposed by Kac in
1954 as models for the evolution by collisions of particle
velocities in a spatially homogeneous dilute gas.

• The collision rate is proportional to relative speed |v − v∗| as
might be expected physically.

• Note that v ′ + v ′∗ = v + v∗ and write v ′ − v ′∗ = σ|v − v∗|.

• The transition (v , v∗)→ (v ′, v ′∗) models an elastic collision

|v |2 + |v∗|2 =
|v + v∗|2 + |v − v∗|2

2
= |v ′|2 + |v ′∗|2.

• The simple rule to choose the direction of v ′ − v ′∗ uniformly at
random, corresponds (in 3 dimensions) to a model for
collisions between spherical particles – by an elementary
geometric calculation.
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• Kac’s purpose was to shed light on the Boltzmann equation
which, at least formally, should govern the behaviour of his
process in the limit N →∞.

• McKean (1966) and Tanaka (1978, 1983) proved results on
other versions of Kac’s model.

• Sznitman (1984) proved weak convergence in probability for
hard spheres to solutions of Boltzmann’s equation –
formulated as convergence in distribution and asymptotic
independence of particles.

• Mischler and Mouhot (2013) have established quantitative
versions of Sznitman’s result (and much more) with good
long-time properties.

• I will describe a new approach to the question of convergence,
following the approach of Markov chain fluid limits, which
leads to an explicit pathwise estimate in Wasserstein distance.
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We seek a fluid limit with coordinate map x(µ) = µ. Then β = b,
where

〈f , b(µ)〉 = lim
t→0

E(〈f , µNt − µN0 〉|µN0 = µ)/t

=

∫
R3×R3×S2

{f (v ′) + f (v ′∗)− f (v)− f (v∗)}|v − v∗|µ(dv)µ(dv∗)dσ.

Here dσ is the uniform distribution on S2 and

v ′ + v ′∗ = v + v∗, v ′ − v ′∗ = σ|v − v∗|.

For large N, it is natural to guess that µNt is close to the solution
of the spatially homogeneous Boltzmann equation

µ̇t = b(µt)

with the same initial data.



Boltzmann’s equation

Recall, for µ ∈ S, we define a signed measure b(µ) on R3 by

〈f , b(µ)〉

=

∫
R3×R3×S2

{f (v ′) + f (v ′∗)− f (v)− f (v∗)}|v − v∗|µ(dv)µ(dv∗)dσ.

A process (µt)t>0 in S is a (measure) solution to the spatially
homogeneous Boltzmann equation if, for all bounded measurable
functions f of compact support in R3 and all t > 0,

〈f , µt〉 = 〈f , µ0〉+

∫ t

0
〈f , b(µs)〉ds.

Lu and Mouhot (2012) have shown that, for all µ0 ∈ S there is a
unique solution (µt)t>0 starting from µ0.
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Weighted Wasserstein distance

For functions f on R3 we will write ‖f ‖ for the smallest constant
such that, for all v , v ′,

|f̂ (v)| 6 ‖f ‖, |f̂ (v)− f̂ (v ′)| 6 ‖f ‖|v − v ′|.

where f̂ (v) = f (v)/(1 + |v |2).

We will use on S the distance function

W (µ, ν) = sup
‖f ‖=1

〈f , µ− ν〉.

This is a type of weighted Wasserstein-1 distance well adapted to
the Boltzmann sphere.
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Theorem (N. (2016))

For all
ε > 0, λ <∞, p > 8, T <∞

there is a constant C <∞ with the following property.

Let (µNt )t>0 be a Kac process in SN and let (µt)t>0 be a solution
to the spatially homogeneous Boltzmann equation.

Assume that
〈|v |p, µ0〉 6 λ, 〈|v |p, µN0 〉 6 λ.

Then, with probability exceeding 1− ε, for all t ∈ [0,T ], we have

W (µNt , µt) 6 C (W (µN0 , µ0) + N−1/3).

A similar estimate holds for all p > 2 but we have to replace the
optimal 1/3 by some α(p) > 0. For τ > 0, a similar estimate holds
without moment restriction, and with power 1/3, for t ∈ [τ,T ] if
we replace W (µN0 , µ0) by W (µNτ , µτ ).
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Ideas from the proof

Recall that, for bounded functions f of compact support,

〈f , µt〉 = 〈f , µ0〉+

∫ t

0
〈f , b(µs)〉ds

while

〈f , µNt 〉 = 〈f , µN0 〉+ M f
t +

∫ t

0
〈f , b(µNs )〉ds.

Subtract to obtain a linear equation for µNt − µt

〈f , µNt − µt〉 = 〈f , µN0 − µ0〉+ M f
t + 2

∫ t

0
〈f , b(ρs , µ

N
s − µs)〉ds.

where ρt = (µNt + µt)/2 and we have written b also for the bilinear
form associated to the quadratic form b.
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We can write

M f
t =

∫
(0,t]×R3

f (v)M(ds, dv)

for a certain Poisson-type martingale measure M.

Then, we will show, for s ∈ [0, t], there is a way to propagate
ft = f linearly back from t to s to obtain fs so that

〈ft , µNt − µt〉 = 〈f0, µN0 − µ0〉+

∫
(0,t]×R3

fs(v)M(ds, dv).

It remains to estimate the right-hand side uniformly over ‖f ‖ = 1.



Linearized Kac process – propagation of errors

We set up an auxiliary branching process of positive and negative
particles in R3 which provides a stochastic realization of the
linearized Boltzmann equation, linearized around (ρt)t>0.

This can be thought of as the difference of two Kac processes,
maximally coupled, which differ by a single particle of a given
velocity v , introduced at a given time s.

The branching rule is that each positive particle v , at rate

2|v − v∗|ρt(dv∗)dσdt,

dies and is replaced by two positive particles v ′ = v ′(v , v∗, σ) and
v ′∗ = v ′∗(v , v∗, σ) and one negative particle v∗, and a similar rule
holds for negative particles.
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Write Λ±t for the un-normalized empirical measures of ± particles
at time t. Fix t > 0 and a function ft on R3. Define for s ∈ [0, t]

fs(v) = E(s,v)〈ft ,Λ+
t − Λ−t 〉.

Then we can show
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Lemma
For all functions ft on R3, the function

fs(v) = E(s,v)〈ft ,Λ+
t − Λ−t 〉

satisfies, for all s, s ′ 6 t and all v ∈ R3,

‖fs‖ 6 C (T )‖ft‖, |fs(v)− fs′(v)| 6 C (T )(1 + |v |3)|s − s ′|‖ft‖.

Here

C (T ) = 6(T + 1)e4Tm3(T ), m3(T ) = sup
t6T
〈1 + |v |3, µt + µNt 〉.

This allows us to estimate the first term when ‖ft‖ 6 1

〈f0, µN0 − µ0〉 6 C (T )W (µN0 , µ0), t 6 T .
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Then we show for the second term an estimate valid with high
probability of the form∫

(0,t]×R3

fs(v)M(ds, dv) 6 CN−1/3, t 6 T .

The integrand is given by

fs(v) = E(s,v)〈ft ,Λ+
t − Λ−t 〉

so depends implicitly on t and is not adapted in the filtration of M.

The estimate is uniform in t 6 T and in ‖ft‖ 6 1.

Obtained by multiple use of the hierarchical type of estimation
used for sample means – compare

〈f , µN − µ〉 and

∫
(0,t]×R3

fs(v)M(ds, dv).
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Thus we can go from

〈ft , µNt − µt〉 = 〈f0, µN0 − µ0〉+

∫
(0,t]×R3

fs(v)M(ds, dv)

to
W (µNt , µt) 6 C (W (µN0 , µ0) + N−1/3)

with high probability.



Future directions

• Laws of large numbers for function-valued and measure-valued
Markov processes

• Generic discrete-to-continuous problem away from criticality,
away from equilibrium

• First level and prerequisite for analysis of fluctuations
• Limit dynamics ẋt = b(xt) as PDE or more general evolution

equation


