Locally Balanced Proposals 00000 Peskun ordering

Connection to other schemes

Design of informed Metropolis-Hastings proposal distributions

Giacomo Zanella

Bocconi University, Milan, Italy

LMS-EPSRC Durham Symposium 26 July to 5 August 2017

Locally Balanced Proposals

Peskun ordering 0000000 Connection to other schemes

Informed Proposals

Aim: sampling from a probability measure π defined on Ω Metropolis-Hastings (MH) kernel

- 1. Sample $y \sim Q(x, \cdot)$
- 2. Accept y with probability $1 \wedge \alpha(x, y)$ where $\alpha(x, y) = \frac{\pi(y)Q(y,x)}{\pi(x)Q(x,y)}$

Locally Balanced Proposals 00000 Peskun ordering

Connection to other schemes

Informed Proposals

Aim: sampling from a probability measure π defined on Ω Metropolis-Hastings (MH) kernel

- 1. Sample $y \sim Q(x, \cdot)$
- 2. Accept y with probability $1 \wedge \alpha(x, y)$ where $\alpha(x, y) = \frac{\pi(y)Q(y, x)}{\pi(x)Q(x, y)}$

Uninformed proposalsvsInformed proposals"blind" proposal : Q(x, y) = Q(y, x)Q incorporates info about the target π ψ ψ small moves and slow mixinglonger moves and better mixing

Question: How should we design an *informed* proposal Q? Ideal choice would be $Q(x, y) = \pi(y)$ but that's typically unfeasible...

Peskun ordering

Connection to other schemes

Example: gradient-based MCMC

Framework: $\Omega = \mathbb{R}^n$, target $\pi(x) dx$

Typical uninformed proposal

$$ightarrow (\mathsf{RWM}) \quad Q_{\sigma}(x, \cdot) = N(x, \sigma^2 \mathbb{I}_n)$$

How to design informed Q? Discretize π -rev. diffusion $dX_t = \frac{\nabla \log \pi(X_t)}{2} dt + dW_t$

 \rightarrow (MALA) $Q_{\sigma}(x, \cdot) = N(x + \sigma^2 \frac{\nabla \log \pi(x)}{2}, \sigma^2 \mathbb{I}_n)$

イロン 不得入 不良人 不良人 一度

NB: by construction the bias towards high-probability regions is calibrated so that Q is approximately π -reversible.

Giacomo Zanella (Bocconi University)

Design of informed Metropolis-Hastings proposal distributions

1/08/2017 2 / 19

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Informed proposals in discrete spaces?

 $\begin{array}{ll} \Omega & \mbox{finite state space} \\ \pi(x) & \mbox{target measure} \\ N(x) & \mbox{neighbourhood of } x \mbox{ (e.g. } N_{\sigma}(x) = \{y \in \Omega : d(x,y) \leq \sigma\}) \\ K_{\sigma}(x,\cdot) = \mbox{Unif}(N_{\sigma}(x)) & \mbox{natural uniformed proposal} \end{array}$

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Informed proposals in discrete spaces?

 $\begin{array}{ll} \Omega & \mbox{finite state space} \\ \pi(x) & \mbox{target measure} \\ N(x) & \mbox{neighbourhood of } x \mbox{ (e.g. } N_{\sigma}(x) = \{y \in \Omega : d(x,y) \leq \sigma\}) \\ K_{\sigma}(x,\cdot) = \mbox{Unif}(N_{\sigma}(x)) & \mbox{natural uniformed proposal} \end{array}$

Example: sampling matchings

$$\Omega = \{\text{perfect matchings of } n + n \text{ bipartite graph}\}$$
$$\pi(x) \propto \prod_{e \in x} w_e$$
$$N(x) = \{u_i^{e_i} \text{ obtained by suppring two edges of } x_i^{e_i}\}$$

 $N(x) = \{y \text{'s obtained by swapping two edges of } x\}$

< ロト < 同ト < ヨト < ヨト

Informed proposal $Q(x, \cdot) \rightsquigarrow$ non-uniform probability distribution on N(x). How should we design such a distribution?

Is the localized version of π , i.e. $Q_{\pi}(x,y) \propto \pi(y) \mathbbm{1}_{N(x)}(y)$, a good choice?

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Framework

Target distribution

 $\Pi(dx) = \pi(x)dx$ for some base measure dx

Natural uninformed kernel

A Markov transition kernel $K_{\sigma}(x, dy)$ satisfying:

1. K_{σ} is *dx*-reversible

2.
$$K_{\sigma}(x, \cdot) \Rightarrow \delta_{x}(\cdot)$$
 as $\sigma \downarrow 0$ and $K_{\sigma}(x, dy) \Rightarrow dy$ as $\sigma \uparrow \infty$

Examples: $K_{\sigma}(x, \cdot) = N(x, \sigma^2 \mathbb{I}_n)$ or $K_{\sigma}(x, \cdot) = \text{Unif}(N_{\sigma}(x))$

Aim

Incorporate information from π into K_{σ} to obtain a good proposal Q to target π . Equivalently: bias K_{σ} towards high-prob. regions of π in an appropriate way. NB: would like to be fairly general in terms of π and K_{σ} .

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Heuristics

Naive informed proposal

$$Q_{\pi}(x, dy) = \frac{\pi(y)K_{\sigma}(x, dy)}{Z_{\sigma}(x)} \qquad e.g. \ Q_{\pi}(x, y) = \frac{\pi(y)\mathbb{1}_{N_{\sigma}(x)}(y)}{\pi(N_{\sigma}(x))} \text{ or } \frac{\pi(y)e^{-\frac{|x-y|^2}{2\sigma^2}}}{(K_{\sigma} * \pi)(x)}$$

 Q_{π} looks reasonable for big σ because $Q_{\pi}(x, dy) \Rightarrow \Pi(dy)$ as $\sigma \uparrow \infty$. What happens for small σ ?

 K_{σ} dx-reversible implies Q_{π} reversible w.r.t. $\pi(x)Z_{\sigma}(x)$

But $Z_{\sigma} = K_{\sigma} * \pi$ and thus $\pi(x)Z_{\sigma}(x) \Rightarrow \begin{cases} \pi(x) & \text{if } \sigma \uparrow \infty \text{ (Global move)} \\ \pi(x)^2 & \text{if } \sigma \downarrow 0 \end{cases}$ (Local move)

 $\rightsquigarrow Q_{\pi}$ is not appropriate to design local moves targeting π

Giacomo Zanella (Bocconi University)

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Heuristics

Simple fix: introduce a balancing function g, $Q_{g(\pi)}(x, dy) \propto g(\pi(y)) \mathcal{K}_{\sigma}(x, dy)$

 $Q_{\sqrt{\pi}}(x, dy) = \frac{\sqrt{\pi(y)} K_{\sigma}(x, dy)}{(\sqrt{\pi} * K_{\sigma})(x)} \text{ reversible w.r.t. } \sqrt{\pi}(x)(\sqrt{\pi} * k_{\sigma})(x) \xrightarrow{\sigma \downarrow 0} \pi(x)$

 $Q_{\sqrt{\pi}}$ produces local moves that are asymptotically π -reversible as $\sigma \downarrow 0$ $\rightsquigarrow Q_{\sqrt{\pi}}$ is appropriate to design local moves targeting π

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Locally balanced proposals

Class of proposals considered: "point-wise informed" proposals of the form

$$Q_{g,\sigma}(x,dy) \propto g\left(rac{\pi(y)}{\pi(x)}
ight) K_{\sigma}(x,dy) \qquad ext{for some } g: \mathbb{R}_+ o \mathbb{R}_+$$

Definition: $\{Q_{\sigma}(x, dy)\}_{\sigma>0}$ is *locally balanced* if Q_{σ} is Π_{σ} -reversible and $\Pi_{\sigma} \Rightarrow \Pi$ as $\sigma \downarrow 0$.

Theorem: Let K_{σ} be dx-reversible and $K_{\sigma}(x, \cdot) \Rightarrow \delta_{x}(\cdot)$ as $\sigma \downarrow 0$. Then $\{Q_{g,\sigma}\}_{\sigma>0}$ is locally balanced iff

$$g(t) = t g(1/t) \qquad \forall t > 0$$

NB: some regularity assumptions on g and π needed to guarantee integrability.

Introduction and motivation	Locally Balanced Proposals	Peskun ordering	Connection to other schemes
000	0000●	000000	000

Question: locally-balanced proposals are asymptotically π -reversible as $\sigma \downarrow 0$. Intuitively, this is a good features for a local Metropolis-Hastings proposal. Can we say something more explicit in terms of efficiency of the induced MCMC ?

"Answer": in high-dimensions locally-balanced proposals are maximal elements in terms of Peskun ordering.

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Peskun Ordering

Lemma (Peskun ordering)

Let P_1 and P_2 be π -reversible Markov kernels on a finite Ω . If

$$P_1(x,y) \le P_2(x,y) \qquad \forall x \ne y$$
 (1)

then the Spectral Gaps and Asymptotic Variances of P_1 and P_2 satisfy

$$egin{aligned} & \mathsf{Gap}(P_1) \leq & \mathsf{Gap}(P_2) \ & \mathsf{Var}_\pi(h,P_1) \geq & \mathsf{Var}_\pi(h,P_2) \quad \forall h:\Omega o \mathbb{R} \,. \end{aligned}$$

Intuition: if (1) holds, then P_2 is more efficient than P_1 .

Giacomo Zanella (Bocconi University) Design of informed Metropolis-Hastings proposal distributions

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Peskun Ordering

Lemma (Peskun ordering with constant)

Let P_1 and P_2 be π -reversible Markov kernels on a finite Ω . If

$$P_1(x,y) \le c P_2(x,y) \qquad \forall x \neq y \tag{2}$$

for some c > 0, then the Spectral Gaps and Asymptotic Variances of P_1 and P_2 satisfy

Intuition: if (2) holds, then P_2 is $\frac{1}{c}$ -times more efficient than P_1 .

Giacomo Zanella (Bocconi University) Design of informed Metropolis-Hastings proposal distributions

Asymptotic Peskun ordering of locally balanced proposals

Consider Ω finite and $K(x, \cdot) = \text{Unif}(N(x))$. Given $Z_g(x) = \sum_{y \in N(x)} g\left(\frac{\pi(y)}{\pi(x)}\right)$ define

$$c_g \quad = \quad \sup_{x \in \Omega, \ y \in N(x)} \frac{Z_g(y)}{Z_g(x)} \geq 1 \ .$$

Theorem

Let $g : \mathbb{R}_+ \to \mathbb{R}_+$ and $\tilde{g}(t) = \min\{g(t), t g(1/t)\}$. Then the MH kernels obtained from the proposals Q_g and $Q_{\tilde{g}}$ respectively satisfy

 $P_g(x,y) \leq c_g^2 P_{\tilde{g}}(x,y) \quad \forall x \neq y.$

Intuition: for every g there is a locally-bal. \tilde{g} which is more efficient modulo c_g^2 .

Asymptotic regime

In many contexts $c_g \to 1$ as the dimension of Ω goes to infinity. In these cases locally balanced proposals are **asymptotically optimal in the Peskun sense**

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Example: sampling matchings

$$\begin{split} \Omega_n &= \{ \text{perfect matchings of } n+n \text{ bipartite graph} \} \\ \pi(x) &\propto \prod_{e \in x} w_e \text{ with } w_e \stackrel{iid}{\sim} \text{LogNormal}(0, \lambda^2) \qquad \mathcal{N}(x) = \{ \text{switching two edges} \} \end{split}$$

 $Q_U(x,y) \propto \mathbb{1}_{N(x)}(y) \qquad Q_{\pi}(x,y) \propto \pi(y) \mathbb{1}_{N(x)}(y) \qquad Q_{\sqrt{\pi}}(x,y) \propto \sqrt{\pi(y)} \mathbb{1}_{N(x)}(y)$

Giacomo Zanella (Bocconi University)

Design of informed Metropolis-Hastings proposal distributions

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Example: sampling matchings

$$\begin{split} \Omega_n &= \{ \text{perfect matchings of } n \times n \text{ bipartite graph} \} \\ \pi(x) &\propto \prod_{e \in x} w_e \text{ with } w_e \stackrel{iid}{\sim} \text{LogNormal}(0, \lambda^2) \qquad \mathcal{N}(x) = \{ \text{swapping two edges} \} \end{split}$$

 $Q_U(x,y) \propto \mathbb{1}_{N(x)}(y) \qquad Q_{\pi}(x,y) \propto \pi(y) \mathbb{1}_{N(x)}(y) \qquad Q_{\sqrt{\pi}}(x,y) \propto \sqrt{\pi(y)} \mathbb{1}_{N(x)}(y)$

Giacomo Zanella (Bocconi University)

Design of informed Metropolis-Hastings proposal distributions

A > 4

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Example: Ising model

$$\begin{split} \Omega_n &= \{-1,1\}^V \quad \text{where } V \text{ is the } n \times n \text{ lattice} \\ \pi(x) &\propto \exp\{\lambda(\sum_{i \in V} \alpha_i x_i + \sum_{j \sim i} x_i x_j)\} \text{ with } \alpha_i \stackrel{iid}{\sim} \text{Unif}(-\sigma,\sigma) \\ N(x) &= \{\text{flipping one bit}\} \end{split}$$

 $Q_U(x,y) \propto \mathbb{1}_{N(x)}(y) \qquad Q_{\pi}(x,y) \propto \pi(y) \mathbb{1}_{N(x)}(y) \qquad Q_{\sqrt{\pi}}(x,y) \propto \sqrt{\pi(y)} \mathbb{1}_{N(x)}(y)$

Acceptance rates for target measures with increasing roughness

Optimal choice of locally-balanced proposal?

Question: is there an optimal choice of Q_g among the ones with g(t) = tg(1/t)? Many different choices of g lead to locally-balanced proposals

$$egin{aligned} g(t) &= \sqrt{t} & g(t) &= rac{t}{1+t} & g(t) &= 1 \wedge t \ \hline Q_g(x,y) \propto & \sqrt{\pi(y)} \mathcal{K}(x,y) & rac{\pi(y)}{\pi(x)+\pi(y)} \mathcal{K}(x,y) & \left(1 \wedge rac{\pi(y)}{\pi(x)}
ight) \mathcal{K}(x,y) \end{aligned}$$

Partial answers:

- Reminescent of choosing an expression for the acceptance probability in the accept/reject step. In that case the MH choice $1 \wedge \frac{\pi(y)}{\pi(x)}$ Peskun-dominates all others.
- In our case, there is no Peskun-ordering among couples of locally-balanced Q_g . Also, the restriction $g(t) \leq 1$, so the class of admissible g's in broader.
- In some simplified scenarios (e.g. $\{0,1\}^n$ with product target) the optimal choice turned out to be $g(t) = \frac{t}{1+t}$, i.e. $\frac{\pi(y)}{\pi(x)+\pi(y)}K(x,y)$
- In simulations, different locally-balanced proposals performed very similar.

Locally Balanced Proposals 00000 Peskun ordering

Connection to other schemes

Connection to MALA

In continuous spaces, to sample from Q_g , one needs to replace $\frac{\pi(y)}{\pi(x)}$ with some approximation $\tilde{\pi}_x(y)$.

E.g.: $\tilde{\pi}_x(y) = \exp\left(\nabla \log \pi(x)(y-x)\right)$ 1st-order Taylor expansion leads to MALA

NB: choice of g(t), $K_{\sigma}(x, dy)$ and approximation $\tilde{\pi}$ provide large flexibility.

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Application to Multiple-try MCMC

Original Multiple-Try kernel (MTM)¹

- 1. Sample $y_1, \ldots, y_N \stackrel{iid}{\sim} K_{\sigma}(x, \cdot)$
- 2. Choose y from (y_1, \ldots, y_N) with probabilities $\propto (\pi(y_1), \ldots, \pi(y_N))$
- 3. Sample $x_1^*, \ldots, x_{N-1}^* \stackrel{iid}{\sim} \mathcal{K}_\sigma(y, \cdot)$ and set $x_N^* = x$
- 4. Accept y with probability $1 \wedge \frac{\pi(x_1^*) + \dots + \pi(x_N^*)}{\pi(y_1) + \dots + \pi(y_N)}$

PROBLEM: as $N \to \infty$ MTM converges to MH with $Q_{\pi}(x, dy) \propto \pi(y) \mathcal{K}_{\sigma}(x, dy)$ \Rightarrow inherently mis-specified for local moves!

Locally Balanced Proposals 00000 Peskun ordering

Connection to other schemes

Application to Multiple-try MCMC

Original Multiple-Try kernel (MTM)¹

- 1. Sample $y_1, \ldots, y_N \stackrel{iid}{\sim} K_{\sigma}(x, \cdot)$
- 2. Choose y from (y_1, \ldots, y_N) with probabilities $\propto (\pi(y_1), \ldots, \pi(y_N))$
- 3. Sample $x_1^*, \ldots, x_{N-1}^* \stackrel{iid}{\sim} \mathcal{K}_\sigma(y, \cdot)$ and set $x_N^* = x$
- 4. Accept y with probability $1 \wedge \frac{\pi(x_1^*) + \dots + \pi(x_N^*)}{\pi(y_1) + \dots + \pi(y_N)}$

PROBLEM: as $N \to \infty$ MTM converges to MH with $Q_{\pi}(x, dy) \propto \pi(y) \mathcal{K}_{\sigma}(x, dy)$ \Rightarrow inherently mis-specified for local moves!

Locally balanced MTM kernel (Bal-MTM)

- 1. Sample $y_1, \ldots, y_N \stackrel{iid}{\sim} K_{\sigma}(x, \cdot)$
- 2. Choose y from (y_1, \ldots, y_N) with probabilities $\propto (\sqrt{\pi}(y_1), \ldots, \sqrt{\pi}(y_N))$
- 3. Sample $x_1^*, \ldots, x_{N-1}^* \stackrel{iid}{\sim} K_\sigma(y, \cdot)$ and set $x_N^* = x$
- 4. Accept y with probability $1 \wedge \frac{\sqrt{\pi}(y)}{\sqrt{\pi}(x)} \frac{\sqrt{\pi}(x_1^*) + \dots + \sqrt{\pi}(x_N^*)}{\sqrt{\pi}(y_1^*) + \dots + \sqrt{\pi}(y_N^*)}$

¹Liu&al.(2000)The multiple-try method and local optimization in metropolis sampling JASA C Giacomo Zanella (Bocconi University) Design of informed Metropolis-Hastings proposal distributions 1/08/2017 17 / 19

Locally Balanced Proposals 00000 Peskun ordering

Connection to other schemes

Example: 10⁴ dimensional target (iid t-student)

4 6 1 1 4

Locally Balanced Proposals

Peskun ordering

Connection to other schemes

Summary

- MCMC based on uninformed proposals (i.e. RWM) can be slow.
- Biasing proposals towards high-probability regions is a natural thing to do (e.g. gradient-based MCMC), but how this should be done is not obvious.
- Framework of locally-balanced proposal can provide useful guidance to design informed proposals, especially in discrete spaces.

Things which we didn't discuss:

- Approximate versions to achieve a good cost-vs-efficiency trade-off?
- Interpolation between $\sigma \downarrow 0$ and $\sigma \uparrow \infty$?
- Connections to continuous time versions

• . . .

References

G. Zanella, **Design of informed local proposals for MCMC in discrete spaces**. *In preparation*.

G. Zanella, Random Partition Models and Complementary clustering of Anglo-Saxon place-names. Annals of Applied Statistics, 2015.