Cutoff for SRW on Ramanujan graphs via degree inflation Jonathan Hermon

- Lubetzky & Peres (15) SRW on Ramanujan graphs exhibits cutoff.
- We give a short alternative proof exploiting hit-mix connections.

- Transition matrix *P*.
- Stationary dist. π .
- State space Ω .
- **Reversibility:** $\pi(x)P(x,y) = \pi(y)P(y,x)$ for all x, y.
- The hitting-time of $A \subset \Omega$ is $T_A := \inf\{t : X_t \in A\}$.

Expander graphs

- \blacksquare *P* transition matrix of SRW on a graph *G*.
- \land λ_i *i*th largest e.v. of *P*.
- **Expander family** a seq. of reg. graphs G_n with

 $\sup_n \lambda_2(G_n) < 1.$

Expander graphs

- \blacksquare *P* transition matrix of SRW on a graph *G*.
- λ_i *i*th largest e.v. of *P*.
- **Expander family** a seq. of reg. graphs G_n with

 $\sup_{n} \lambda_2(G_n) < 1.$

Alon-Milman (85) - equivalent to lack of sparse cuts (discrete Cheeger's ineq.).

Expander graphs

- \blacksquare *P* transition matrix of SRW on a graph *G*.
- λ_i *i*th largest e.v. of *P*.
- **Expander family** a seq. of reg. graphs G_n with

$$\sup_{n} \lambda_2(G_n) < 1.$$

- Alon-Milman (85) equivalent to lack of sparse cuts (discrete Cheeger's ineq.).
- Best "infinite expander" the *d*-ary tree \mathbb{T}_d .

$$\rho_d := \text{spectral-radius of SRW on } \mathbb{T}_d = \frac{2\sqrt{d-1}}{d}.$$

```
Alon-Boppana (86) - \lambda_2(G) \ge \rho_d - o(1).
```

Motivation - Expander graphs and cutoff

δ-TV mixing time

$$t_{\min}(\delta) := \inf\{k : \frac{1}{2} \sum_{u} |P^k(v, u) - \pi(u)| \leq \delta \text{ for all } v\}.$$

Easy fact - For an *n*-vertex *d*-regular expander, mixing in TV of SRW is not "very gradual": i.e. for some o(1) terms

$$t_{\min}(1 - o(1)) \ge (1 - o(1))\frac{d}{d - 2}\log_{d - 1} n.$$
$$t_{\min}(1/n) \le 2(1 - \lambda_2)^{-1}\log n.$$

Motivation - Expander graphs and cutoff

δ-TV mixing time

$$t_{\min}(\delta) := \inf\{k : \frac{1}{2} \sum_{u} |P^k(v, u) - \pi(u)| \leq \delta \text{ for all } v\}.$$

Easy fact - For an *n*-vertex *d*-regular expander, mixing in TV of SRW is not "very gradual": i.e. for some o(1) terms

$$t_{\min}(1 - o(1)) \ge (1 - o(1))\frac{d}{d - 2}\log_{d - 1} n.$$
$$t_{\min}(1/n) \le 2(1 - \lambda_2)^{-1}\log n.$$

Conjecture (Peres (04)) - SRW on transitive expanders exhibits cutoff:

$$t_{\min}(1 - o(1)) = (1 + o(1))t_{\min}(o(1)).$$

Until (15) not a single such example was understood!

Ramanujan graphs

- **Ramanujan graph** A connected $3 \le d$ -reg graph with all non-unit e.v.'s (of *P*) in $\left[-\rho_d, \rho_d = \frac{2\sqrt{d-1}}{d}\right]$ ("optimal expanders" by AB).
- Used in quantum computing and in constructions of codes with some extremal properties.

Ramanujan graphs

- **Ramanujan graph** A connected $3 \le d$ -reg graph with all non-unit e.v.'s (of *P*) in $\left[-\rho_d, \rho_d = \frac{2\sqrt{d-1}}{d}\right]$ ("optimal expanders" by AB).
- Used in quantum computing and in constructions of codes with some extremal properties.
- Constructions: Lubotzky, Phillips, Sarnak (88), Margulis (88) for d 1 = prime, Morgenstern (94) for d 1 = prime power.
- Marcus, Spielman, Srivastava (13) existence for all d.

Ramanujan graphs

- **Ramanujan graph** A connected $3 \le d$ -reg graph with all non-unit e.v.'s (of *P*) in $\left[-\rho_d, \rho_d = \frac{2\sqrt{d-1}}{d}\right]$ ("optimal expanders" by AB).
- Used in quantum computing and in constructions of codes with some extremal properties.
- Constructions: Lubotzky, Phillips, Sarnak (88), Margulis (88) for d 1 = prime, Morgenstern (94) for d 1 = prime power.
- Marcus, Spielman, Srivastava (13) existence for all *d*.
- A seq. of connected *d*-reg. G_n is **almost Ramanujan** if all e.v.'s lie in

$$[-\rho_d^{1+o(1)},\rho_d^{1+o(1)}]\cup\{\pm 1\}.$$

Friedman (01) - A seq. of random d-reg. graphs of increasing sizes is w.h.p. almost Ramanujan (conjectured by Alon).

Diameter lower bound on TV mixing

■
$$G d$$
-reg. \Longrightarrow Diameter $(G) \ge \log_{d-1} n$.

The "average speed" of SRW is $\leq \frac{d-2}{d}$ (sharp for \mathbb{T}_d).

 $\blacksquare \Longrightarrow$ To "see" at least εn vertices the walk needs

$$\frac{d}{d-2}\log_{d-1}(\varepsilon n) \approx \frac{d}{d-2}\log_{d-1} n.$$

steps.

■ For a *d*-ary tree of size *n*, SRW starting from the root exhibit abrupt convergence around time ^d/_{d-2} log_{d-1} *n*.

Lemma (Easy diameter lower bound - Lubetzky & Peres (15))

Let G be an n-vertex $d \ge 3$ -regular graph. Then SRW on G satisfies.^a

$$\forall \varepsilon \in (0,1), \quad t_{\min}(\varepsilon \pm o(1)) \geqslant \frac{d}{d-2} \log_{d-1} n + c_{d,\varepsilon} \sqrt{\log_{d-1} n}.$$

$$^{a}c_{d,\varepsilon} := \frac{d\rho_{d}}{(d-2)^{3/2}} \Phi^{-1}(1-\varepsilon).$$
(1)

Lemma (Easy diameter lower bound - Lubetzky & Peres (15))

Let G be an n-vertex $d \ge 3$ -regular graph. Then SRW on G satisfies.^a

$$\forall \varepsilon \in (0,1), \quad t_{\min}(\varepsilon \pm o(1)) \ge \frac{d}{d-2} \log_{d-1} n + c_{d,\varepsilon} \sqrt{\log_{d-1} n}.$$

$$ac_{d,\varepsilon} := \frac{d\rho_d}{(d-2)^{3/2}} \Phi^{-1}(1-\varepsilon).$$
(1)

Theorem (LP (15))

If G is Ramanujan then (1) holds also with \leq instead of \geq (i.e. cutoff at time $\frac{d}{d-2} \log_{d-1} n$).

Lemma (Easy diameter lower bound - Lubetzky & Peres (15))

Let G be an n-vertex $d \ge 3$ -regular graph. Then SRW on G satisfies.^a

$$\forall \varepsilon \in (0,1), \quad t_{\min}(\varepsilon \pm o(1)) \ge \frac{d}{d-2} \log_{d-1} n + c_{d,\varepsilon} \sqrt{\log_{d-1} n}.$$
(1)

 ${}^{a}c_{d,\varepsilon} := \frac{d\rho_d}{(d-2)^{3/2}} \Phi^{-1}(1-\varepsilon).$

Theorem (LP (15))

If G is Ramanujan then (1) holds also with \leq instead of \geq (i.e. cutoff at time $\frac{d}{d-2} \log_{d-1} n$).

Corollary

For an *n*-vertex *d*-reg. Ramanujan graph, for all *x* all but o(n) vertices are within distance $(1 + o(1)) \log_{d-1} n$ from *x*.

Motivation

■ In this talk - an easy alt. proof assuming diverging girth¹².

¹Enough that for some diverging k_n , every ball of radius k_n in G_n has O(1) disjoint cycles. ²Always true for transitive Ramanujans of diverging sizes.

Motivation

- In this talk an easy alt. proof assuming diverging girth¹².
- Observation cutoff for almost Ramanujan is trivial if $d \rightarrow \infty$:

Proof:
$$\rho_d = \frac{2\sqrt{d-1}}{d} \Longrightarrow \rho_d^{1+o(1)} = d^{-\frac{1}{2}+o(1)}$$
. Let
 $t := (1+\delta)\log_{d-1}n \sim \frac{1}{2}(1+\delta)\log_{\sqrt{d}}n$
 $\Longrightarrow \rho_d^{2t} = n^{-(1+\delta-o(1))},$

¹Enough that for some diverging k_n , every ball of radius k_n in G_n has O(1) disjoint cycles. ²Always true for transitive Ramanujans of diverging sizes.

Motivation

- In this talk an easy alt. proof assuming diverging girth¹².
- Observation cutoff for almost Ramanujan is trivial if $d \rightarrow \infty$:

Proof:
$$\rho_d = \frac{2\sqrt{d-1}}{d} \Longrightarrow \rho_d^{1+o(1)} = d^{-\frac{1}{2}+o(1)}$$
. Let

$$t := (1+\delta) \log_{d-1} n \sim \frac{1}{2}(1+\delta) \log_{\sqrt{d}} n$$

$$\Longrightarrow \quad \rho_d^{2t} = n^{-(1+\delta-o(1))},$$

so by Poincaré's ineq .:

$$\|\mathbf{P}_x^t - \pi\|_{2,\pi}^2 \leqslant (\rho_d^{1+o(1)})^{2t} \|\mathbf{P}_x^0 - \pi\|_{2,\pi}^2 \approx \rho_d^{2t}(n-1) \approx n^{-\delta}.$$

¹Enough that for some diverging k_n , every ball of radius k_n in G_n has O(1) disjoint cycles. ²Always true for transitive Ramanujans of diverging sizes.

Def.: Given G = (V, E), define G(k) = (V, E(k)) via

$$E(k) := \{\{u, v\} : \operatorname{dist}(u, v) = k\}.$$

• Assume
$$g := girth(G) \rightarrow \infty$$
.

Def.: Given
$$G = (V, E)$$
, define $G(k) = (V, E(k))$ via

$$E(k) := \{\{u, v\} : \operatorname{dist}(u, v) = k\}.$$

Assume
$$g := girth(G) \rightarrow \infty$$
.

- Consider SRW on G(k) for some $1 \ll k \ll g$.
- Morally, cutoff for G(k) around time t should imply cutoff for G around time $\frac{d}{d-2}kt$.
- Want G(k) to be almost Ramanujan and deduce cutoff for G(k).

Def.: Given
$$G = (V, E)$$
, define $G(k) = (V, E(k))$ via

$$E(k) := \{\{u, v\} : \operatorname{dist}(u, v) = k\}.$$

Assume
$$g := girth(G) \rightarrow \infty$$
.

- Consider SRW on G(k) for some $1 \ll k \ll g$.
- Morally, cutoff for G(k) around time t should imply cutoff for G around time $\frac{d}{d-2}kt$.
- Want G(k) to be almost Ramanujan and deduce cutoff for G(k).
- We'll show something similar (bypassing the "morally") exploiting hit-mix machinery...

$t_{\rm mix}$ and hitting times - under reversibility

- Aldous (83) $t_{\min} \simeq \max_{a,A} \pi(A) \mathbb{E}_a[T_A]$.
- Peres & Sousi and independently Oliveira (12)³ $t_{\text{mix}} \simeq \max_{a,A:\pi(A) \ge 1/2} \mathbb{E}_a[T_A]$.

 $^{^{3}}$ + an extension by Griffiths et al. (2012) for size exactly 1/2.

$t_{\rm mix}$ and hitting times - under reversibility

- Aldous (83) $t_{\min} \simeq \max_{a,A} \pi(A) \mathbb{E}_a[T_A]$.
- Peres & Sousi and independently Oliveira (12)³ $t_{\text{mix}} \simeq \max_{a,A:\pi(A) \ge 1/2} \mathbb{E}_a[T_A]$.

Figure: 2 copies of K_n connected by a single edge.

■ $d_{TV}(t) \sim \frac{1}{2} P$ (the other clique was not hit by time t) \implies maybe we should look at tails rather than on expectations!

 $^{^{3}}$ + an extension by Griffiths et al. (2012) for size exactly 1/2.

• Let $0 < \varepsilon < 1$.

 $\operatorname{hit}_{\alpha}(\varepsilon) := \min\{t : \operatorname{P}_{a}[T_{A^{c}} > t] \leqslant \varepsilon : \text{for all } a \in A \subset \Omega \text{ s.t. } \pi(A) \leqslant \alpha\}$

= the first time by which every "small" (size $\leq \alpha$) set is escaped from w.p. $\geq 1 - \varepsilon$.

Basu, H., Peres (13) - $t_{\text{mix}}(\varepsilon) \approx \text{hit}_{\frac{1}{2}}(\varepsilon)$.

• Let $0 < \varepsilon < 1$.

 $\operatorname{hit}_{\alpha}(\varepsilon) := \min\{t : \operatorname{P}_{a}[T_{A^{c}} > t] \leqslant \varepsilon : \text{for all } a \in A \subset \Omega \text{ s.t. } \pi(A) \leqslant \alpha\}$

= the first time by which every "small" (size $\leq \alpha$) set is escaped from w.p. $\geq 1 - \varepsilon$.

Basu, H., Peres (13) - $t_{\text{mix}}(\varepsilon) \approx \text{hit}_{\frac{1}{2}}(\varepsilon)$.

Using hit-mix connections we can:

- Can prove theoretical result about MCs.
- Construct surprising counter-examples.
- Analyze mixing when we know what sets are hardest to hit (so far only trees).
- Analyze mixing when we can control hitting times of all large sets uniformly (Ramanujan).

For any reversible finite chain, $0 < \varepsilon < 1$ and $0 < \alpha < \min(\varepsilon, 1 - \varepsilon)$

$$\operatorname{hit}_{\alpha}(\varepsilon + \alpha) - \underbrace{\frac{8}{\lambda_{\operatorname{abs}}} |\log \alpha|}_{\varepsilon \operatorname{abs}} \leqslant t_{\operatorname{mix}}(\varepsilon) \leqslant \operatorname{hit}_{\alpha}(\varepsilon - \alpha) + \underbrace{\frac{8}{\lambda_{\operatorname{abs}}} |\log \alpha|}_{\varepsilon \operatorname{abs}}$$

Terms involving $\lambda_{abs} := 1 - \max\{\lambda_2, |\lambda_{|\Omega|}|\}$ are often negligible (and always $1/\lambda_{abs} \leq t_{mix}$).

- Let P_A be the restriction of P to $A \subset \Omega$ (killed when escaping A).
- Let $\lambda(A)$ be the largest e.v. of P_A .
- Let π_A be π conditioned on A.

Consider SRW on G(k) for some $1 \ll k \ll \sqrt{\text{girth}}$.

Let

$$\alpha := d^{-3k^2} = o(1).$$

If $hit_{\alpha}(\alpha) \approx \frac{1}{k} \log_{d-1} n =: s$ for G(k), then:

for G:
$$\operatorname{hit}_{\alpha}(\alpha + o(1)) \leq (\frac{d}{d-2}k)s = \frac{d}{d-2}\log_{d-1}n$$

(up to o(1) terms on r.h.s.).

 $\blacksquare \Longrightarrow$ cutoff for SRW on G.

Back to G(k) - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$\sum_{b \in A} \pi_A(b) \left(\mathbf{P}_b[T_{A^c} > t] \right)^2 = \|K_A^t \mathbf{1}_A\|_{2,A}^2 \leqslant \left[\lambda_K(A) \right]^{2t}$$

Back to G(k) - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$\sum_{b \in A} \pi_A(b) \left(\mathbf{P}_b[T_{A^c} > t] \right)^2 = \|K_A^t \mathbf{1}_A\|_{2,A}^2 \leqslant \left[\lambda_K(A) \right]^{2t}$$

 $\blacksquare \Longrightarrow (\mathbf{P}_a[T_{A^c} > t])^2 \leqslant n[\lambda_K(A)]^{2t}. \text{ We are done if } \lambda_K(A) \leqslant d^{-\frac{k}{2}(1-o(1))}.$

Will show this via a simple comparison technique:

Back to G(k) - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$\sum_{b \in A} \pi_A(b) \left(\mathsf{P}_b[T_{A^c} > t] \right)^2 = \| K_A^t \mathbf{1}_A \|_{2,A}^2 \leqslant [\lambda_K(A)]^{2t}$$

 $\blacksquare \Longrightarrow (\mathbf{P}_a[T_{A^c} > t])^2 \leqslant n[\lambda_K(A)]^{2t}. \text{ We are done if } \lambda_K(A) \leqslant d^{-\frac{k}{2}(1-o(1))}.$

Will show this via a simple comparison technique:

Proposition

Let *P* and *Q* be reversible w.r.t. π . Assume $K(x,y) \leq CQ(x,y)$ for all x, y.

 $\lambda_K(A) \leqslant C\lambda_Q(A)$

 $(\lambda_K(A) \text{ and } \lambda_Q(A) \text{ - largest eigenvalues of } K_A \text{ and } Q_A, \text{ resp.}).$

Back to G(k) - Denote the transition matrix corresponding to SRW on it by K (and for G by P)

$$\sum_{b \in A} \pi_A(b) \left(\mathbf{P}_b[T_{A^c} > t] \right)^2 = \|K_A^t \mathbf{1}_A\|_{2,A}^2 \leqslant \left[\lambda_K(A) \right]^{2t}$$

 $\blacksquare \Longrightarrow (\mathbf{P}_a[T_{A^c} > t])^2 \leqslant n[\lambda_K(A)]^{2t}. \text{ We are done if } \lambda_K(A) \leqslant d^{-\frac{k}{2}(1-o(1))}.$

■ Will show this via a simple comparison technique:

Proposition

Let *P* and *Q* be reversible w.r.t. π . Assume $K(x,y) \leq CQ(x,y)$ for all x, y.

 $\lambda_K(A) \leqslant C\lambda_Q(A)$

($\lambda_K(A)$ and $\lambda_Q(A)$ - largest eigenvalues of K_A and Q_A , resp.).

Proof: Denote $\langle f, g \rangle_{\pi_A} := \sum_{x \in \Omega} \pi_A(x) g(x) f(x)$. By Perron-Frobenius

$$\lambda_P(A) = \frac{\max_{f \in \mathbb{R}^A_+, f \neq 0} \langle K_A f, f \rangle_{\pi_A}}{\|f\|_{2,A}^2} \leqslant C \frac{\max_{f \in \mathbb{R}^A_+, f \neq 0} \langle Q_A f, f \rangle_{\pi_A}}{\|f\|_{2,A}^2} = C \lambda_Q(A). \quad \Box$$

Let $Q := P^{k+2k^2}$ (as before K SRW on G(k)). Let $A \subset V$ be s.t. $\pi(A) \leq \alpha = o(1)$. Recall - want $\lambda_K(A) \leq (d-1)^{-\frac{k}{2}(1-o(1))}$.

By last Lemma: $\lambda_K(A) \leq \lambda_Q(A) / [\min_{x,y} K(x,y) / Q(x,y)].$

Let $Q := P^{k+2k^2}$ (as before K SRW on G(k)). Let $A \subset V$ be s.t. $\pi(A) \leq \alpha = o(1)$. Recall - want $\lambda_K(A) \leq (d-1)^{-\frac{k}{2}(1-o(1))}$. By last Lemma: $\lambda_K(A) \leq \lambda_Q(A) / [\min_{x,y} K(x,y) / Q(x,y)]$. General fact - $\lambda(A) \leq \pi(A) + \lambda_2 \pi(A^c)$

$$\Longrightarrow \lambda_Q(A) \leqslant \lambda_2^{k+2k^2} + \alpha \leqslant 2\rho_d^{k+2k^2}.$$

Let $Q := P^{k+2k^2}$ (as before K SRW on G(k)). Let $A \subset V$ be s.t. $\pi(A) \leq \alpha = o(1)$. Recall - want $\lambda_K(A) \leq (d-1)^{-\frac{k}{2}(1-o(1))}$. By last Lemma: $\lambda_K(A) \leq \lambda_Q(A)/[\min_{x,y} K(x,y)/Q(x,y)]$. General fact - $\lambda(A) \leq \pi(A) + \lambda_2 \pi(A^c)$

$$\Longrightarrow \lambda_Q(A) \leqslant \lambda_2^{k+2k^2} + \alpha \leqslant 2\rho_d^{k+2k^2}.$$

Let x, y be adjacent in G(k). Then

$$Q(x,y) = \frac{1}{\text{number of such } y\text{'s}} \binom{k+2k^2}{k^2} (d-1)^{k^2+k-o(k)} d^{-(k+2k^2)}$$

 $= K(x, y) \cdot C_k$, where

$$C_k := 2^{k+2k^2} (d-1)^{k^2+k-o(k)} d^{-(k+2k^2)} = \rho_d^{k+2k^2} (d-1)^{\frac{k}{2}(1-o(1))}$$

$$\Longrightarrow \lambda_K(A) \leq \lambda_Q(A)/C_k \leq 2\rho^{k+2k^2}/C_k = (d-1)^{-\frac{k}{2}(1-o(1))}$$

• (H., Peres (16)): The L_{∞} mixing-time started from $x \asymp$

 $\min\{t: \mathbf{P}_x[T_{A^c} > t] \leqslant \pi(A): \text{for all } A \subset \Omega \text{ s.t. } \pi(A) \leqslant 1/2\}.$

- Same for relative-entropy with $\frac{1}{|\log \pi(A)|}$ instead of $\pi(A)$.
- First sharp bounds!

• (H., Peres (16)): The L_{∞} mixing-time started from $x \asymp$

 $\min\{t: \mathbf{P}_x[T_{A^c} > t] \leq \pi(A) : \text{for all } A \subset \Omega \text{ s.t. } \pi(A) \leq 1/2\}.$

- Same for relative-entropy with $\frac{1}{|\log \pi(A)|}$ instead of $\pi(A)$.
- First sharp bounds!

$$c_{\text{Log-Sobolev}} \asymp \inf_{A:\pi(A) \leq 1/2} \left[1 - \lambda(A)\right] / \left|\log \pi(A)\right|$$

- (Basu, H., Peres (13)): Characterize cutoff using hitting times.
- H. and Peres (15) one lazy step mixes twice quicker than always being lazy.
- For (weighted RW on) trees:
- Peres and Sousi (12) t_{mix} is robust⁴.
- H. and Peres (16) τ_{∞} is robust (and is $\approx \max(t_{\min}, 1/c_{\text{Log-Sobolev}}))$.
- BHP cutoff iff (spectral-gap)× $t_{mix} \rightarrow \infty$.

⁴A parameter is **robust** if changing the edge-weights by a bounded amount can change it only by a constant factor.

- Ding and Peres (12) t_{mix} is not robust.
- H. (16) τ_∞ and τ_{relative-entropy} are not robust (resolves a conjuncture of Kozma; variants asked by various authors Aldous, Diaconis and Saloff-Coste).
- H. and Peres (16) separation cutoff may depend on the holding prob.!

Thank you!