Stability of overshoots of zero mean random walks

Aleksandar Mijatović

King's College London \& The Alan Turing Institute
Joint work with Vladislav Vysotsky
(University of Sussex)

$$
\text { July 27, } 2017
$$

Introduction

Random walk

Let $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ be a zero mean non-degenerate random walk in \mathbb{R} with i.i.d. increments X_{1}, X_{2}, \ldots and the starting point S_{0} that is a r.v. independent of the increments.

Introduction

Random walk

Let $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ be a zero mean non-degenerate random walk in \mathbb{R} with i.i.d. increments X_{1}, X_{2}, \ldots and the starting point S_{0} that is a r.v. independent of the increments.

The Markov chain of overshoots

Define the crossing times T_{n} of the zero level: $T_{0}:=0$ and

$$
T_{n+1}:=\min \left\{k>T_{n}: S_{k-1}<0, S_{k} \geq 0 \text { or } S_{k-1} \geq 0, S_{k}<0\right\}
$$

Now, define the corresponding overshoots:

$$
O_{n}:=S_{T_{n}}, \quad n \geq 0
$$

The sequence $\left(O_{n}\right)_{n \geq 0}$ is a Markov chain starting at $O_{0}=S_{0}$.

The problem

- Does O have a stationary distribution? Is it unique?
- Do O_{n} stabilise to this distribution in the sense that the laws $\mathbb{P}\left(O_{n} \in \cdot \mid S_{0}=x\right)$ converge to this distribution $\forall x$?
- What is the rate of this convergence?

The problem

- Does O have a stationary distribution? Is it unique?
- Do O_{n} stabilise to this distribution in the sense that the laws $\mathbb{P}\left(O_{n} \in \cdot \mid S_{0}=x\right)$ converge to this distribution $\forall x$?
- What is the rate of this convergence?

Overshoots at up-crossings

Since O has a periodic structure, it suffices to consider the Markov chain $O_{n}^{\uparrow}:=O_{2 n}$ of the overshoots at up-crossing times $T_{n}^{\uparrow}=T_{2 n}$, starting at $S_{0} \geq 0$.

Stationary distribution

Arithmetic vs non-arithmetic

The random walk S_{n} is called non-arithmetic if $\mathbb{P}\left(X_{1} \in d \mathbb{Z}\right)<1$ for any d. All other walks are called arithmetic. An arithmetic RW is d-arithmetic iff $d=\max \left\{d^{\prime} \geq 0: \mathbb{P}\left(X_{1} \in d^{\prime} \mathbb{Z}\right)=1\right\}$.

State space

Define the state space \mathcal{X}_{+}of the walk as $[0, \infty)$ in the nonarithmetic case and as $\{0, d, 2 d, \ldots\}$ in the d-arithmetic case.

Stationary distribution

Arithmetic vs non-arithmetic

The random walk S_{n} is called non-arithmetic if $\mathbb{P}\left(X_{1} \in d \mathbb{Z}\right)<1$ for any d. All other walks are called arithmetic. An arithmetic RW is d-arithmetic iff $d=\max \left\{d^{\prime} \geq 0: \mathbb{P}\left(X_{1} \in d^{\prime} \mathbb{Z}\right)=1\right\}$.

State space

Define the state space \mathcal{X}_{+}of the walk as $[0, \infty)$ in the nonarithmetic case and as $\{0, d, 2 d, \ldots\}$ in the d-arithmetic case.

Theorem 1

Let λ_{+}be either Lebesgue or $d \cdot \#$ (counting) measure on \mathcal{X}_{+}, respectively. Then

$$
\pi_{+}(d x):=\frac{2}{\mathbb{E}\left|X_{1}\right|} \mathbb{P}\left(X_{1}>x\right) \lambda_{+}(d x), \quad x \in \mathcal{X}_{+}
$$ is a stationary distribution for the chain O_{n}^{\uparrow}.

Heuristics

Assume $\mathbb{E} X_{1}^{2}=1$ and that S_{n} is aperiodic integer-valued.
Let $L_{n}^{\uparrow}:=\max \left\{i \geq 0: T_{i}^{\uparrow} \leq n\right\}$ be the number of up-crossings of the zero level. Then for any $k \in\{0,1,2, \ldots\}$,

$$
\sum_{i=0}^{n-1} \mathbb{1}\left(S_{i}<0, S_{i+1}=k\right)=\sum_{i=1}^{L_{n}^{\uparrow}} \mathbb{1}\left(O_{i}^{\uparrow}=k\right)
$$

Heuristics

Assume $\mathbb{E} X_{1}^{2}=1$ and that S_{n} is aperiodic integer-valued.
Let $L_{n}^{\uparrow}:=\max \left\{i \geq 0: T_{i}^{\uparrow} \leq n\right\}$ be the number of up-crossings of the zero level. Then for any $k \in\{0,1,2, \ldots\}$,

$$
\sum_{i=0}^{n-1} \mathbb{1}\left(S_{i}<0, S_{i+1}=k\right)=\sum_{i=1}^{L_{n}^{\uparrow}} \mathbb{1}\left(O_{i}^{\uparrow}=k\right)
$$

$$
\begin{aligned}
& \text { By L-CLT: } \mathbb{P}_{x}\left(S_{i}=-\ell\right)=\exp \left(-(\ell+x)^{2} / 2 i\right) / \sqrt{2 \pi i}+o(1 / \sqrt{i}) \\
& \begin{aligned}
& \mathbb{E}_{x}\left[\frac{L_{n}^{\uparrow}}{\sqrt{n}} \cdot \frac{1}{L_{n}^{\uparrow}} \sum_{i=1}^{L_{n}^{\uparrow}} \mathbb{1}\left(O_{i}^{\uparrow}=k\right)\right]=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \mathbb{P}_{x}\left(S_{i}<0, S_{i+1}=k\right) \\
&=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \sum_{\ell=1}^{\infty} \mathbb{P}_{x}\left(S_{i}=-\ell\right) \mathbb{P}\left(X_{1}=k+\ell\right) \\
& \sim \frac{1}{\sqrt{n}} \sum_{i=1}^{n-1} \frac{1}{\sqrt{2 \pi i}} \sum_{\ell=1}^{o(\sqrt{n})} \mathbb{P}\left(X_{1}=k+\ell\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E}_{x}\left[\frac{L_{n}^{\uparrow}}{\sqrt{n}} \cdot \frac{1}{L_{n}^{\uparrow}} \sum_{i=1}^{L_{n}^{\uparrow}} \mathbb{1}\left(O_{i}^{\uparrow}=k\right)\right]=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \mathbb{P}_{x}\left(S_{i}<0, S_{i+1}=k\right) \\
&= \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} \sum_{\ell=1}^{\infty} \mathbb{P}_{x}\left(S_{i}=-\ell\right) \mathbb{P}\left(X_{1}=k+\ell\right) \\
& \sim \frac{1}{\sqrt{n}} \sum_{i=1}^{n-1} \frac{1}{\sqrt{2 \pi i}} \sum_{\ell=1}^{o(\sqrt{n})} \mathbb{P}\left(X_{1}=k+\ell\right)
\end{aligned}
$$

If we believe in the ergodicity of O_{n}^{\uparrow}, then

$$
\pi_{+}(k) \mathbb{E}_{x}\left[\frac{L_{n}^{\uparrow}}{\sqrt{n}}\right] \sim c \mathbb{P}\left(X_{1}>k\right)
$$

A similar argument gives

$$
\mathbb{E}_{x}\left[\frac{L_{n}^{\uparrow}}{\sqrt{n}}\right] \sim c \sum_{k=0}^{\infty} \mathbb{P}\left(X_{1}>k\right)=c \mathbb{E}\left|X_{1}\right| / 2
$$

Proof of Theorem 1 (idea)

For simplicity, consider the non-arithmetic case.
We represent $\mathbb{P}_{\mu}\left(O_{1}^{\uparrow} \in \cdot\right)=\mu P Q$, where Q and P are transition probabilities of two new Markov chains defined by

$$
\begin{aligned}
P(x, d y) & :=\mathbb{P}_{x}\left(S_{T_{1}^{\uparrow}-1} \in-d y\right), \quad x, y \in \mathcal{X}_{+} \\
Q(x, d y) & :=\mathbb{P}\left(X_{1} \in d y+x \mid X_{1}>x\right), \quad x, y \in \mathcal{X}_{+}
\end{aligned}
$$

P corresponds to the undershoot at the up-crossing and Q governs the increment performing the level-crossing.

Proof of Theorem 1 (idea)

For simplicity, consider the non-arithmetic case.
We represent $\mathbb{P}_{\mu}\left(O_{1}^{\uparrow} \in \cdot\right)=\mu P Q$, where Q and P are transition probabilities of two new Markov chains defined by

$$
\begin{aligned}
P(x, d y) & :=\mathbb{P}_{x}\left(S_{T_{1}^{\uparrow}-1} \in-d y\right), \quad x, y \in \mathcal{X}_{+} \\
Q(x, d y) & :=\mathbb{P}\left(X_{1} \in d y+x \mid X_{1}>x\right), \quad x, y \in \mathcal{X}_{+} .
\end{aligned}
$$

P corresponds to the undershoot at the up-crossing and Q governs the increment performing the level-crossing.

Proposition

Assuming $\mathbb{E} X_{1}=0$, the kernels P and Q are reversible with respect to π_{+}.

Corollary

π_{+}is a stationary distribution for P and Q and, consequently, for O^{\uparrow}.

Uniqueness

Theorem 2
Assuming $\mathbb{E} X_{1}=0$ and $\mathbb{E} X_{1}^{2}<\infty, \pi_{+}$is a unique stationary distribution of O_{n}^{\uparrow}.

Corollary

The chain O_{n}^{\uparrow} is ergodic.

Uniqueness

Theorem 2

Assuming $\mathbb{E} X_{1}=0$ and $\mathbb{E} X_{1}^{2}<\infty, \pi_{+}$is a unique stationary distribution of O_{n}^{\uparrow}.

Corollary

The chain O_{n}^{\uparrow} is ergodic.

Proof of Theorem 2 (idea)

Combine ε-coupling with the Stone local limit theorem to show that for any bounded Lipschitz $f: \mathcal{X}_{+} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(O_{i}^{\uparrow}(x)\right)-\frac{1}{n} \sum_{i=1}^{n} f\left(O_{i}^{\uparrow}(y)\right)\right| \stackrel{\mathbb{P}}{=} 0, \quad x, y \in \mathcal{X}_{+} .
$$

Convergence

Smoothness assumption

The distribution of X_{1} is called spread out if the distribution of S_{k} is non-singular for some $k \geq 1$.

Theorem 3

Assume $\mathbb{E} X_{1}=0$ and that the distribution of X_{1} is either arithmetic or spread out. Then

$$
\lim _{n \rightarrow \infty}\left\|\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\|_{\mathrm{TV}}=0, \quad x \in \mathcal{X}_{+} .
$$

Convergence

Smoothness assumption

The distribution of X_{1} is called spread out if the distribution of S_{k} is non-singular for some $k \geq 1$.

Theorem 3

Assume $\mathbb{E} X_{1}=0$ and that the distribution of X_{1} is either arithmetic or spread out. Then

$$
\lim _{n \rightarrow \infty}\left\|\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\|_{\mathrm{TV}}=0, \quad x \in \mathcal{X}_{+}
$$

Proof

This follows from a general statement for ψ-irreducible aperiodic chains with a stationary distribution (however, it only gives the convergence for π_{+}-a.e. x). Such setting, where a stationary distribution is known to exist, is typical for MCMC.

Convergence

Theorem 3

Assume $\mathbb{E} X_{1}=0$ and that the distribution of X_{1} is either arithmetic or spread out. Then for all $x \in \mathcal{X}_{+}$we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\|_{\mathrm{TV}}=0 \tag{1}
\end{equation*}
$$

Remark

Eq (1) fails $\forall x \in \mathcal{X}_{+}$if X_{1} is neither spread out nor arithmetic but with countable support, e.g. $\operatorname{supp}\left(X_{1}\right)=\{-1, \sqrt{2}\}$.

Convergence

Theorem 3

Assume $\mathbb{E} X_{1}=0$ and that the distribution of X_{1} is either arithmetic or spread out. Then for all $x \in \mathcal{X}_{+}$we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\|_{\mathrm{TV}}=0 \tag{1}
\end{equation*}
$$

Remark

Eq (1) fails $\forall x \in \mathcal{X}_{+}$if X_{1} is neither spread out nor arithmetic but with countable support, e.g. $\operatorname{supp}\left(X_{1}\right)=\{-1, \sqrt{2}\}$.

The Dominated Convergence Theorem implies:

Corollary

$\lim _{n \rightarrow \infty}\left\|\mathbb{P}_{\mu}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\|_{\mathrm{TV}}=0$ for any prob. measure μ on \mathcal{X}_{+}. Hence π_{+}is the unique stationary measure for O^{\uparrow}.

Rate of convergence

Theorem 4

Assume $\mathbb{E} X_{1}=0$ and that the distribution of X_{1} is either arithmetic or spread out. In addition, assume that either $\mathbb{E} X_{1}^{2}<\infty$ or $X_{1} \in \mathcal{D}(\alpha, \beta)$ for some $\alpha \in(1,2),|\beta|<1$.
Then for any $\gamma \in\{0,1\}$ in the first case and any $\gamma>0$ small enough in the second case, there exist constants $r \in(0,1)$ and $c_{1}>0$ such that

$$
\left\|\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\| v_{\gamma} \leq c_{1}\left(1+x^{\gamma}\right) r^{n}, \quad x \in \mathcal{X}_{+}
$$

Idea of proof

Use the so-called Meyn and Tweedie approach. We already have ψ-irreducibility. The Lyapunov function is $V_{\gamma}(x):=x^{\gamma}+1$.

Motivation

Local times of random walks

Let $L_{n}:=\max \left\{k \geq 0: T_{k} \leq n\right\}$ be the number of zerolevel crossings, and let ℓ_{0} be the local time at 0 at time 1 of a standard Brownian motion.
Perkins('82): $\mathbb{E} X_{1}^{2}<\infty$, then for any x,

$$
\frac{1}{\sqrt{n}} \sum_{k=1}^{L_{n}}\left|O_{k}\right| \xrightarrow{\mathcal{D}} \sqrt{\operatorname{Var}\left(X_{1}\right)} \ell_{0} \quad \text { under } \mathbb{P}_{x} .
$$

The ergodicity of O_{n} now yields the limit theorem for L_{n}, generalising Borodin ('80s): if S is either integer-valued or has density then $L_{n} / \sqrt{n} \xrightarrow{\mathcal{D}} \frac{\mathbb{E}\left|X_{1}\right|}{\sqrt{\operatorname{Var}\left(X_{1}\right)}} \ell_{0}$.

What ought to be true?

Recall $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ and $O_{n}^{\uparrow}=S_{T_{n}^{\uparrow}}$, where $T_{0}^{\uparrow}=0$,

$$
T_{n+1}^{\uparrow}=\min \left\{k>T_{n}^{\uparrow}: S_{k-1}<0 \text { and } S_{k} \geq 0\right\} .
$$

What ought to be true?

Recall $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ and $O_{n}^{\uparrow}=S_{T_{n}^{\uparrow}}$, where $T_{0}^{\uparrow}=0$,

$$
T_{n+1}^{\uparrow}=\min \left\{k>T_{n}^{\uparrow}: S_{k-1}<0 \text { and } S_{k} \geq 0\right\} .
$$

Conjecture

If $\mathbb{E}\left|X_{1}\right| \in(0, \infty)$ and $\mathbb{E} X_{1}=0$, the following weak limit $\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right) \xrightarrow{\mathcal{D}} \pi_{+}$, as $n \rightarrow \infty$, holds for any $x \in \mathcal{X}_{+}$.

What ought to be true?

Recall $S_{n}=S_{0}+X_{1}+\ldots+X_{n}$ and $O_{n}^{\uparrow}=S_{T_{n}^{\uparrow}}$, where $T_{0}^{\uparrow}=0$,

$$
T_{n+1}^{\uparrow}=\min \left\{k>T_{n}^{\uparrow}: S_{k-1}<0 \text { and } S_{k} \geq 0\right\} .
$$

Conjecture

If $\mathbb{E}\left|X_{1}\right| \in(0, \infty)$ and $\mathbb{E} X_{1}=0$, the following weak limit $\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right) \xrightarrow{\mathcal{D}} \pi_{+}$, as $n \rightarrow \infty$, holds for any $x \in \mathcal{X}_{+}$.

Evidence

- Conjecture holds if X_{1} is arithmetic or spread out, since $\left\|\mathbb{P}_{x}\left(O_{n}^{\uparrow} \in \cdot\right)-\pi_{+}(\cdot)\right\|_{\mathrm{TV}} \rightarrow 0$ as $n \rightarrow \infty$ for any $x \in \mathcal{X}_{+}$.
- Conjecture implies uniqueness of the stationary law π_{+}, which holds if $\mathbb{E} X_{1}^{2}<\infty$ (or if X_{1} is either spread out or arithmetic).

