Stability of overshoots of zero mean random walks

Aleksandar Mijatović

King's College London & The Alan Turing Institute

Joint work with Vladislav Vysotsky (University of Sussex)

July 27, 2017

Random walk

Let $S_n = S_0 + X_1 + \ldots + X_n$ be a zero mean non-degenerate random walk in \mathbb{R} with i.i.d. increments X_1, X_2, \ldots and the starting point S_0 that is a r.v. independent of the increments.

Random walk

Let $S_n = S_0 + X_1 + \ldots + X_n$ be a zero mean non-degenerate random walk in \mathbb{R} with i.i.d. increments X_1, X_2, \ldots and the starting point S_0 that is a r.v. independent of the increments.

The Markov chain of overshoots

Define the crossing times T_n of the zero level: $T_0 := 0$ and

$$T_{n+1} := \min\{k > T_n : S_{k-1} < 0, S_k \ge 0 \text{ or } S_{k-1} \ge 0, S_k < 0\}.$$

Now, define the corresponding overshoots:

$$O_n := S_{T_n}, \qquad n \geq 0.$$

The sequence $(O_n)_{n\geq 0}$ is a Markov chain starting at $O_0 = S_0$.

The problem

- Does *O* have a stationary distribution? Is it unique?
- Do O_n stabilise to this distribution in the sense that the laws $\mathbb{P}(O_n \in \cdot | S_0 = x)$ converge to this distribution $\forall x$?
- What is the rate of this convergence?

The problem

• Does *O* have a stationary distribution? Is it unique?

- Do O_n stabilise to this distribution in the sense that the laws $\mathbb{P}(O_n \in \cdot | S_0 = x)$ converge to this distribution $\forall x$?
- What is the rate of this convergence?

Overshoots at up-crossings

Since O has a periodic structure, it suffices to consider the Markov chain $O_n^{\uparrow} := O_{2n}$ of the overshoots at up-crossing times $T_n^{\uparrow} = T_{2n}$, starting at $S_0 \ge 0$.

Stationary distribution

Arithmetic vs non-arithmetic

The random walk S_n is called non-arithmetic if $\mathbb{P}(X_1 \in d\mathbb{Z}) < 1$ for any d. All other walks are called arithmetic. An arithmetic RW is d-arithmetic iff $d = \max\{d' \ge 0 : \mathbb{P}(X_1 \in d'\mathbb{Z}) = 1\}$.

State space

Define the state space \mathcal{X}_+ of the walk as $[0, \infty)$ in the non-arithmetic case and as $\{0, d, 2d, \ldots\}$ in the *d*-arithmetic case.

Stationary distribution

Arithmetic vs non-arithmetic

The random walk S_n is called non-arithmetic if $\mathbb{P}(X_1 \in d\mathbb{Z}) < 1$ for any d. All other walks are called arithmetic. An arithmetic RW is d-arithmetic iff $d = \max\{d' \ge 0 : \mathbb{P}(X_1 \in d'\mathbb{Z}) = 1\}$.

State space

Define the state space \mathcal{X}_+ of the walk as $[0, \infty)$ in the non-arithmetic case and as $\{0, d, 2d, \ldots\}$ in the *d*-arithmetic case.

Theorem 1

Let λ_+ be either Lebesgue or $d \cdot \#$ (counting) measure on \mathcal{X}_+ , respectively. Then

$$\pi_+(dx):=rac{2}{\mathbb{E}|X_1|}\mathbb{P}(X_1>x)\lambda_+(dx),\qquad x\in\mathcal{X}_+$$

is a stationary distribution for the chain O_n^{\uparrow} .

Heuristics

Assume $\mathbb{E}X_1^2 = 1$ and that S_n is aperiodic integer-valued. Let $L_n^{\uparrow} := \max\{i \ge 0 : T_i^{\uparrow} \le n\}$ be the *number of up-crossings* of the zero level. Then for any $k \in \{0, 1, 2, ...\}$,

$$\sum_{i=0}^{n-1} \mathbb{1}(S_i < 0, S_{i+1} = k) = \sum_{i=1}^{L_n^{\uparrow}} \mathbb{1}(O_i^{\uparrow} = k).$$

Heuristics

Assume $\mathbb{E}X_1^2 = 1$ and that S_n is aperiodic integer-valued. Let $L_n^{\uparrow} := \max\{i \ge 0 : T_i^{\uparrow} \le n\}$ be the number of up-crossings of the zero level. Then for any $k \in \{0, 1, 2, ...\}$,

$$\sum_{i=0}^{n-1} \mathbb{1}(S_i < 0, S_{i+1} = k) = \sum_{i=1}^{L_n^{\uparrow}} \mathbb{1}(O_i^{\uparrow} = k).$$

By L-CLT: $\mathbb{P}_{x}(S_{i} = -\ell) = \exp(-(\ell + x)^{2}/2i)/\sqrt{2\pi i} + o(1/\sqrt{i})$ $\mathbb{E}_{x}\left[\frac{L_{n}^{\uparrow}}{\sqrt{n}}\cdot\frac{1}{L_{n}^{\uparrow}}\sum_{i=1}^{L_{n}^{\uparrow}}\mathbb{1}(O_{i}^{\uparrow}=k)\right]=\frac{1}{\sqrt{n}}\sum_{i=1}^{n-1}\mathbb{P}_{x}(S_{i}<0,S_{i+1}=k)$ $=rac{1}{\sqrt{n}}\sum_{i=1}^{n-1}\sum_{j=1}^{\infty}\mathbb{P}_{x}(S_{i}=-\ell)\mathbb{P}(X_{1}=k+\ell)$ $\sim rac{1}{\sqrt{n}}\sum_{i=1}^{n-1}rac{1}{\sqrt{2\pi i}}\sum_{\ell=1}^{o(\sqrt{n})}\mathbb{P}(X_1=k+\ell)$

$$\mathbb{E}_{x} \left[\frac{L_{n}^{\uparrow}}{\sqrt{n}} \cdot \frac{1}{L_{n}^{\uparrow}} \sum_{i=1}^{L_{n}^{\uparrow}} \mathbb{1}(O_{i}^{\uparrow} = k) \right] = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \mathbb{P}_{x}(S_{i} < 0, S_{i+1} = k)$$
$$= \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \sum_{\ell=1}^{\infty} \mathbb{P}_{x}(S_{i} = -\ell) \mathbb{P}(X_{1} = k + \ell)$$
$$\sim \frac{1}{\sqrt{n}} \sum_{i=1}^{n-1} \frac{1}{\sqrt{2\pi i}} \sum_{\ell=1}^{o(\sqrt{n})} \mathbb{P}(X_{1} = k + \ell)$$

If we believe in the ergodicity of O_n^{\uparrow} , then

$$\pi_+(k)\mathbb{E}_{\mathsf{x}}\Big[rac{L_n^{\uparrow}}{\sqrt{n}}\Big]\sim c\mathbb{P}(X_1>k).$$

A similar argument gives

$$\mathbb{E}_{x}\Big[rac{L_{n}^{\uparrow}}{\sqrt{n}}\Big]\sim c\sum_{k=0}^{\infty}\mathbb{P}(X_{1}>k)=c\mathbb{E}|X_{1}|/2.$$

Proof of Theorem 1 (idea)

For simplicity, consider the non-arithmetic case. We represent $\mathbb{P}_{\mu}(O_1^{\uparrow} \in \cdot) = \mu PQ$, where Q and P are transition probabilities of two new Markov chains defined by

$$\begin{array}{lll} P(x,dy) &:= & \mathbb{P}_x(S_{\mathcal{T}_1^{\uparrow}-1} \in -dy), & x,y \in \mathcal{X}_+ \\ Q(x,dy) &:= & \mathbb{P}(X_1 \in dy + x | X_1 > x), & x,y \in \mathcal{X}_+. \end{array}$$

 ${\cal P}$ corresponds to the undershoot at the up-crossing and ${\cal Q}$ governs the increment performing the level-crossing.

Proof of Theorem 1 (idea)

For simplicity, consider the non-arithmetic case. We represent $\mathbb{P}_{\mu}(O_1^{\uparrow} \in \cdot) = \mu PQ$, where Q and P are transition probabilities of two new Markov chains defined by

$$egin{aligned} & \mathcal{P}(x,dy) & := & \mathbb{P}_x(\mathcal{S}_{\mathcal{T}_1^{\uparrow}-1}\in -dy), \quad x,y\in\mathcal{X}_+ \ & \mathcal{Q}(x,dy) & := & \mathbb{P}(X_1\in dy+x|X_1>x), \quad x,y\in\mathcal{X}_+. \end{aligned}$$

 ${\cal P}$ corresponds to the undershoot at the up-crossing and ${\cal Q}$ governs the increment performing the level-crossing.

Proposition

Assuming $\mathbb{E}X_1 = 0$, the kernels P and Q are reversible with respect to π_+ .

Corollary

 π_+ is a stationary distribution for P and Q and, consequently, for $O^\uparrow.$

Uniqueness

Theorem 2

Assuming $\mathbb{E}X_1 = 0$ and $\mathbb{E}X_1^2 < \infty$, π_+ is a unique stationary distribution of O_n^{\uparrow} .

Corollary

The chain O_n^{\uparrow} is ergodic.

Theorem 2

Assuming $\mathbb{E}X_1 = 0$ and $\mathbb{E}X_1^2 < \infty$, π_+ is a unique stationary distribution of O_n^{\uparrow} .

Corollary

The chain O_n^{\uparrow} is ergodic.

Proof of Theorem 2 (idea)

Combine ε -coupling with the Stone local limit theorem to show that for any bounded Lipschitz $f : \mathcal{X}_+ \to \mathbb{R}$,

$$\lim_{n\to\infty}\left|\frac{1}{n}\sum_{i=1}^n f(O_i^{\uparrow}(x)) - \frac{1}{n}\sum_{i=1}^n f(O_i^{\uparrow}(y))\right| \stackrel{\mathbb{P}}{=} 0, \quad x, y \in \mathcal{X}_+.$$

Smoothness assumption

The distribution of X_1 is called spread out if the distribution of S_k is non-singular for some $k \ge 1$.

Theorem 3

Assume $\mathbb{E}X_1 = 0$ and that the distribution of X_1 is either arithmetic or spread out. Then

$$\lim_{n\to\infty} \|\mathbb{P}_x(O_n^{\uparrow}\in\cdot) - \pi_+(\cdot)\|_{\mathsf{TV}} = \mathsf{0}, \quad x\in\mathcal{X}_+.$$

Smoothness assumption

The distribution of X_1 is called spread out if the distribution of S_k is non-singular for some $k \ge 1$.

Theorem 3

Assume $\mathbb{E}X_1 = 0$ and that the distribution of X_1 is either arithmetic or spread out. Then

$$\lim_{n\to\infty} \|\mathbb{P}_x(O_n^{\uparrow}\in\cdot)-\pi_+(\cdot)\|_{\mathsf{TV}}=0, \quad x\in\mathcal{X}_+.$$

Proof

This follows from a general statement for ψ -irreducible aperiodic chains with a stationary distribution (however, it only gives the convergence for π_+ -a.e. x). Such setting, where a stationary distribution is known to exist, is typical for MCMC.

Convergence

Theorem 3

Assume $\mathbb{E}X_1 = 0$ and that the distribution of X_1 is either arithmetic or spread out. Then for all $x \in \mathcal{X}_+$ we have

$$\lim_{n\to\infty} \|\mathbb{P}_x(O_n^{\uparrow} \in \cdot) - \pi_+(\cdot)\|_{\mathsf{TV}} = 0. \tag{1}$$

Remark

Eq (1) fails $\forall x \in \mathcal{X}_+$ if X_1 is neither spread out nor arithmetic but with countable support, e.g. supp $(X_1) = \{-1, \sqrt{2}\}$.

Convergence

Theorem 3

Assume $\mathbb{E}X_1 = 0$ and that the distribution of X_1 is either arithmetic or spread out. Then for all $x \in \mathcal{X}_+$ we have

$$\lim_{n\to\infty} \|\mathbb{P}_x(O_n^{\uparrow} \in \cdot) - \pi_+(\cdot)\|_{\mathsf{TV}} = 0. \tag{1}$$

Remark

Eq (1) fails $\forall x \in \mathcal{X}_+$ if X_1 is neither spread out nor arithmetic but with countable support, e.g. supp $(X_1) = \{-1, \sqrt{2}\}$.

The Dominated Convergence Theorem implies:

Corollary

 $\lim_{n\to\infty} \|\mathbb{P}_{\mu}(O_n^{\uparrow} \in \cdot) - \pi_+(\cdot)\|_{\mathsf{TV}} = 0 \text{ for any prob. measure } \mu$ on \mathcal{X}_+ . Hence π_+ is the unique stationary measure for O^{\uparrow} .

Theorem 4

Assume $\mathbb{E}X_1 = 0$ and that the distribution of X_1 is either arithmetic or spread out. In addition, assume that either $\mathbb{E}X_1^2 < \infty$ or $X_1 \in \mathcal{D}(\alpha, \beta)$ for some $\alpha \in (1, 2), |\beta| < 1$. Then for any $\gamma \in \{0, 1\}$ in the first case and any $\gamma > 0$ small enough in the second case, there exist constants $r \in (0, 1)$ and $c_1 > 0$ such that

$$\|\mathbb{P}_x(O_n^{\uparrow}\in\cdot)-\pi_+(\cdot)\|_{V_{\gamma}}\leq c_1(1+x^{\gamma})r^n,\qquad x\in\mathcal{X}_+.$$

Idea of proof

Use the so-called Meyn and Tweedie approach. We already have ψ -irreducibility. The Lyapunov function is $V_{\gamma}(x) := x^{\gamma} + 1$.

Local times of random walks

Let $L_n := \max\{k \ge 0 : T_k \le n\}$ be the number of zerolevel crossings, and let ℓ_0 be the local time at 0 at time 1 of a standard Brownian motion.

Perkins('82): $\mathbb{E}X_1^2 < \infty$, then for any x,

$$\frac{1}{\sqrt{n}}\sum_{k=1}^{L_n}|O_k| \xrightarrow{\mathcal{D}} \sqrt{\operatorname{Var}(X_1)}\ell_0 \quad \text{under } \mathbb{P}_x.$$

The ergodicity of O_n now yields the limit theorem for L_n , generalising Borodin ('80s): if S is either integer-valued or has density then $L_n/\sqrt{n} \xrightarrow{\mathcal{D}} \frac{\mathbb{E}|X_1|}{\sqrt{\operatorname{Var}(X_1)}} \ell_0$.

What ought to be true?

Recall
$$S_n = S_0 + X_1 + \ldots + X_n$$
 and $O_n^{\uparrow} = S_{T_n^{\uparrow}}$, where $T_0^{\uparrow} = 0$,
 $T_{n+1}^{\uparrow} = \min\{k > T_n^{\uparrow} : S_{k-1} < 0 \text{ and } S_k \ge 0\}.$

What ought to be true?

Recall
$$S_n = S_0 + X_1 + \ldots + X_n$$
 and $O_n^{\uparrow} = S_{T_n^{\uparrow}}$, where $T_0^{\uparrow} = 0$,
 $T_{n+1}^{\uparrow} = \min\{k > T_n^{\uparrow} : S_{k-1} < 0 \text{ and } S_k \ge 0\}.$

Conjecture

If $\mathbb{E}|X_1| \in (0,\infty)$ and $\mathbb{E}X_1 = 0$, the following weak limit $\mathbb{P}_x(O_n^{\uparrow} \in \cdot) \xrightarrow{\mathcal{D}} \pi_+$, as $n \to \infty$, holds for any $x \in \mathcal{X}_+$.

What ought to be true?

Recall
$$S_n = S_0 + X_1 + \ldots + X_n$$
 and $O_n^{\uparrow} = S_{T_n^{\uparrow}}$, where $T_0^{\uparrow} = 0$,
 $T_{n+1}^{\uparrow} = \min\{k > T_n^{\uparrow} : S_{k-1} < 0 \text{ and } S_k \ge 0\}.$

Conjecture

If $\mathbb{E}|X_1| \in (0,\infty)$ and $\mathbb{E}X_1 = 0$, the following weak limit $\mathbb{P}_x(O_n^{\uparrow} \in \cdot) \xrightarrow{\mathcal{D}} \pi_+$, as $n \to \infty$, holds for any $x \in \mathcal{X}_+$.

Evidence

- Conjecture holds if X_1 is arithmetic or spread out, since $\|\mathbb{P}_x(O_n^{\uparrow} \in \cdot) \pi_+(\cdot)\|_{\mathsf{TV}} \to 0$ as $n \to \infty$ for any $x \in \mathcal{X}_+$.
- Conjecture implies uniqueness of the stationary law π_+ , which holds if $\mathbb{E}X_1^2 < \infty$ (or if X_1 is either spread out or arithmetic).