Omnithermal perfect simulation for multi-server queues

> Stephen Connor stephen.connor@york.ac.uk

UNIVERSITY of York

LMS-EPSRC Durham Symposium July-August 2017

Dominated CFTP in a nutshell

Suppose that we're interested in simulating from the equilibrium distribution of some ergodic Markov chain X.

Think of a (hypothetical) version of the chain, \tilde{X} , which was started by your (presumably distant) ancestor from some state x at time $-\infty$:

- at time zero this chain is in equilibrium: $ilde{X}_0 \sim \pi$;
- dominated CFTP (domCFTP) tries to determine the value of \tilde{X}_0 by looking into the past only a *finite* number of steps;
- do this by identifying a time in the past such that all earlier starts from x lead to the same result at time zero.

- dominating process Y
 - draw from equilibrium π_Y
 - simulate backwards in time

- dominating process Y
 - draw from equilibrium π_Y
 - simulate backwards in time
- sandwiching

- dominating process Y
 - draw from equilibrium π_Y
 - simulate backwards in time
- sandwiching

- dominating process Y
 - draw from equilibrium π_Y
 - simulate backwards in time
- sandwiching

- dominating process Y
 - draw from equilibrium π_Y
 - simulate backwards in time
- sandwiching

- dominating process Y
 - draw from equilibrium π_Y
 - simulate backwards in time
- sandwiching

 $\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Target} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{early}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}$

• coalescence

eventually a Lower and an Upper process must coalesce

M/G/c queue

- Customers arrive at times of a Poisson process: interarrival times $T_n \sim \text{Exp}(\lambda)$
- Service durations S_n are i.i.d. with $\mathbb{E}\left[S\right] = 1/\mu$ (and $\mathbb{E}\left[S^2\right] < \infty$)
- Customers are served by *c* servers, on a First Come First Served (FCFS) basis

Queue is *stable* iff
$$\rho := \frac{\lambda}{\mu c} < 1$$
.

The (ordered) workload vector just before the arrival of the n^{th} customer satisfies the *Kiefer-Wolfowitz* recursion:

$$\mathbf{W}_{n+1} = R(\mathbf{W}_n + S_n \delta_1 - T_n \mathbf{1})^+$$
 for $n \ge 0$

- add workload S_n to first coordinate of \mathbf{W}_n (server currently with least work)
- subtract T_n from every coordinate (work done between arrivals)
- reorder the coordinates in increasing order
- replace negative values by zeros.

Aim

Sample from the equilibrium distribution of this workload vector

DomCFTP for queues

We need to find a dominating process for our $M_{\lambda}/G/c$ [FCFS] queue X.

C & Kendall (2015): dominate with M/G/c [RA]

- RA = random assignment, so c independent copies of $M_{\lambda/c}/G/1$
- Evidently stable iff M/G/c is stable
- Easy to simulate in equilibrium, and in reverse
- Care needed with domination arguments: service durations must be assigned in order of initiation of service

domCFTP algorithm

• Dominating process Y is stationary M/G/c [RA] queue

domCFTP algorithm

- Dominating process Y is stationary M/G/c [RA] queue
- Check for coalescence of sandwiching processes, U^c and L^c :
 - these are workload vectors of M/G/c [FCFS] queues
 - L^c starts from empty
 - U^c is instantiated using residual workloads from Y

Omnithermal simulation

Back to the general perfect simulation setting...

Suppose that the target process X has a distribution π_{β} that depends on some underlying parameter β .

In some situations it is possible to modify a perfect simulation algorithm so as to sample *simultaneously* from π_{β} for all β in some given range: call this **omnithermal simulation**.

E.g.

- Random Cluster model (Propp & Wilson, 1996)
- Area Interaction Process (Shah, 2004)

Omnithermal simulation

Back to the general perfect simulation setting...

Suppose that the target process X has a distribution π_{β} that depends on some underlying parameter β .

In some situations it is possible to modify a perfect simulation algorithm so as to sample *simultaneously* from π_{β} for all β in some given range: call this **omnithermal simulation**.

E.g.

- Random Cluster model (Propp & Wilson, 1996)
- Area Interaction Process (Shah, 2004)

Question

Can we perform omnithermal simulation for M/G/c queues with varying numbers of servers?

Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths:

for $V^c \in \mathbb{R}^c$ and $V^{c+m} \in \mathbb{R}^{c+m}$, write $V^{c+m} \preceq V^c$ if and only if

$$V^{c+m}(k+m) \leq V^{c}(k), \quad k=1,\ldots,c.$$

("Busiest c servers in V^{c+m} each no busier than corresponding server in $V^{c''}$.)

Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths:

for $V^c \in \mathbb{R}^c$ and $V^{c+m} \in \mathbb{R}^{c+m}$, write $V^{c+m} \preceq V^c$ if and only if

$$V^{c+m}(k+m) \leq V^{c}(k), \quad k=1,\ldots,c.$$

("Busiest c servers in V^{c+m} each no busier than corresponding server in $V^{c''}$.)

Observation

Dynamics for workload vectors with different numbers of servers are monotonic w.r.t. this partial order

So we can produce processes U^{c+m} and L^{c+m} over [T, 0], coupled to our *c*-server dominating process *Y*, such that:

- U^{c+m} and L^{c+m} sandwich our M/G/(c+m) FCFS process of interest
- $U_t^{c+m} \preceq U_t^c$ and $L_t^{c+m} \preceq L_t^c$

So we can produce processes U^{c+m} and L^{c+m} over [T, 0], coupled to our *c*-server dominating process *Y*, such that:

• U^{c+m} and L^{c+m} sandwich our M/G/(c+m) FCFS process of interest

•
$$U_t^{c+m} \preceq U_t^c$$
 and $L_t^{c+m} \preceq L_t^c$

But U^{c+m} and L^{c+m} won't necessarily coalesce before time 0!

$$C^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq L^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^{m{c}}_t = U^{m{c}}_t(n^{m{c}}_t), ext{ where } n^{m{c}}_t = \max\left\{1 \leq k \leq m{c} \,:\, U^{m{c}}_t(k)
eq \mathcal{L}^{m{c}}_t(k)
ight\}\,.$$

$$\mathcal{C}^{c}_{t} = U^{c}_{t}(n^{c}_{t}), ext{ where } n^{c}_{t} = \max\left\{1 \leq k \leq c \ : \ U^{c}_{t}(k)
eq \mathcal{L}^{c}_{t}(k)
ight\} \,.$$

$$\mathcal{C}^{c}_{t} = U^{c}_{t}(n^{c}_{t}), ext{ where } n^{c}_{t} = \max\left\{1 \leq k \leq c \ : \ U^{c}_{t}(k)
eq \mathcal{L}^{c}_{t}(k)
ight\} \;.$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$\mathcal{C}^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq \mathcal{L}^c_t(k)
ight\} \, .$$

$$C^c_t = U^c_t(n^c_t), ext{ where } n^c_t = \max\left\{1 \leq k \leq c \ : \ U^c_t(k)
eq L^c_t(k)
ight\} \, .$$

Evolution of C_t^c

Suppose that we see an arrival (in both U^c and L^c) at time t, with associated workload S.

- if $U_{t-}^{c}(1) = L_{t-}^{c}(1)$ then arrival does not affect the time to coalescencence;
- if not, then we will see an increase in the time to coalescence iff the new service is placed at some coordinate k ≥ n^c_{t−} in U^c.

$$C^c_t = \max\left\{C^c_{t-}\,,\; (U^c_{t-}(1)+S) \mathbf{1}_{\left[U^c_{t-}(1)
eq L^c_{t-}(1)
ight]}
ight\}$$

Solution

Write $T^c \leq 0$ for the coalescence time of U^c and L^c .

Condition A

At NO arrival time $au \in [T, T^c]$ do we find $L^c_{ au-}(1) = U^c_{ au-}(1) > 0$

Solution

Write $T^c \leq 0$ for the coalescence time of U^c and L^c .

Condition A

At NO arrival time $au \in [T, T^c]$ do we find $L^c_{ au-}(1) = U^c_{ au-}(1) > 0$

Theorem

If Condition A holds then $T^{c+m} \leq T^c$ for any $m \in \mathbb{N}$.

Solution

Write $T^c \leq 0$ for the coalescence time of U^c and L^c .

Condition A

At NO arrival time $au \in [T, T^c]$ do we find $L^c_{ au-}(1) = U^c_{ au-}(1) > 0$

Theorem

If Condition A holds then $T^{c+m} \leq T^c$ for any $m \in \mathbb{N}$.

This gives us a method for performing omnithermal domCFTP:

- If or a given run of the *c*-server domCFTP algorithm, check to see whether Condition A holds. If not, repeatedly backoff (*T* ← 2*T*) until Condition A is satisfied;
- **②** run L^{c+m} (for any $m \in \mathbb{N}$) over [*T*, 0], and return $L^{c+m}(0)$.

Example output

Simulation results from 5,000 runs for M/M/c with λ = 2.85, μ = 1 and c = 3 (ρ = 0.95)

- 333 (7%) runs needed extending
- only 2 runs needed more than 2 additional backoffs

Mean workload at each server, for c = 3 and $m \in \{0, 1, 2, 3\}$:

Example output

Distribution functions for workload at (a) first and (b) last coordinates of the workload vector:

How expensive is this in practice?

Not very!

- Simulations indicate that Condition A is satisfied (with no need for further backoffs) > 90% of the time when $\rho \leq$ 0.75, and in > 70% of cases when $\rho = 0.85$
- In addition, runs in which Condition A initially fails typically don't require significant extension
- Theoretical analysis of run-time would be nice, but hard!

Extensions

This idea can be applied in other settings.

- Consider keeping c fixed, but increasing the rate at which servers work; same analysis as above holds.
- Moreover, there's no need to restrict attention to Poisson arrivals! Blanchet, Pei & Sigman (2015) show how to implement domCFTP for GI/GI/c queues, again using a random assignment dominating process.

Conclusions

- It is highly feasible to produce perfect simulations of stable GI/GI/c queues using domCFTP
- Furthermore, with minimal additional effort this can be accomplished in an **omnithermal** way, allowing us to simultaneously sample from the equilibrium distribution when
 - using c + m servers, for any $m \in \mathbb{N}$
 - increasing the service rate
 - or both.
- There are other perfect simulation algorithms out there, e.g. gradient simulation for fork-join networks (Chen & Shi, 2016), for which it may be possible to produce omnithermal variants.

References

- Chen, X & Shi, X. (2016). Perfect Sampling and Gradient Simulation for Fork-Join Networks. [arXiv]
- Connor, S.B. (2016). Omnithermal perfect simulation for multi-server queues. *Submitted.*
- Connor, S.B., & Kendall, W.S. (2015). Perfect simulation of M/G/c queues. Advances in Applied Probability, 47(4), 1039–1063.
- Kendall, W.S. (1998). Perfect simulation for the area-interaction point process. In *Probability Towards 2000* eds L. Accardi and C. C. Heyde. Springer, New York, pp. 218–234.
- Propp, J.G., & Wilson, D.B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. *Random Structures and Algorithms*, 9, 223–252.
- Shah, S.R. (2004). *Perfect simulation of conditional & weighted models*. Ph.D. thesis, Department of Statistics, University of Warwick.