Omnithermal perfect simulation
 for multi-server queues

Stephen Connor
stephen.connor@york.ac.uk

University of Work

LMS-EPSRC Durham Symposium
July-August 2017

Dominated CFTP in a nutshell

Suppose that we're interested in simulating from the equilibrium distribution of some ergodic Markov chain X.

Think of a (hypothetical) version of the chain, \tilde{X}, which was started by your (presumably distant) ancestor from some state x at time $-\infty$:

- at time zero this chain is in equilibrium: $\tilde{X}_{0} \sim \pi$;
- dominated CFTP (domCFTP) tries to determine the value of \tilde{X}_{0} by looking into the past only a finite number of steps;
- do this by identifying a time in the past such that all earlier starts from x lead to the same result at time zero.

domCFTP: basic ingredients

- dominating process Y
- draw from equilibrium π_{Y}
- simulate backwards in time

domCFTP: basic ingredients

- dominating process Y
- draw from equilibrium π_{Y}
- simulate backwards in time
- sandwiching

$$
\text { Lower }_{\text {late }} \preccurlyeq \text { Lower }_{\text {early }} \preccurlyeq \ldots \preccurlyeq \text { Target } \preccurlyeq \ldots \preccurlyeq \text { Upper }_{\text {early }} \preccurlyeq \text { Upper }_{\text {late }}
$$

domCFTP: basic ingredients

- dominating process Y
- draw from equilibrium π_{Y}
- simulate backwards in time
- sandwiching

$$
\text { Lower }_{\text {late }} \preccurlyeq \text { Lower }_{\text {early }} \preccurlyeq \ldots \preccurlyeq \text { Target } \preccurlyeq \ldots \preccurlyeq \text { Upper }_{\text {early }} \preccurlyeq \text { Upper }_{\text {late }}
$$

domCFTP: basic ingredients

- dominating process Y
- draw from equilibrium π_{Y}
- simulate backwards in time
- sandwiching

$$
\text { Lower }_{\text {late }} \preccurlyeq \text { Lower }_{\text {early }} \preccurlyeq \ldots \preccurlyeq \text { Target } \preccurlyeq \ldots \preccurlyeq \text { Upper }_{\text {early }} \preccurlyeq \text { Upper }_{\text {late }}
$$

domCFTP: basic ingredients

- dominating process Y
- draw from equilibrium π_{Y}
- simulate backwards in time
- sandwiching

$$
\text { Lower }_{\text {late }} \preccurlyeq \text { Lower }_{\text {early }} \preccurlyeq \ldots \preccurlyeq \text { Target } \preccurlyeq \ldots \preccurlyeq \text { Upper }_{\text {early }} \preccurlyeq \text { Upper }_{\text {late }}
$$

domCFTP: basic ingredients

- dominating process Y
- draw from equilibrium π_{Y}
- simulate backwards in time
- sandwiching

$$
\text { Lower }_{\text {late }} \preccurlyeq \text { Lower }_{\text {early }} \preccurlyeq \ldots \preccurlyeq \text { Target } \preccurlyeq \ldots \preccurlyeq \text { Upper }_{\text {early }} \preccurlyeq \text { Upper }_{\text {late }}
$$

- coalescence
eventually a Lower and an Upper process must coalesce

$M / G / c$ queue

- Customers arrive at times of a Poisson process: interarrival times $T_{n} \sim \operatorname{Exp}(\lambda)$
- Service durations S_{n} are i.i.d. with $\mathbb{E}[S]=1 / \mu$ (and $\left.\mathbb{E}\left[S^{2}\right]<\infty\right)$
- Customers are served by c servers, on a First Come First Served (FCFS) basis
Queue is stable iff $\rho:=\frac{\lambda}{\mu c}<1$.

The (ordered) workload vector just before the arrival of the $n^{\text {th }}$ customer satisfies the Kiefer-Wolfowitz recursion:

$$
\mathbf{W}_{n+1}=R\left(\mathbf{W}_{n}+S_{n} \delta_{1}-T_{n} \mathbf{1}\right)^{+} \quad \text { for } n \geq 0
$$

- add workload S_{n} to first coordinate of \mathbf{W}_{n} (server currently with least work)
- subtract T_{n} from every coordinate (work done between arrivals)
- reorder the coordinates in increasing order
- replace negative values by zeros.

Aim

Sample from the equilibrium distribution of this workload vector

DomCFTP for queues

We need to find a dominating process for our $M_{\lambda} / G / c[F C F S]$ queue X.

C \& Kendall (2015): dominate with $M / G / c[R A]$

- RA $=$ random assignment, so c independent copies of $M_{\lambda / c} / G / 1$
- Evidently stable iff $M / G / c$ is stable
- Easy to simulate in equilibrium, and in reverse
- Care needed with domination arguments: service durations must be assigned in order of initiation of service

domCFTP algorithm

- Dominating process Y is stationary $M / G / c$ [RA] queue

domCFTP algorithm

- Dominating process Y is stationary $M / G / c$ [RA] queue
- Check for coalescence of sandwiching processes, U^{c} and L^{c} :
- these are workload vectors of $M / G / c[F C F S]$ queues
- L^{c} starts from empty
- U^{c} is instantiated using residual workloads from Y

Omnithermal simulation

Back to the general perfect simulation setting...
Suppose that the target process X has a distribution π_{β} that depends on some underlying parameter β.

In some situations it is possible to modify a perfect simulation algorithm so as to sample simultaneously from π_{β} for all β in some given range: call this omnithermal simulation.
E.g.

- Random Cluster model (Propp \& Wilson, 1996)
- Area Interaction Process (Shah, 2004)

Omnithermal simulation

Back to the general perfect simulation setting...
Suppose that the target process X has a distribution π_{β} that depends on some underlying parameter β.

In some situations it is possible to modify a perfect simulation algorithm so as to sample simultaneously from π_{β} for all β in some given range: call this omnithermal simulation.
E.g.

- Random Cluster model (Propp \& Wilson, 1996)
- Area Interaction Process (Shah, 2004)

Question

Can we perform omnithermal simulation for $M / G / c$ queues with varying numbers of servers?

Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths: for $V^{c} \in \mathbb{R}^{c}$ and $V^{c+m} \in \mathbb{R}^{c+m}$, write $V^{c+m} \preceq V^{c}$ if and only if

$$
V^{c+m}(k+m) \leq V^{c}(k), \quad k=1, \ldots, c .
$$

("Busiest c servers in V^{c+m} each no busier than corresponding server in $V^{c \prime}$.)

Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths: for $V^{c} \in \mathbb{R}^{c}$ and $V^{c+m} \in \mathbb{R}^{c+m}$, write $V^{c+m} \preceq V^{c}$ if and only if

$$
V^{c+m}(k+m) \leq V^{c}(k), \quad k=1, \ldots, c .
$$

("Busiest c servers in V^{c+m} each no busier than corresponding server in $V^{c \prime \prime}$.)

Observation

Dynamics for workload vectors with different numbers of servers are monotonic w.r.t. this partial order

So we can produce processes U^{c+m} and L^{c+m} over [$\left.T, 0\right]$, coupled to our c-server dominating process Y, such that:

- U^{c+m} and L^{c+m} sandwich our $M / G /(c+m)$ FCFS process of interest
- $U_{t}^{c+m} \preceq U_{t}^{c}$ and $L_{t}^{c+m} \preceq L_{t}^{c}$

So we can produce processes U^{c+m} and L^{c+m} over [$\left.T, 0\right]$, coupled to our c-server dominating process Y, such that:

- U^{c+m} and L^{c+m} sandwich our $M / G /(c+m)$ FCFS process of interest
- $U_{t}^{c+m} \preceq U_{t}^{c}$ and $L_{t}^{c+m} \preceq L_{t}^{c}$

But U^{c+m} and L^{c+m} won't necessarily coalesce before time 0 !

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Establishing coalescence

Write C_{t}^{c} for the remaining time (at time t) until coalescence of U_{t}^{c} and L_{t}^{c} under the assumption of no more arrivals:

$$
C_{t}^{c}=U_{t}^{c}\left(n_{t}^{c}\right), \text { where } n_{t}^{c}=\max \left\{1 \leq k \leq c: U_{t}^{c}(k) \neq L_{t}^{c}(k)\right\}
$$

Evolution of C_{t}^{c}

Suppose that we see an arrival (in both U^{c} and L^{c}) at time t, with associated workload S.

- if $U_{t-}^{c}(1)=L_{t-}^{c}(1)$ then arrival does not affect the time to coalescencence;
- if not, then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq n_{t-}^{c}$ in U^{c}.

$$
C_{t}^{c}=\max \left\{C_{t-}^{c},\left(U_{t-}^{c}(1)+S\right) \mathbf{1}_{\left[U_{t-}^{c}(1) \neq L_{t-}^{c}(1)\right]}\right\}
$$

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Problem

It is not true in general that $C_{0}^{c+m} \leq C_{0}^{c} \Longrightarrow C_{t}^{c+m} \leq C_{t}^{c}$.

Solution

Write $T^{c} \leq 0$ for the coalescence time of U^{c} and L^{c}.
Condition A
At NO arrival time $\tau \in\left[T, T^{c}\right]$ do we find $L_{\tau-}^{c}(1)=U_{\tau-}^{c}(1)>0$

Solution

Write $T^{c} \leq 0$ for the coalescence time of U^{c} and L^{c}.

Condition A

At NO arrival time $\tau \in\left[T, T^{c}\right]$ do we find $L_{\tau-}^{c}(1)=U_{\tau_{-}}^{c}(1)>0$

Theorem
If Condition A holds then $T^{c+m} \leq T^{c}$ for any $m \in \mathbb{N}$.

Solution

Write $T^{c} \leq 0$ for the coalescence time of U^{c} and L^{c}.

Condition A

At NO arrival time $\tau \in\left[T, T^{c}\right]$ do we find $L_{\tau-}^{c}(1)=U_{\tau-}^{c}(1)>0$

Theorem

If Condition A holds then $T^{c+m} \leq T^{c}$ for any $m \in \mathbb{N}$.

This gives us a method for performing omnithermal domCFTP:
(1) for a given run of the c-server domCFTP algorithm, check to see whether Condition A holds. If not, repeatedly backoff ($T \leftarrow 2 T$) until Condition A is satisfied;
(2) run L^{c+m} (for any $m \in \mathbb{N}$) over [$\left.T, 0\right]$, and return $L^{c+m}(0)$.

Example output

Simulation results from 5,000 runs for $M / M / c$ with $\lambda=2.85, \mu=1$ and $c=3(\rho=0.95)$

- 333 (7\%) runs needed extending
- only 2 runs needed more than 2 additional backoffs

Mean workload at each server, for $c=3$ and $m \in\{0,1,2,3\}$:

Example output

Distribution functions for workload at (a) first and (b) last coordinates of the workload vector:

(a) First coordinate workload

(b) Last coordinate workload

How expensive is this in practice?

Not very!

- Simulations indicate that Condition A is satisfied (with no need for further backoffs) $>90 \%$ of the time when $\rho \leq 0.75$, and in $>70 \%$ of cases when $\rho=0.85$
- In addition, runs in which Condition A initially fails typically don't require significant extension
- Theoretical analysis of run-time would be nice, but hard!

Extensions

This idea can be applied in other settings.
(1) Consider keeping c fixed, but increasing the rate at which servers work; same analysis as above holds.
(2) Moreover, there's no need to restrict attention to Poisson arrivals! Blanchet, Pei \& Sigman (2015) show how to implement domCFTP for $G I / G I / c$ queues, again using a random assignment dominating process.

Conclusions

- It is highly feasible to produce perfect simulations of stable $\mathrm{GI} / \mathrm{GI} / \mathrm{c}$ queues using domCFTP
- Furthermore, with minimal additional effort this can be accomplished in an omnithermal way, allowing us to simultaneously sample from the equilibrium distribution when
- using $c+m$ servers, for any $m \in \mathbb{N}$
- increasing the service rate
- or both.
- There are other perfect simulation algorithms out there, e.g. gradient simulation for fork-join networks (Chen \& Shi, 2016), for which it may be possible to produce omnithermal variants.

References

- Chen, X \& Shi, X. (2016). Perfect Sampling and Gradient Simulation for Fork-Join Networks. [arXiv]
- Connor, S.B. (2016). Omnithermal perfect simulation for multi-server queues. Submitted.
- Connor, S.B., \& Kendall, W.S. (2015). Perfect simulation of $M / G / c$ queues. Advances in Applied Probability, 47(4), 1039-1063.
- Kendall, W.S. (1998). Perfect simulation for the area-interaction point process. In Probability Towards 2000 eds L. Accardi and C. C. Heyde. Springer, New York, pp. 218-234.
- Propp, J.G., \& Wilson, D.B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms, 9, 223-252.
- Shah, S.R. (2004). Perfect simulation of conditional \& weighted models. Ph.D. thesis, Department of Statistics, University of Warwick.

