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Introduction and motivation Locally Balanced Proposals Peskun ordering Connection to other schemes

Informed Proposals

Aim: sampling from a probability measure π defined on Ω

Metropolis-Hastings (MH) kernel

1. Sample y ∼ Q(x , ·)
2. Accept y with probability 1 ∧ α(x , y) where α(x , y) = π(y)Q(y ,x)

π(x)Q(x,y)

Uninformed proposals

“blind ′′proposal : Q(x , y) = Q(y , x)

⇓
small moves and slow mixing

vs Informed proposals

Q incorporates info about the target π

⇓
longer moves and better mixing

Question: How should we design an informed proposal Q?

Ideal choice would be Q(x , y) = π(y) but that’s typically unfeasible...
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Example: gradient-based MCMC

Framework: Ω = Rn, target π(x)dx

Typical uninformed proposal

→ (RWM) Qσ(x , ·) = N(x , σ2In)

How to design informed Q? Discretize π-rev. diffusion dXt = ∇ log π(Xt)
2 dt + dWt

→ (MALA) Qσ(x , ·) = N(x + σ2∇ log π(x)
2 , σ2In)

NB: by construction the bias towards high-probability regions is calibrated so that
Q is approximately π-reversible.
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Informed proposals in discrete spaces?
Ω finite state space
π(x) target measure
N(x) neighbourhood of x (e.g. Nσ(x) = {y ∈ Ω : d(x , y) ≤ σ})
Kσ(x , ·) = Unif(Nσ(x)) natural uninformed proposal

Example: sampling matchings

Ω = {perfect matchings of n + n bipartite graph}

π(x) ∝
∏
e∈x

we

N(x) = {y ‘s obtained by swapping two edges of x}

Informed proposal Q(x , ·)  non-uniform probability distribution on N(x).
How should we design such a distribution?

Is the localized version of π, i.e. Qπ(x , y) ∝ π(y)1N(x)(y), a good choice?
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Framework

Target distribution
Π(dx) = π(x)dx for some base measure dx

Natural uninformed kernel
A Markov transition kernel Kσ(x , dy) satisfying:

1. Kσ is dx-reversible

2. Kσ(x , ·)⇒ δx(·) as σ ↓ 0 and Kσ(x , dy)⇒ dy as σ ↑ ∞
Examples: Kσ(x , ·) = N(x , σ2In) or Kσ(x , ·) = Unif(Nσ(x))

Aim
Incorporate information from π into Kσ to obtain a good proposal Q to target π.
Equivalently: bias Kσ towards high-prob. regions of π in an appropriate way.
NB: would like to be fairly general in terms of π and Kσ.
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Heuristics

Naive informed proposal

Qπ(x , dy) =
π(y)Kσ(x , dy)

Zσ(x)
e.g . Qπ(x , y) =

π(y)1Nσ(x)(y)

π(Nσ(x))
or
π(y)e−

|x−y|2

2σ2

(Kσ ∗ π)(x)

Qπ looks reasonable for big σ because Qπ(x , dy)⇒ Π(dy) as σ ↑ ∞. What
happens for small σ?

Kσ dx-reversible implies Qπ reversible w.r.t. π(x)Zσ(x)

But Zσ = Kσ ∗ π and thus π(x)Zσ(x)⇒
{
π(x) if σ ↑ ∞ (Global move)
π(x)2 if σ ↓ 0 (Local move)

 Qπ is not appropriate to design local moves targeting π

Giacomo Zanella (Bocconi University) Design of informed Metropolis-Hastings proposal distributions 1/08/2017 5 / 19



Introduction and motivation Locally Balanced Proposals Peskun ordering Connection to other schemes

Heuristics

Simple fix: introduce a balancing function g , Qg(π)(x , dy) ∝ g(π(y))Kσ(x , dy)

Q√π(x , dy) =

√
π(y)Kσ(x , dy)

(
√
π ∗ Kσ)(x)

reversible w.r.t.
√
π(x)(

√
π ∗ kσ)(x)

σ↓0−→ π(x)

Q√π produces local moves that are asymptotically π-reversible as σ ↓ 0
 Q√π is appropriate to design local moves targeting π
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Locally balanced proposals

Class of proposals considered: “point-wise informed” proposals of the form

Qg ,σ(x , dy) ∝ g

(
π(y)

π(x)

)
Kσ(x , dy) for some g : R+ → R+

Definition: {Qσ(x , dy)}σ>0 is locally balanced if Qσ is Πσ-reversible and
Πσ ⇒ Π as σ ↓ 0.

Theorem: Let Kσ be dx-reversible and Kσ(x , ·)⇒ δx(·) as σ ↓ 0. Then
{Qg ,σ}σ>0 is locally balanced iff

g(t) = t g(1/t) ∀t > 0

NB: some regularity assumptions on g and π needed to guarantee integrability.
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Question: locally-balanced proposals are asymptotically π-reversible as σ ↓ 0.
Intuitively, this is a good features for a local Metropolis-Hastings proposal. Can
we say something more explicit in terms of efficiency of the induced MCMC ?

“Answer”: in high-dimensions locally-balanced proposals are maximal elements in
terms of Peskun ordering.
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Peskun Ordering

Lemma (Peskun ordering)
Let P1 and P2 be π-reversible Markov kernels on a finite Ω. If

P1(x , y) ≤ P2(x , y) ∀x 6= y (1)

then the Spectral Gaps and Asymptotic Variances of P1 and P2 satisfy

Gap(P1) ≤ Gap(P2)

Varπ(h,P1) ≥ Varπ(h,P2) ∀h : Ω→ R .

Intuition: if (1) holds, then P2 is more efficient than P1.
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Peskun Ordering

Lemma (Peskun ordering with constant)
Let P1 and P2 be π-reversible Markov kernels on a finite Ω. If

P1(x , y) ≤ c P2(x , y) ∀x 6= y (2)

for some c > 0, then the Spectral Gaps and Asymptotic Variances of P1 and P2

satisfy

Gap(P1) ≤ c Gap(P2)

Varπ(h,P1) ≥ c Varπ(h,P2) + (1− c)Varπ(h) ∀h : Ω→ R .

Intuition: if (2) holds, then P2 is 1
c -times more efficient than P1.
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Asymptotic Peskun ordering of locally balanced proposals

Consider Ω finite and K (x , ·) = Unif(N(x)). Given Zg (x) =
∑

y∈N(x) g
(
π(y)
π(x)

)
define

cg = sup
x∈Ω, y∈N(x)

Zg (y)

Zg (x)
≥ 1 .

Theorem
Let g : R+ → R+ and g̃(t) = min{g(t), t g(1/t)}. Then the MH kernels obtained
from the proposals Qg and Qg̃ respectively satisfy

Pg (x , y) ≤ c2
g Pg̃ (x , y) ∀ x 6= y .

Intuition: for every g there is a locally-bal. g̃ which is more efficient modulo c2
g .

Asymptotic regime
In many contexts cg → 1 as the dimension of Ω goes to infinity. In these cases
locally balanced proposals are asymptotically optimal in the Peskun sense
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Example: sampling matchings
Ωn = {perfect matchings of n + n bipartite graph}
π(x) ∝

∏
e∈x we with we

iid∼ LogNormal(0, λ2) N(x) = {switching two edges}

QU(x , y) ∝ 1N(x)(y) Qπ(x , y) ∝ π(y)1N(x)(y) Q√π(x , y) ∝
√
π(y)1N(x)(y)
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Example: Ising model
Ωn = {−1, 1}V where V is the n × n lattice

π(x) ∝ exp{λ(
∑

i∈V αixi +
∑

j∼i xixj)} with αi
iid∼ Unif(−σ, σ)

N(x) = {flipping one bit}

QU(x , y) ∝ 1N(x)(y) Qπ(x , y) ∝ π(y)1N(x)(y) Q√π(x , y) ∝
√
π(y)1N(x)(y)
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Optimal choice of locally-balanced proposal?

Question: is there an optimal choice of Qg among the ones with g(t) = tg(1/t)?
Many different choices of g lead to locally-balanced proposals

g(t) =
√
t g(t) = t

1+t g(t) = 1 ∧ t

Qg (x , y) ∝
√
π(y)K (x , y) π(y)

π(x)+π(y)K (x , y)
(

1 ∧ π(y)
π(x)

)
K (x , y)

Partial answers:

• Reminescent of choosing an expression for the acceptance probability in the

accept/reject step. In that case the MH choice 1 ∧ π(y)
π(x) Peskun-dominates all

others.

• In our case, there is no Peskun-ordering among couples of locally-balanced
Qg . Also, the restriction g(t) ≤ 1, so the class of admissible g ’s in broader.

• In some simplified scenarios (e.g. {0, 1}n with product target) the optimal

choice turned out to be g(t) = t
1+t , i.e. π(y)

π(x)+π(y)K (x , y)

• In simulations, different locally-balanced proposals performed very similar.
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Connection to MALA

In continuous spaces, to sample from Qg , one needs to replace π(y)
π(x) with some

approximation π̃x(y).

E.g.: π̃x(y) = exp (∇ log π(x)(y − x)) 1st-order Taylor expansion leads to MALA

QMALA(x , y) = N(x + σ2∇ log π(x)

2
, σ2In)

∝
√

exp (∇ log π(x)(y − x))exp

(
|y − x |2

2σ2

)
=
√
π̃x(y)Kσ(x , dy)

NB: choice of g(t), Kσ(x , dy) and approximation π̃ provide large flexibility.
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Application to Multiple-try MCMC
Original Multiple-Try kernel (MTM)1

1. Sample y1, . . . , yN
iid∼ Kσ(x , ·)

2. Choose y from (y1, . . . , yN) with probabilities ∝ (π(y1), . . . , π(yN))

3. Sample x∗1 , . . . , x
∗
N−1

iid∼ Kσ(y , ·) and set x∗N = x

4. Accept y with probability 1 ∧ π(x∗1 )+···+π(x∗N )
π(y1)+···+π(yN )

PROBLEM: as N →∞ MTM converges to MH with Qπ(x , dy) ∝ π(y)Kσ(x , dy)
⇒ inherently mis-specified for local moves!

Locally balanced MTM kernel (Bal-MTM)

1. Sample y1, . . . , yN
iid∼ Kσ(x , ·)

2. Choose y from (y1, . . . , yN) with probabilities ∝ (
√
π(y1), . . . ,

√
π(yN))

3. Sample x∗1 , . . . , x
∗
N−1

iid∼ Kσ(y , ·) and set x∗N = x

4. Accept y with probability 1 ∧
√
π(y)√
π(x)

√
π(x∗1 )+···+

√
π(x∗N )√

π(y∗1 )+···+
√
π(y∗N )

1Liu&al.(2000)The multiple-try method and local optimization in metropolis sampling. JASA
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Example: 104 dimensional target (iid t-student)
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Summary
• MCMC based on uninformed proposals (i.e. RWM) can be slow.

• Biasing proposals towards high-probability regions is a natural thing to do
(e.g. gradient-based MCMC), but how this should be done is not obvious.

• Framework of locally-balanced proposal can provide useful guidance to design
informed proposals, especially in discrete spaces.

Things which we didn’t discuss:

• Approximate versions to achieve a good cost-vs-efficiency trade-off?

• Interpolation between σ ↓ 0 and σ ↑ ∞?

• Connections to continuous time versions

• . . .
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