





Scatterin

Motivation

Motivation

F. Relate $\pi_a/s_{\widetilde{a}}$ to scatter-equivalence classes ("lines if there is a chain $a = b_0, b_1, \ldots, b_n = c$ with $\omega_{b_{m-1},\widetilde{b}_m} > 0$, then $\pi_a/s_{\widetilde{a}} = \pi_c/s_{\widetilde{c}}$.

RRF

Warwick Statistics

References

Statistics

Motivation

Motivation

Scattering - an abstract approach (III)

Scattering

- 5 Adopt "Metropolis-Hastings recipe": divide state-space into equivalence classes using ω ,
 - set $\pi_a = \min{\{\kappa, \kappa'\}}$ where we choose κ , κ' as positive constants belonging to classes of a and \tilde{a} ,
 - set scattering probability $s_a = \min\{1, \kappa/\kappa'\}$ (dynamic reversibility is then automatic!).
- 6 In case of a suitable total ordering ≺ for each "line", transmission probabilities are functions of scattering probabilities.

For each $a \prec b$, there are $\omega_{a,\pm}$ summing to 1 with

$$p_{a,\widetilde{b}} = \omega_{a,\widetilde{b}} s_{\widetilde{b}} = \omega_{a,+} \left(\prod_{a \prec c \prec b} (1 - s_{\widetilde{c}}) \right) s_{\widetilde{b}},$$

and similar for $p_{b,\tilde{a}}$ using $\omega_{b,-}$.

All follows from choice of the class constants κ (and say equiprobable choice of direction $\omega_{a,\pm} = \frac{1}{2}$).

Application

Application

Application

Define the SIRSN-RRF, sampled at changes in direction, by specifying equilibrium probabilities at intersections of lines.

- 1. Scaling invariance: $\pi_{(\ell_1,\ell_2)} = \min\{v_1^{\alpha}, v_2^{\alpha}\}$, parameter α .
- 2. Scattering probability: $s_{(\ell_1,\ell_2)} = \min\{1, (\nu_2/\nu_1)^{\alpha}\}.$
- 3. Dynamical reversibility: non-symmetric Dirichlet form.
- 4. Apply Campbell-Slivnyak-Mecke theorem (twice!) to identify (translated, rotated, scaled) "environment viewed from particle" *via* reduced non-symmetric Dirichlet form.
- 5. Resulting log-relative-speed-changes X_1, X_2, \ldots form a stationary process.

Dynamical reversibility

Let $f(x,\Pi)$ be bounded, measurable, x an intersection of lines \mathcal{L}_1 , \mathcal{L}_2 in Π . For convenience set $\widetilde{f}(\mathcal{L}_1, \mathcal{L}_2; \Pi) = f(\mathcal{L}_2, \mathcal{L}_1; \Pi)$. Consider the non-symmetric form

$$B(f,g) = \mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[\sum_{\mathcal{L}_{1}\neq\mathcal{L}_{2}\in\Pi}\widetilde{f}(\widetilde{Z}_{0};\Pi)\times g(Z_{1};\Pi)\times \pi_{x} \mid Z_{0}=x=(\mathcal{L}_{1},\mathcal{L}_{2})\right] \mid \Pi\right]\right].$$

Using Campbell-Mecke-Slivnyak theory twice, this can be reduced (taking out translations, rotations, scale-changes) to the study of

$$\mathbb{E}\Big[\sum_{\mathcal{L}_{3}\in\Pi}f^{(2)}(\mathcal{L}_{1}^{*};\Pi\cup\{\mathcal{L}_{1}^{*}\})s_{(\tilde{\mathcal{L}}_{0},\mathcal{L}_{1}^{*})}\left(\prod_{\mathcal{L}\in\Pi:\ \mathcal{L} \text{ separates origin from }\tilde{\mathcal{L}}_{0}\cap\mathcal{L}_{3}}(1-s_{(\tilde{\mathcal{L}}_{0},\mathcal{L})})\right)\times s_{(\tilde{\mathcal{L}}_{0},\mathcal{L}_{3}}g^{(2)}(\mathcal{L}_{3};\Pi\cup\{\mathcal{L}_{1}^{*}\})\Big]$$

Read off equilibrium distribution from reduced non-symmetric form: at critical $\alpha = 2(\gamma - 1)$, typical log-relative-speed-change *X* has stationary symmetric Laplace distribution.

lotivation SIRSN RRF Scattering Application Conclusion References	Motivation SIRSN RRF Scattering Application Conclusion References
Outline of remainder of argument	Conclusion
 Adapt Kozlov (1985, Section 2) to show X is ergodic (depends on nice properties of Poisson line process!). Critical case E [X] = 0, i.e. α = 2(γ − 1): apply continuum adaptation of Kesten-Spitzer-Whitman range theorem (Spitzer, 1976, Page 38) to show log-speed process ∑X is neighbourhood recurrent. In this critical case α = 2(γ − 1), SIRSN-RRF provides a "randomly-broken Π-geodesic" which avoids slowing down to zero speed (or speeding up to infinite speed). 	 Critical case (α = 2(γ - 1)): SIRSN-RRF speed is neighbourhood-recurrent. Sub-critical case (α < 2(γ - 1)): SIRSN-RRF converges to a random limiting point in the plane (trapped by cells of tessellation of high-speed lines). Super-critical case (α > 2(γ - 1)): SIRSN-RRF disappears off to infinity (consider high-speed tessellation). So a critical "randomly-broken Π-geodesic" does not halt <i>en route</i>. What about Π-geodesics themselves?
Warwick Statistics	THANK YOU!
 Netwation SIRSN RRF Scattering Application Conclusion References References: Aldous, D. J. (2014, April). Scale-Invariant Random Spatial Networks. <i>Electronic Journal of Probability 19</i>, no. 15, 1–41. Aldous, D. J. and K. Ganesan (2013, December). True scale-invariant random spatial networks. <i>Proceedings of the National Academy of Sciences of the United States of America 110</i>(22), 8782–8785. Kahn, J. (2016, July). Improper Poisson line process as SIRSN in any dimension. <i>Annals of Probability 44</i>(4), 2694–2725. Kozlov, S. M. (1985). The method of averaging and walks in inhomogeneous environments. <i>Russian Mathematical Surveys 40</i>(2), 73–145. Russell, B. (1919). <i>Introduction to Mathematical Philosophy</i>. 	 Motivation SIRSN RRF Scattering Application Conclusion References Spitzer, F. (1976). Principles of random walk, Volume 34 of Graduate Texts in Mathematics. New York, NY: Springer New York. WSK (2017, March). From Random Lines to Metric Spaces. Annals of Probability 45(1), 469–517.
New York, London: George Allen and Unwin.	Warwi