Cutoff for SRW on Ramanujan graphs via degree inflation Jonathan Hermon

Goals

■ Lubetzky \& Peres (15) - SRW on Ramanujan graphs exhibits cutoff.

- We give a short alternative proof exploiting hit-mix connections.

General Reversible MCs - Notation

- Transition matrix - P.
- Stationary dist. - π.
- State space Ω.

■ Reversibility: $\pi(x) P(x, y)=\pi(y) P(y, x)$ for all x, y.

- The hitting-time of $A \subset \Omega$ is $T_{A}:=\inf \left\{t: X_{t} \in A\right\}$.

Expander graphs

- P transition matrix of SRW on a graph G.
- $\lambda_{i}-i$ th largest e.v. of P.

■ Expander family - a seq. of reg. graphs G_{n} with

$$
\sup _{n} \lambda_{2}\left(G_{n}\right)<1
$$

Expander graphs

- P transition matrix of SRW on a graph G.
- $\lambda_{i}-i$ th largest e.v. of P.

■ Expander family - a seq. of reg. graphs G_{n} with

$$
\sup _{n} \lambda_{2}\left(G_{n}\right)<1
$$

■ Alon-Milman (85) - equivalent to lack of sparse cuts (discrete Cheeger's ineq.).

Expander graphs

- P transition matrix of SRW on a graph G.
- λ_{i} - i th largest e.v. of P.

■ Expander family - a seq. of reg. graphs G_{n} with

$$
\sup \lambda_{2}\left(G_{n}\right)<1
$$

■ Alon-Milman (85) - equivalent to lack of sparse cuts (discrete Cheeger's ineq.).

- Best "infinite expander" - the d-ary tree \mathbb{T}_{d}.

$$
\rho_{d}:=\text { spectral-radius of SRW on } \mathbb{T}_{d}=\frac{2 \sqrt{d-1}}{d}
$$

- Alon-Boppana (86) $-\lambda_{2}(G) \geqslant \rho_{d}-o(1)$.

Motivation - Expander graphs and cutoff

- δ-TV mixing time

$$
t_{\operatorname{mix}}(\delta):=\inf \left\{k: \frac{1}{2} \sum_{u}\left|P^{k}(v, u)-\pi(u)\right| \leqslant \delta \text { for all } v\right\} .
$$

■ Easy fact - For an n-vertex d-regular expander, mixing in TV of SRW is not "very gradual": i.e. for some $o(1)$ terms

$$
\begin{gathered}
t_{\text {mix }}(1-o(1)) \geqslant(1-o(1)) \frac{d}{d-2} \log _{d-1} n \\
t_{\text {mix }}(1 / n) \leqslant 2\left(1-\lambda_{2}\right)^{-1} \log n
\end{gathered}
$$

Motivation - Expander graphs and cutoff

- δ-TV mixing time

$$
t_{\text {mix }}(\delta):=\inf \left\{k: \frac{1}{2} \sum_{u}\left|P^{k}(v, u)-\pi(u)\right| \leqslant \delta \text { for all } v\right\} .
$$

■ Easy fact - For an n-vertex d-regular expander, mixing in TV of SRW is not "very gradual": i.e. for some $o(1)$ terms

$$
\begin{gathered}
t_{\text {mix }}(1-o(1)) \geqslant(1-o(1)) \frac{d}{d-2} \log _{d-1} n \\
t_{\text {mix }}(1 / n) \leqslant 2\left(1-\lambda_{2}\right)^{-1} \log n
\end{gathered}
$$

■ Conjecture (Peres (04)) - SRW on transitive expanders exhibits cutoff:

$$
t_{\text {mix }}(1-o(1))=(1+o(1)) t_{\text {mix }}(o(1))
$$

- Until (15) not a single such example was understood!

Ramanujan graphs

■ Ramanujan graph - A connected $3 \leqslant d$-reg graph with all non-unit e.v.'s (of P) in $\left[-\rho_{d}, \rho_{d}=\frac{2 \sqrt{d-1}}{d}\right]$ ("optimal expanders" by AB).

- Used in quantum computing and in constructions of codes with some extremal properties.

Ramanujan graphs

■ Ramanujan graph - A connected $3 \leqslant d$-reg graph with all non-unit e.v.'s (of P) in $\left[-\rho_{d}, \rho_{d}=\frac{2 \sqrt{d-1}}{d}\right]$ ("optimal expanders" by AB).

- Used in quantum computing and in constructions of codes with some extremal properties.
- Constructions: Lubotzky, Phillips, Sarnak (88), Margulis (88) - for $d-1=$ prime, Morgenstern (94) - for $d-1=$ prime power.
- Marcus, Spielman, Srivastava (13) - existence for all d.

Ramanujan graphs

■ Ramanujan graph - A connected $3 \leqslant d$-reg graph with all non-unit e.v.'s (of P) in $\left[-\rho_{d}, \rho_{d}=\frac{2 \sqrt{d-1}}{d}\right]$ ("optimal expanders" by AB).

■ Used in quantum computing and in constructions of codes with some extremal properties.

- Constructions: Lubotzky, Phillips, Sarnak (88), Margulis (88) - for $d-1=$ prime, Morgenstern (94) - for $d-1=$ prime power.
- Marcus, Spielman, Srivastava (13) - existence for all d.
- A seq. of connected d-reg. G_{n} is almost Ramanujan if all e.v.s lie in

$$
\left[-\rho_{d}^{1+o(1)}, \rho_{d}^{1+o(1)}\right] \cup\{ \pm 1\} .
$$

■ Friedman (01) - A seq. of random d-reg. graphs of increasing sizes is w.h.p. almost Ramanujan (conjectured by Alon).

Diameter lower bound on TV mixing

■ $G d$-reg. $\Longrightarrow \operatorname{Diameter}(G) \geqslant \log _{d-1} n$.
■ The "average speed" of SRW is $\leqslant \frac{d-2}{d}\left(\right.$ sharp for $\left.\mathbb{T}_{d}\right)$.
$■ \Longrightarrow$ To "see" at least εn vertices the walk needs

$$
\frac{d}{d-2} \log _{d-1}(\varepsilon n) \approx \frac{d}{d-2} \log _{d-1} n
$$

steps.
■ For a d-ary tree of size n, SRW starting from the root exhibit abrupt convergence around time $\frac{d}{d-2} \log _{d-1} n$.

Cutoff for Ramanujan graphs

Lemma (Easy diameter lower bound - Lubetzky \& Peres (15))
Let G be an n-vertex $d \geqslant 3$-regular graph. Then SRW on G satisfies: ${ }^{2}$

$$
\begin{equation*}
\forall \varepsilon \in(0,1), \quad t_{\mathrm{mix}}(\varepsilon \pm o(1)) \geqslant \frac{d}{d-2} \log _{d-1} n+c_{d, \varepsilon} \sqrt{\log _{d-1} n} \tag{1}
\end{equation*}
$$

$$
{ }^{a} c_{d, \varepsilon}:=\frac{d \rho_{d}}{(d-2)^{3 / 2}} \Phi^{-1}(1-\varepsilon) .
$$

Cutoff for Ramanujan graphs

Lemma (Easy diameter lower bound - Lubetzky \& Peres (15))
Let G be an n-vertex $d \geqslant 3$-regular graph. Then SRW on G satisfies. ${ }^{a}$

$$
\begin{equation*}
\forall \varepsilon \in(0,1), \quad t_{\text {mix }}(\varepsilon \pm o(1)) \geqslant \frac{d}{d-2} \log _{d-1} n+c_{d, \varepsilon} \sqrt{\log _{d-1} n} \tag{1}
\end{equation*}
$$

$$
{ }^{a} c_{d, \varepsilon}:=\frac{d \rho_{d}}{(d-2)^{3 / 2}} \Phi^{-1}(1-\varepsilon)
$$

Theorem (LP (15))
If G is Ramanujan then (1) holds also with \leqslant instead of \geqslant (i.e. cutoff at time $\frac{d}{d-2} \log _{d-1} n$).

Cutoff for Ramanujan graphs

Lemma (Easy diameter lower bound - Lubetzky \& Peres (15))
Let G be an n-vertex $d \geqslant 3$-regular graph. Then SRW on G satisfies. ${ }^{a}$

$$
\begin{equation*}
\forall \varepsilon \in(0,1), \quad t_{\operatorname{mix}}(\varepsilon \pm o(1)) \geqslant \frac{d}{d-2} \log _{d-1} n+c_{d, \varepsilon} \sqrt{\log _{d-1} n} . \tag{1}
\end{equation*}
$$

$$
{ }^{a} c_{d, \varepsilon}:=\frac{d \rho_{d}}{(d-2)^{3 / 2}} \Phi^{-1}(1-\varepsilon)
$$

Theorem (LP (15))

If G is Ramanujan then (1) holds also with \leqslant instead of \geqslant (i.e. cutoff at time $\frac{d}{d-2} \log _{d-1} n$).

Corollary
For an n-vertex d-reg. Ramanujan graph, for all x all but $o(n)$ vertices are within distance $(1+o(1)) \log _{d-1} n$ from x.

Motivation

- In this talk - an easy alt. proof assuming diverging girth ${ }^{12}$.

[^0]
Motivation

- In this talk - an easy alt. proof assuming diverging girth ${ }^{12}$.
- Observation - cutoff for almost Ramanujan is trivial if $d \rightarrow \infty$:

$$
\begin{aligned}
& \text { Proof: } \rho_{d}=\frac{2 \sqrt{d-1}}{d} \Longrightarrow \rho_{d}^{1+o(1)}=d^{-\frac{1}{2}+o(1)} \text {. Let } \\
& \qquad \begin{array}{c}
:=(1+\delta) \log _{d-1} n \sim \frac{1}{2}(1+\delta) \log _{\sqrt{d}} n \\
\Longrightarrow \rho_{d}^{2 t}=n^{-(1+\delta-o(1))},
\end{array}
\end{aligned}
$$

[^1]
Motivation

- In this talk - an easy alt. proof assuming diverging girth ${ }^{12}$.

■ Observation - cutoff for almost Ramanujan is trivial if $d \rightarrow \infty$:

$$
\begin{aligned}
& \text { Proof: } \rho_{d}=\frac{2 \sqrt{d-1}}{d} \Longrightarrow \rho_{d}^{1+o(1)}=d^{-\frac{1}{2}+o(1)} \text {. Let } \\
& \qquad \begin{array}{c}
t:=(1+\delta) \log _{d-1} n \sim \frac{1}{2}(1+\delta) \log _{\sqrt{d}} n \\
\Longrightarrow \rho_{d}^{2 t}=n^{-(1+\delta-o(1))},
\end{array}
\end{aligned}
$$

so by Poincaré's ineq.:

$$
\left\|\mathrm{P}_{x}^{t}-\pi\right\|_{2, \pi}^{2} \leqslant\left(\rho_{d}^{1+o(1)}\right)^{2 t}\left\|\mathrm{P}_{x}^{0}-\pi\right\|_{2, \pi}^{2} \approx \rho_{d}^{2 t}(n-1) \approx n^{-\delta} .
$$

[^2]
Cutoff for Ramanujan graphs

■ Def.: Given $G=(V, E)$, define $G(k)=(V, E(k))$ via

$$
E(k):=\{\{u, v\}: \operatorname{dist}(u, v)=k\} .
$$

- Assume $g:=\operatorname{girth}(G) \rightarrow \infty$.

Cutoff for Ramanujan graphs

■ Def.: Given $G=(V, E)$, define $G(k)=(V, E(k))$ via

$$
E(k):=\{\{u, v\}: \operatorname{dist}(u, v)=k\} .
$$

- Assume $g:=\operatorname{girth}(G) \rightarrow \infty$.
- Consider SRW on $G(k)$ for some $1<k<k g$.

■ Morally, cutoff for $G(k)$ around time t should imply cutoff for G around time $\frac{d}{d-2} k t$.
■ Want $G(k)$ to be almost Ramanujan and deduce cutoff for $G(k)$.

Cutoff for Ramanujan graphs

■ Def.: Given $G=(V, E)$, define $G(k)=(V, E(k))$ via

$$
E(k):=\{\{u, v\}: \operatorname{dist}(u, v)=k\} .
$$

- Assume $g:=\operatorname{girth}(G) \rightarrow \infty$.

■ Consider SRW on $G(k)$ for some $1<k<k g$.
■ Morally, cutoff for $G(k)$ around time t should imply cutoff for G around time $\frac{d}{d-2} k t$.
■ Want $G(k)$ to be almost Ramanujan and deduce cutoff for $G(k)$.

- We'll show something similar (bypassing the "morally") exploiting hit-mix machinery...

$t_{\text {mix }}$ and hitting times - under reversibility

- Aldous (83) - $t_{\text {mix }}=\max _{a, A} \pi(A) \mathbb{E}_{a}\left[T_{A}\right]$.

■ Peres \& Sousi and independently Oliveira $(12)^{3} t_{\text {mix }} \simeq \max _{a, A: \pi(A) \geqslant 1 / 2} \mathbb{E}_{a}\left[T_{A}\right]$.

[^3]
$t_{\text {mix }}$ and hitting times - under reversibility

■ Aldous (83) $-t_{\text {mix }} \asymp \max _{a, A} \pi(A) \mathbb{E}_{a}\left[T_{A}\right]$.

- Peres \& Sousi and independently Oliveira $(12)^{3} t_{\text {mix }} \simeq \max _{a, A: \pi(A) \geqslant 1 / 2} \mathbb{E}_{a}\left[T_{A}\right]$.

Figure: 2 copies of K_{n} connected by a single edge.

- $d_{\mathrm{TV}}(t) \sim \frac{1}{2} \mathrm{P}($ the other clique was not hit by time t$) \Longrightarrow$ maybe we should look at tails rather than on expectations!

[^4]
$t_{\text {mix }}$ and hitting times - under reversibility

■ Let $0<\varepsilon<1$.

$$
\operatorname{hit}_{\alpha}(\varepsilon):=\min \left\{t: \mathrm{P}_{a}\left[T_{A^{c}}>t\right] \leqslant \varepsilon: \text { for all } a \in A \subset \Omega \text { s.t. } \pi(A) \leqslant \alpha\right\}
$$

$=$ the first time by which every "small" (size $\leqslant \alpha$) set is escaped from w.p. $\geqslant 1-\varepsilon$.

- Basu, H., Peres (13) $-t_{\text {mix }}(\varepsilon) \approx \operatorname{hit}_{\frac{1}{2}}(\varepsilon)$.

$t_{\text {mix }}$ and hitting times - under reversibility

■ Let $0<\varepsilon<1$.

$$
\operatorname{hit}_{\alpha}(\varepsilon):=\min \left\{t: \mathrm{P}_{a}\left[T_{A^{c}}>t\right] \leqslant \varepsilon: \text { for all } a \in A \subset \Omega \text { s.t. } \pi(A) \leqslant \alpha\right\}
$$

$=$ the first time by which every "small" (size $\leqslant \alpha$) set is escaped from w.p. $\geqslant 1-\varepsilon$.

- Basu, H., Peres (13) $-t_{\text {mix }}(\varepsilon) \approx \operatorname{hit}_{\frac{1}{2}}(\varepsilon)$.

Why is this useful?

Using hit-mix connections we can:

- Can prove theoretical result about MCs.

■ Construct surprising counter-examples.

- Analyze mixing when we know what sets are hardest to hit (so far only trees).
- Analyze mixing when we can control hitting times of all large sets uniformly (Ramanujan).

More precisely

For any reversible finite chain, $0<\varepsilon<1$ and $0<\alpha<\min (\varepsilon, 1-\varepsilon)$

$$
\operatorname{hit}_{\alpha}(\varepsilon+\alpha)-\frac{8}{\lambda_{\mathrm{abs}}}|\log \alpha| \leqslant t_{\text {mix }}(\varepsilon) \leqslant \operatorname{hit}_{\alpha}(\varepsilon-\alpha)+\frac{8}{\lambda_{\mathrm{abs}}}|\log \alpha|
$$

■ Terms involving $\lambda_{\text {abs }}:=1-\max \left\{\lambda_{2},\left|\lambda_{|\Omega|}\right|\right\}$ are often negligible (and always $1 / \lambda_{\text {abs }} \leqslant t_{\text {mix }}$).

- Let P_{A} be the restriction of P to $A \subset \Omega$ (killed when escaping $\left.A\right)$.
- Let $\lambda(A)$ be the largest e.v. of P_{A}.

■ Let π_{A} be π conditioned on A.

Proof of cutoff for Ramanujan graphs

■ Consider SRW on $G(k)$ for some $1 \ll k \ll \sqrt{\text { girth. }}$
■ Let

$$
\alpha:=d^{-3 k^{2}}=o(1) .
$$

- If $\operatorname{hit}_{\alpha}(\alpha) \approx \frac{1}{k} \log _{d-1} n=: s$ for $G(k)$, then:

$$
\text { for } G: \operatorname{hit}_{\alpha}(\alpha+o(1)) \leqslant\left(\frac{d}{d-2} k\right) s=\frac{d}{d-2} \log _{d-1} n
$$

(up to $o(1)$ terms on r.h.s.).
$■$ cutoff for SRW on G.

Application - Cutoff for Ramanujan graphs

- Back to $G(k)$ - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$
\sum_{b \in A} \pi_{A}(b)\left(\mathrm{P}_{b}\left[T_{A^{c}}>t\right]\right)^{2}=\left\|K_{A}^{t} 1_{A}\right\|_{2, A}^{2} \leqslant\left[\lambda_{K}(A)\right]^{2 t}
$$

Application - Cutoff for Ramanujan graphs

■ Back to $G(k)$ - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$
\sum_{b \in A} \pi_{A}(b)\left(\mathrm{P}_{b}\left[T_{A^{c}}>t\right]\right)^{2}=\left\|K_{A}^{t} 1_{A}\right\|_{2, A}^{2} \leqslant\left[\lambda_{K}(A)\right]^{2 t}
$$

$■ \Longrightarrow\left(\mathrm{P}_{a}\left[T_{A^{c}}>t\right]\right)^{2} \leqslant n\left[\lambda_{K}(A)\right]^{2 t}$. We are done if $\lambda_{K}(A) \leqslant d^{-\frac{k}{2}(1-o(1))}$.

- Will show this via a simple comparison technique:

Application - Cutoff for Ramanujan graphs

■ Back to $G(k)$ - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$
\sum_{b \in A} \pi_{A}(b)\left(\mathrm{P}_{b}\left[T_{A^{c}}>t\right]\right)^{2}=\left\|K_{A}^{t} 1_{A}\right\|_{2, A}^{2} \leqslant\left[\lambda_{K}(A)\right]^{2 t}
$$

$\square \Longrightarrow\left(\mathrm{P}_{a}\left[T_{A^{c}}>t\right]\right)^{2} \leqslant n\left[\lambda_{K}(A)\right]^{2 t}$. We are done if $\lambda_{K}(A) \leqslant d^{-\frac{k}{2}(1-o(1))}$.
■ Will show this via a simple comparison technique:

Proposition

Let P and Q be reversible w.r.t. π. Assume $K(x, y) \leqslant C Q(x, y)$ for all x, y.

$$
\lambda_{K}(A) \leqslant C \lambda_{Q}(A)
$$

($\lambda_{K}(A)$ and $\lambda_{Q}(A)$ - largest eigenvalues of K_{A} and Q_{A}, resp.).

Application - Cutoff for Ramanujan graphs

- Back to $G(k)$ - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$
\sum_{b \in A} \pi_{A}(b)\left(\mathrm{P}_{b}\left[T_{A^{c}}>t\right]\right)^{2}=\left\|K_{A}^{t} 1_{A}\right\|_{2, A}^{2} \leqslant\left[\lambda_{K}(A)\right]^{2 t}
$$

$■ \Longrightarrow\left(\mathrm{P}_{a}\left[T_{A^{c}}>t\right]\right)^{2} \leqslant n\left[\lambda_{K}(A)\right]^{2 t}$. We are done if $\lambda_{K}(A) \leqslant d^{-\frac{k}{2}(1-o(1))}$.

- Will show this via a simple comparison technique:

Proposition

Let P and Q be reversible w.r.t. π. Assume $K(x, y) \leqslant C Q(x, y)$ for all x, y.

$$
\lambda_{K}(A) \leqslant C \lambda_{Q}(A)
$$

($\lambda_{K}(A)$ and $\lambda_{Q}(A)$ - largest eigenvalues of K_{A} and Q_{A}, resp.).
Proof: Denote $\langle f, g\rangle_{\pi_{A}}:=\sum_{x \in \Omega} \pi_{A}(x) g(x) f(x)$. By Perron-Frobenius

$$
\lambda_{P}(A)=\frac{\max _{f \in \mathbb{R}_{+}^{A}, f \neq 0}\left\langle K_{A} f, f\right\rangle_{\pi_{A}}}{\|f\|_{2, A}^{2}} \leqslant C \frac{\max _{f \in \mathbb{R}_{+}^{A}, f \neq 0}\left\langle Q_{A} f, f\right\rangle_{\pi_{A}}}{\|f\|_{2, A}^{2}}=C \lambda_{Q}(A) .
$$

Let $Q:=P^{k+2 k^{2}}$ (as before K SRW on $G(k)$). Let $A \subset V$ be s.t. $\pi(A) \leqslant \alpha=o(1)$.
Recall - want $\lambda_{K}(A) \leqslant(d-1)^{-\frac{k}{2}(1-o(1))}$.
By last Lemma: $\lambda_{K}(A) \leqslant \lambda_{Q}(A) /\left[\min _{x, y} K(x, y) / Q(x, y)\right]$.

Let $Q:=P^{k+2 k^{2}}$ (as before K SRW on $G(k)$). Let $A \subset V$ be s.t. $\pi(A) \leqslant \alpha=o(1)$.
Recall - want $\lambda_{K}(A) \leqslant(d-1)^{-\frac{k}{2}(1-o(1))}$.
By last Lemma: $\lambda_{K}(A) \leqslant \lambda_{Q}(A) /\left[\min _{x, y} K(x, y) / Q(x, y)\right]$.
General fact $-\lambda(A) \leqslant \pi(A)+\lambda_{2} \pi\left(A^{c}\right)$

$$
\Longrightarrow \lambda_{Q}(A) \leqslant \lambda_{2}^{k+2 k^{2}}+\alpha \leqslant 2 \rho_{d}^{k+2 k^{2}} .
$$

Let $Q:=P^{k+2 k^{2}}$ (as before K SRW on $\left.G(k)\right)$. Let $A \subset V$ be s.t. $\pi(A) \leqslant \alpha=o(1)$.
Recall - want $\lambda_{K}(A) \leqslant(d-1)^{-\frac{k}{2}(1-o(1))}$.
By last Lemma: $\lambda_{K}(A) \leqslant \lambda_{Q}(A) /\left[\min _{x, y} K(x, y) / Q(x, y)\right]$.
General fact - $\lambda(A) \leqslant \pi(A)+\lambda_{2} \pi\left(A^{c}\right)$

$$
\Longrightarrow \lambda_{Q}(A) \leqslant \lambda_{2}^{k+2 k^{2}}+\alpha \leqslant 2 \rho_{d}^{k+2 k^{2}} .
$$

Let x, y be adjacent in $G(k)$. Then

$$
Q(x, y)=\frac{1}{\text { number of such } y \text { 's }}\binom{k+2 k^{2}}{k^{2}}(d-1)^{k^{2}+k-o(k)} d^{-\left(k+2 k^{2}\right)}
$$

$=K(x, y) \cdot C_{k}$, where

$$
\begin{aligned}
C_{k} & :=2^{k+2 k^{2}}(d-1)^{k^{2}+k-o(k)} d^{-\left(k+2 k^{2}\right)}=\rho_{d}^{k+2 k^{2}}(d-1)^{\frac{k}{2}(1-o(1))} . \\
& \Longrightarrow \lambda_{K}(A) \leqslant \lambda_{Q}(A) / C_{k} \leqslant 2 \rho^{k+2 k^{2}} / C_{k}=(d-1)^{-\frac{k}{2}(1-o(1))}
\end{aligned}
$$

Unrelated hitting-time results

- (H., Peres (16)): The L_{∞} mixing-time started from $x \asymp$

$$
\min \left\{t: \mathrm{P}_{x}\left[T_{A^{c}}>t\right] \leqslant \pi(A): \text { for all } A \subset \Omega \text { s.t. } \pi(A) \leqslant 1 / 2\right\} .
$$

- Same for relative-entropy with $\frac{1}{|\log \pi(A)|}$ instead of $\pi(A)$.
- First sharp bounds!

Unrelated hitting-time results

- (H., Peres (16)): The L_{∞} mixing-time started from $x \asymp$

$$
\min \left\{t: \mathrm{P}_{x}\left[T_{A^{c}}>t\right] \leqslant \pi(A): \text { for all } A \subset \Omega \text { s.t. } \pi(A) \leqslant 1 / 2\right\} .
$$

- Same for relative-entropy with $\frac{1}{|\log \pi(A)|}$ instead of $\pi(A)$.
- First sharp bounds!
- $c_{\text {Log-Sobolev }}=\inf _{A: \pi(A) \leqslant 1 / 2}[1-\lambda(A)] /|\log \pi(A)|$

Applications - Positive results

- (Basu, H., Peres (13)): Characterize cutoff using hitting times.
- H. and Peres (15) - one lazy step mixes twice quicker than always being lazy.
- For (weighted RW on) trees:

■ Peres and Sousi (12) $-t_{\text {mix }}$ is robust ${ }^{4}$.

- H. and Peres (16) $-\tau_{\infty}$ is robust (and is $=\max \left(t_{\text {mix }}, 1 / c_{\text {Log-Sobolev }}\right)$).

■ BHP - cutoff iff (spectral-gap) $\times t_{\text {mix }} \rightarrow \infty$.

[^5] factor.

Negative results - counterexamples inspired by hit-mix connections

- Ding and Peres (12) - $t_{\text {mix }}$ is not robust.
- H. (16) $-\tau_{\infty}$ and $\tau_{\text {relative-entropy }}$ are not robust (resolves a conjuncture of Kozma; variants asked by various authors Aldous, Diaconis and Saloff-Coste).

■ H. and Peres (16) - separation cutoff may depend on the holding prob.!

Thank you!

[^0]: ${ }^{1}$ Enough that for some diverging k_{n}, every ball of radius k_{n} in G_{n} has $O(1)$ disjoint cycles.
 ${ }^{2}$ Always true for transitive Ramanujans of diverging sizes.

[^1]: ${ }^{1}$ Enough that for some diverging k_{n}, every ball of radius k_{n} in G_{n} has $O(1)$ disjoint cycles.
 ${ }^{2}$ Always true for transitive Ramanujans of diverging sizes.

[^2]: ${ }^{1}$ Enough that for some diverging k_{n}, every ball of radius k_{n} in G_{n} has $O(1)$ disjoint cycles.
 ${ }^{2}$ Always true for transitive Ramanujans of diverging sizes.

[^3]: ${ }^{3}+$ an extension by Griffiths et al. (2012) for size exactly $1 / 2$.

[^4]: ${ }^{3}+$ an extension by Griffiths et al. (2012) for size exactly $1 / 2$.

[^5]: ${ }^{4}$ A parameter is robust if changing the edge-weights by a bounded amount can change it only by a constant

