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Markov chains

Consider a discrete-time Markov chain X = (Xn)n>0 with
state-space E and transition kernel p.

Thus, for x ∈ E and B ⊆ E ,

p(x ,B) = P(Xn+1 ∈ B|Xn = x).

To be precise, our probability space (Ω,F ,P) will come with a
filtration (Fn)n>0, and the state-space has a σ-algebra E , such
that

• p is a measurable probability kernel on (E , E)

• X is (Fn)n>0-adapted

• P(Xn+1 ∈ B|Fn) = p(Xn,B) a.s.



Markov chains

Sometimes instead X will be a continuous-time Markov chain with
transition kernel q.

Write q(x ,B) = q(x)π(x ,B) with π(x ,E ) = 1.

Then X = (Xt)t>0 is a continuous-time process, which runs
through the values of a discrete-time Markov chain with transition
kernel π, spending an independent exponential time of parameter
q(x) on each visit to x .

Precisely, in this case, there will be a continuous-time filtration
(Ft)t>0 and

• q is a finite measurable kernel on (E , E)

• X is cadlag and (Ft)t>0-adapted

• P(J1(t) > t + s and XJ1(t) ∈ B|Ft) = e−q(Xt)sπ(Xt ,B) a.s.,
where J1(t) is the time of the first jump by X after time t.



Fluid limits

When and how can we show that X is close to the solution (xt)t>0

of a differential equation ẋt = b(xt)?

In the discrete-time case, we will need to embed the discrete
time-scale as εZ+ with ε small.

We will work for now in continuous time, where this time-rescaling
can be absorbed into the jump rate q(x).



Fluid limits

Let (ξt)t>0 be a Markov chain in E with transition kernel q.

Choose a vector space V and a coordinate map x : E → V .

Set Xt = x(ξt) and consider the drift β : E → V given by

β(ξ) = lim
t→0

E(Xt − X0|ξ0 = ξ)/t =

∫
E
{x(η)− x(ξ)}q(ξ, dη).

Choose b so that b(x(ξ)) = β(ξ) and solve ẋt = b(xt). Thus

b(x0) = lim
t→0

(xt − x0)/t.

We may hope that (Xt)t>0 is close to (xt)t>0.

Why try this? Why might this work?
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Why try this?

• Continuum limits
• we justify the use of continuum equations to describe what

begins as a particle model.

• Computation
• in low dimension, numerical solution of the differential

equation may be faster and more accurate,
• in high dimension, numerical solution of the Markov chain may

be faster and more accurate.

• Consistency
• we identify effects which are independent of population size,
• can then compute using N particles to predict outcomes for a

population of size N ′ � N.



When will it work?

• Need jumps to be rapid and small
• the instantaneous variance α should be small, where

α(ξ) = lim
t→0

E(|Xt −X0|2|ξ0 = ξ)/t =

∫
E

|x(η)− x(ξ)|2q(ξ, dη)

• typically we are modelling averages over a large population, of
size N say, so

jump size ∼ O(1/N), rate ∼ N

giving
β(ξ) ∼ O(1), α(ξ) ∼ O(1/N).



When will it work?

• If the coordinate map x : E → V is not one-to-one, we may
not be able to achieve exactly

b(x(ξ)) = β(ξ) =

∫
E
{x(η)− x(ξ)}q(ξ, dη).

• In the presence of fast variables in the Markov chain, b will
oscillate wildly unless x is well chosen.

• The limit dynamics (xt)t>0 may be infinite-dimensional
• then care is needed to understand the linearized equation

ẏt = ∇b(xt)yt .

• The limits N →∞ and t →∞ often do not commute
• but I will explain an interpolation method which sometimes

allows to exploit stability of the limit dynamics to obtain good
long-time estimates.



Example: rock, paper, scissors

A population of N children mix rapidly in a playground.

At rate 1/N, each of the N(N − 1) pairs of children meet and play
rock, paper, scissors.

After each game, both children adopt the strategy of the winner.

The number of children playing each strategy thus evolves as a
Markov chain (Rt ,Pt , St)t>0 with non-zero transition rates such as

q(r , p, s; r + 1, p, s − 1) =
rs

N
.

The choice of coordinate map x(ξ) = ξ/N then gives drift vector

β(ξ) = b(x(ξ)), b(r , p, s) = (r(s − p), p(r − s), s(p − r)).

Exercise: show that rtptst = const. but RtPtSt → 0 a.s.



Example: join-the-shorter-queue with memory

Mitzenmacher, Prabakhar & Shah (2002), M. Luczak & N (2013)

Customers arrive at a system of N queues as a Poisson process of
rate Nλ, where λ < 1. The service requirement of each customer
is exponentially distributed of mean 1. At all times, one of the
queues, called the memory queue, is kept under observation.

On arrival, each customer selects a queue at random and compares
its length with the memory queue. The customer joins the memory
queue if that is shorter, and otherwise joins the selected queue. If
the selected queue remains shorter than the memory queue after
the customer has joined, then that becomes the memory queue.

This use of memory turns out to reduce markedly the numbers of
longer queues, of length at least k say, from Nλk (without

memory) to Nak , where ak 6 e−e
2k

for k sufficiently large.



Example: join-the-shorter-queue with memory

To see this is true with high probability as N →∞, we can do a
fluid limit for the Markov chain ξt = (Zt ,Yt), where

Zt = (Z k
t : k ∈ N),

Z k
t = proportion of queues of length > k,

Yt = length of memory queue.

Try as coordinate map x(z , y) = z . Then (exercise)

βk(z , y) = λzk−11{y>k−1} − λzk1{y>k} − (zk − zk+1).

This looks unpromising because of the strong dependence of
β(z , y) on the uncontrolled fast variable y .

I will explain a general procedure to deal with this problem.



Example: Kac’s model for a dilute gas

Write S for the set of probability measures µ on R3 such that

〈v , µ〉 =

∫
R3

vµ(dv) = 0, 〈|v |2, µ〉 =

∫
R3

|v |2µ(dv) = 1.

This is the Boltzmann sphere of velocity distributions, where the
reference frame is chosen to make the average momentum zero
and units are chosen to normalize the total kinetic energy.

Write SN for the subset of S consisting of N-particle normalized
empirical measures

µ =
1

N

N∑
i=1

δvi .
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Kac’s model for particle velocities in a dilute gas is the Markov
chain (µNt )t>0 in SN with the following transition rule: for every
pair of velocities v , v∗

• at rate |v − v∗|/N, draw a sphere with poles v , v∗

• choose randomly a new axis, with poles v ′, v ′∗ say

• replace v , v∗ by v ′, v ′∗.



Example: Kac’s model for a dilute gas

For the fluid limit, we will take x(µ) = µ. Then β = b, where

〈f , b(µ)〉 = lim
t→0

E(〈f , µNt − µN0 〉|µN0 = µ)/t

=

∫
R3×R3×S2

{f (v ′) + f (v ′∗)− f (v)− f (v∗)}|v − v∗|µ(dv)µ(dv∗)dσ.

Here dσ is the uniform distribution on S2 and

v ′ + v ′∗ = v + v∗, v ′ − v ′∗ = σ|v − v∗|.

For large N, it is natural to guess that µNt is close to the solution of

µ̇t = b(µt)

with the same initial data. This is the spatially homogeneous
Boltzmann equation.



Next lecture

• Martingales

• Martingale inequalities

• Gronwall

• Localization

• Long-time estimates for stable flows

• Averaging over fast variables


