Fluid limits for Markov chains II

James Norris

Durham Symposium on Markov Processes, Mixing Times and Cutoff 2017

Outline

- Martingales
- Martingale inequalities
- Gronwall
- Localization
- Long-time estimates for stable flows
- Averaging over fast variables

Recap

$\left(\xi_{t}\right)_{t \geqslant 0}$ Markov chain in $E, \quad x: E \rightarrow V, \quad X_{t}=x\left(\xi_{t}\right)$

$$
\begin{aligned}
& \beta(\xi)=\lim _{t \rightarrow 0} t^{-1} \mathbb{E}\left(x\left(\xi_{t}\right)-x\left(\xi_{0}\right) \mid \xi_{0}=\xi\right)=\int_{E}\{x(\eta)-x(\xi)\} q(\xi, d \eta) \\
& \alpha(\xi)=\lim _{t \rightarrow 0} t^{-1} \mathbb{E}\left(\left|x\left(\xi_{t}\right)-x\left(\xi_{0}\right)\right|^{2} \mid \xi_{0}=\xi\right)=\int_{E}|x(\eta)-x(\xi)|^{2} q(\xi, d \eta)
\end{aligned}
$$

We look for conditions under which X_{t} is close to the solution of the differential equation $\dot{x}_{t}=b\left(x_{t}\right)$ with high probability.

We will assume that the transition kernel q is bounded.
We assume for now that V has an inner product. We used this in defining α.

Martingales

For any bounded measurable function $f: E \rightarrow \mathbb{R}$, the following processes are martingales

$$
M_{t}=f\left(\xi_{t}\right)-f\left(\xi_{0}\right)-\int_{0}^{t} Q f\left(\xi_{s}\right) d s, \quad N_{t}=M_{t}^{2}-\int_{0}^{t} \mathcal{E}(f)\left(\xi_{s}\right) d s
$$

where

$$
Q f(\xi)=\int_{E}\{f(\eta)-f(\xi)\} q(\xi, d \eta), \mathcal{E}(f)(\xi)=\int_{E}|f(\eta)-f(\xi)|^{2} q(\xi, d \eta)
$$

Write $x=\left(x_{i}\right)$ in some orthonormal basis of E. Then

$$
\beta=Q x, \quad \alpha=\sum_{i} \alpha_{i}, \quad \text { where } \quad \alpha_{i}=\mathcal{E}\left(x_{i}\right)
$$

so the following processes are martingales

$$
M_{t}=X_{t}-X_{0}-\int_{0}^{t} \beta\left(\xi_{s}\right) d s, \quad N_{t}=\left|M_{t}\right|^{2}-\int_{0}^{t} \alpha\left(\xi_{s}\right) d s
$$

Martingale inequalities

If the diffusivity α is small, then so is the martingale M.

- Doob's L^{2} inequality

For all stopping times T,

$$
\mathbb{E}\left(\sup _{t \leqslant T}\left|M_{t}\right|^{2}\right) \leqslant 4 \mathbb{E} \int_{0}^{T} \alpha\left(\xi_{s}\right) d s
$$

- Exponential martingale inequality

Assume that the jumps of the i th coordinate process are bounded uniformly by Δ_{i}. Then, for all i, all stopping times T and all $\delta, \tau \in(0, \infty)$,

$$
\mathbb{P}\left(\sup _{t \leqslant T}\left|M_{t}^{i}\right|>\delta \text { and } \int_{0}^{T} \alpha_{i}\left(\xi_{s}\right) d s \leqslant \tau\right) \leqslant 2 e^{-\delta^{2} /(2 A \tau)}
$$

where $A \in[1, \infty)$ is given by $A \log A=\delta \Delta_{i} / \tau$.

Gronwall

Subtract the equations

$$
X_{t}=X_{0}+M_{t}+\int_{0}^{t} \beta\left(\xi_{s}\right) d s, \quad x_{t}=x_{0}+\int_{0}^{t} b\left(x_{s}\right) d s
$$

to obtain

$$
\left|X_{t}-x_{t}\right| \leqslant\left|X_{0}-x_{0}\right|+\left|M_{t}\right|+\left|\int_{0}^{t}\left(\beta\left(\xi_{s}\right)-b\left(x_{s}\right)\right) d s\right| .
$$

Fix $T \geqslant 0$ and $\delta>0$. Set $\varepsilon=e^{-K T} \delta / 3$ where K is a Lipschitz constant for b. Consider the events $\Omega_{0}=\left\{\left|X_{0}-x_{0}\right| \leqslant \varepsilon\right\}$,

$$
\Omega_{1}=\left\{\int_{0}^{T}\left|\beta\left(\xi_{t}\right)-b\left(X_{t}\right)\right| d t \leqslant \varepsilon\right\}, \quad \Omega_{2}=\left\{\sup _{t \leqslant T}\left|M_{t}\right| \leqslant \varepsilon\right\} .
$$

On $\Omega_{0} \cap \Omega_{1} \cap \Omega_{2}$, we have, for all $t \leqslant T$,

$$
\left|X_{t}-x_{t}\right| \leqslant 3 \varepsilon+K \int_{0}^{t}\left|X_{s}-x_{s}\right| d s
$$

so $\left|X_{t}-x_{t}\right| \leqslant \delta$ by Gronwall's lemma.

Localization

The tube argument allows to localize these estimates.
Assume that $\left(x_{t}: t \in\left[0, t_{0}\right]\right)$ is continuous, with

$$
x_{t}=x_{0}+\int_{0}^{t} b\left(x_{s}\right) d s, \quad t \in\left[0, t_{0}\right]
$$

Fix an open set U containing every point at distance at most δ from $\left\{x_{t}: t \in\left[0, t_{0}\right]\right\}$. Assume only that $|\nabla b| \leqslant K$ in U.

In the Gronwall argument, take

$$
T=\inf \left\{t \geqslant 0:\left|X_{t}-x_{t}\right| \notin U\right\} \wedge t_{0}
$$

to see that, on $\Omega_{0} \cap \Omega_{1} \cap \Omega_{2}$,

$$
\sup _{t \leqslant T}\left|X_{t}-x_{t}\right| \leqslant \delta
$$

In particular $X_{T} \in U$, so $T=t_{0}$. So, on the same event,

$$
\sup _{t \leqslant t_{0}}\left|X_{t}-x_{t}\right| \leqslant \delta
$$

Long-time estimates for stable flows

Recall
$\left(\xi_{t}\right)_{t \geqslant 0}$ is a Markov chain in $E, \quad x: E \rightarrow V, \quad X_{t}=x\left(\xi_{t}\right)$
$\beta(\xi)=\lim _{t \rightarrow 0} t^{-1} \mathbb{E}\left(x\left(\xi_{t}\right)-x\left(\xi_{0}\right) \mid \xi_{0}=\xi\right)=\int_{E}(x(\eta)-x(\xi)) q(\xi, d \eta)$.
We look for conditions under which X_{t} is close to the solution of the differential equation $\dot{x}_{t}=b\left(x_{t}\right)$ with high probability.

Take $E=V=\mathbb{R}^{d}$ and $b=\beta$ and $X_{0}=x_{0}$. Here we will suppose that the associated flow of diffeomorphisms

$$
\dot{\phi}_{t}(x)=b\left(\phi_{t}(x)\right), \quad \phi_{0}(x)=x
$$

has the following stability properties: for some $\lambda>0$ and $B<\infty$,

$$
\left|\nabla \phi_{t}(x) y\right| \leqslant e^{-\lambda t}|y|, \quad\left|\nabla^{2} \phi_{t}(x)(y, y)\right| \leqslant B e^{-\lambda t}|y|^{2} .
$$

This forces b to have a stable fixed point. Something close to $b(x)=A x$ with $\langle A x, x\rangle \leqslant-\lambda|x|^{2}$ will work.

Long-time estimates for stable flows

We interpolate from x_{T} to X_{T} using $\left(\phi_{T-t}\left(X_{t}\right): t \in[0, T]\right)$.
The following process is a martingale

$$
M_{t}=\phi_{T-t}\left(X_{t}\right)-\phi_{T}\left(X_{0}\right)-\int_{0}^{t} \rho\left(T-s, X_{s}\right) d s
$$

where

$$
\rho(s, x)=\int_{E}\left\{\phi_{s}(y)-\phi_{s}(x)-\nabla \phi_{s}(x)(y-x)\right\} q(x, d y)
$$

Moreover

$$
\mathbb{E}\left(\left|M_{t}\right|^{2}\right)=\int_{0}^{t} \sigma\left(T-s, X_{s}\right) d s
$$

where

$$
\sigma(s, x)=\int_{E}\left\{\phi_{s}(y)-\phi_{s}(x)\right\}^{2} q(x, d y)
$$

Long-time estimates for stable flows

Now

$$
X_{T}-\phi_{T}\left(x_{0}\right)=M_{T}+\int_{0}^{T} \rho\left(T-t, X_{t}\right) d t
$$

and from our stability assumptions

$$
\sigma(s, x) \leqslant e^{-2 \lambda s} \alpha(x), \quad|\rho(s, x)| \leqslant B e^{-\lambda s} \alpha(x) / 2
$$

so

$$
\mathbb{E}\left(\left|M_{T}\right|^{2}\right) \leqslant\|\alpha\|_{\infty} \int_{0}^{T} e^{-2 \lambda(T-s)} d s \leqslant \frac{\|\alpha\|_{\infty}}{2 \lambda}
$$

and

$$
\left|\int_{0}^{T} \rho\left(T-s, X_{s}\right) d s\right| \leqslant \frac{B\|\alpha\|_{\infty}}{2 \lambda} .
$$

So we get a uniform-in-time estimate

$$
\left\|X_{T}-\phi_{T}\left(x_{0}\right)\right\|_{2} \leqslant \sqrt{\frac{\|\alpha\|_{\infty}}{2 \lambda}}+\frac{B\|\alpha\|_{\infty}}{2 \lambda} .
$$

Averaging over fast variables (joint with M. Luczak)

Recall join-the-shorter-queue with memory:

- N queues, each serves at rate 1
- customers arrive at rate $N \lambda$ for some $\lambda<1$
- choose a queue at random and compare with memory queue
- join the shorter queue and update the memory

$$
\begin{aligned}
Z_{t}^{k} & =\text { proportion of queues of length at least } k \\
Y_{t} & =\text { length of memory queue. }
\end{aligned}
$$

Use fluid coordinate map $x(z, y)=z$. The drift of Z^{k} is

$$
\beta_{k}(z, y)=\lambda z_{k-1} 1_{\{y \geqslant k-1\}}-\lambda z_{k} 1_{\{y \geqslant k\}}-\left(z_{k}-z_{k+1}\right) .
$$

Averaging over fast variables

In general, for a Markov chain $\left(\xi_{t}\right)_{t \geqslant 0}$ in E, we may distinguish between fluid and fast coordinates

$$
x: E \rightarrow V, \quad y: E \rightarrow I
$$

and consider the drift and the local transition rates

$$
\begin{aligned}
\beta(\xi) & =\int_{E}\{x(\eta)-x(\xi)\} q(\xi, d \eta) \\
\gamma\left(\xi, y^{\prime}\right) & =q\left(\xi,\left\{\eta \in E: y(\eta)=y^{\prime}\right\}\right)
\end{aligned}
$$

Let us suppose that

$$
\beta(\xi)=b(x(\xi), y(\xi)), \quad \gamma\left(\xi, y^{\prime}\right)=g_{x(\xi)}\left(y(\xi), y^{\prime}\right)
$$

where $G_{x}=\left(g_{x}\left(y, y^{\prime}\right)\right)_{y, y^{\prime} \in I}$ is the generator of a Markov chain.

Averaging over fast variables

We may guess that the fluid coordinates behave approximately as

$$
\dot{x}_{t}=\bar{b}\left(x_{t}\right)
$$

where \bar{b} is the effective drift

$$
b(x)=\sum_{y} b(x, y) \pi_{x}(y)
$$

with π_{x} the invariant distribution of G_{x}.

- How to build this into quantitative estimates?
- When does it work?

Averaging over fast variables

Fix a reference state $\bar{y} \in I$ and consider the function

$$
\chi(x, y)=\mathbb{E} \int_{0}^{T}\left\{b\left(x, y_{t}\right)-b\left(x, \bar{y}_{t}\right)\right\} d t
$$

where

- $T=\inf \left\{t \geqslant 0: y_{t}=\bar{y}_{t}\right\}$
- $\left(y_{t}\right)_{t \geqslant 0}$ and $\left(\bar{y}_{t}\right)_{t \geqslant 0}$ have generator G_{x} with $y_{0}=y, \bar{y}_{0}=\bar{y}$.

Assume we can couple $\left(y_{t}\right)_{t \geqslant 0}$ and $\left(\bar{y}_{t}\right)_{t \geqslant 0}$ so that

$$
\sup _{x \in V, y \in I} \mathbb{E}_{(x, y)}(T) \leqslant \tau
$$

Then $|\chi(x, y)| \leqslant \tau\|b\|_{\infty}$ and

$$
G \chi(x, y)=\sum_{y^{\prime} \in I} g_{x}\left(y, y^{\prime}\right) \chi\left(x, y^{\prime}\right)=b(x, y)-\bar{b}(x)
$$

The notion that $Y_{t}=y\left(\xi_{t}\right)$ converges fast to equilibrium is quantified in treating τ as small.

Averaging over fast variables

We make a small correction to the fluid variable

$$
\bar{x}(\xi)=x(\xi)-\chi(x(\xi), y(\xi)), \quad \bar{X}_{t}=\bar{x}\left(\xi_{t}\right)
$$

Then

$$
\bar{X}_{t}=\bar{X}_{0}+M_{t}+\int_{0}^{t} \bar{b}\left(\bar{X}_{s}\right) d s+\Delta_{t}
$$

where

$$
\Delta_{t}=\int_{0}^{t} \int_{E}\left\{\chi(x(\eta), y(\eta))-\chi\left(x\left(\xi_{s}\right), y(\eta)\right\} q\left(\xi_{s}, d \eta\right) d s\right.
$$

We can make hypotheses so that M is small (as above) and also Δ. Then the Gronwall argument gives an estimate on the deviation from x_{t} of \bar{X}_{t} and hence of X_{t}.

