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Overview

Goal: Mixing bounds for specific chains of historical interest -
Kac’s walks.

Problem: Going from weak to strong mixing on interesting
state spaces.

General(?) Technique: Strategies for building coupling.
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Main Examples: Kac’s Walks

1 Kac’s walk {Xt}t∈N ∈ SO(n).
2 To get Xt+1 from Xt ,

1 Choose 1 ≤ i(t) < j(t) ≤ n, θ(t) ∈ [0, 2π) uniformly.
2 Multiply Xt by rotation R(i(t), j(t), θ(t)) of θ(t) degrees in

(i(t), j(t))-plane.

3 Kac’s walk on sphere: just take first column of walk on SO(n).

Next: three stories about Kac’s walks.

Aaron Smith Kac
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Balls in a Box

Figure: Hard Balls in a Box

How do their velocities evolve as particles collide?

Aaron Smith Kac
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Balls in a Box - a Condensed History

1 Few balls, exact solution: Newton’s equations of motion
(1687).

2 Many balls, “statistical” solution: Boltzmann’s equation
(1872).

3 Natural question (Hilbert’s 6’th problem, 1900): how to
“derive” Boltzmann’s equation?

Aaron Smith Kac
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Kac’s Program

Kac (1956) proposes Kac’s walk as simplest version of
problem; gives informal derivation of the Boltzmann equation.

Key technical issue: To rigorize argument, need to check
that Kac’s model equilibrates quickly.

Finishing Kac’s argument is still open, even though Kac’s
original conjecture was proved by Janvresse (2001).

Aaron Smith Kac



Motivations
Background

Proof Sketches
Random Matrices

Physics
Statistics
Mathematics

MCMC in Statistics

We all know: MCMC is very popular; works iff Markov chains
mix quickly.

Historical trivia: “biggest” example in original MCMC paper
(Hastings, 1970) is Kac’s walk on SO(n)!

Given big mixing time literature - would be nice to know the
mixing time of first interesting example from statistics!

Aaron Smith Kac
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Walks on Groups, Manifolds, etc

Large literature on “conjugacy-invariant” walks on groups.

Technical warmups for SO(n): Conjugacy-invariant
analogues to Kac’s walk has been studied by Matthews,
Rosenthal, Porod, Jiang and Hough (1985-2017).

Analogies and predictions for sphere: Behaviour “similar”
to (famous, conjugacy-invariant) random transposition walk
on Sn.

NEXT: Previous results.
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Best Published Orders: Kac’s Walk on Sphere

Inverse spectral gap bounded by Janvresse (2001):

λ(K )−1 ≈ n.

Wasserstein mixing estimated by Oliveira (2009):

τ
(W2)
mix . n2 log(n).

Total variation bounded by Jiang (2012):

n ≤ τmix . n5 log(n)3

Aaron Smith Kac
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Best Published Orders: Kac’s Walk on SO(n)

Inverse spectral gap estimated by Janvresse (2003):

λ(K )−1 ≈ n2.

Wasserstein mixing estimated by Oliveira (2009):

τ
(W2)
mix . n2 log(n).

Total variation bounded by Diaconis/Saloff-Coste (2001):

n2 ≤ τmix . en
2
.

(See also unpublished work of Jiang).
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Main Results (Pillai/S. 2016; Pillai/S. preprint)

Mixing of Kac’s Walk on the Sphere

The mixing time of Kac’s walk on the sphere satisfies

1

2
n log(n) ≤ τmix ≤ 200n log(n).

Mixing of Kac’s Walk on SO(n)

The mixing time of Kac’s walk on SO(n) satisfies

n(n − 1)

2
≤ τmix ≤ 107n4 log(n).

Next: Heuristics and proof approach.

Aaron Smith Kac
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Heuristics

Expect

τ
(TV)
mix ≈ τ

(W2)
mix ≈ τrel.

Whole spectrum known; good bounds on Wasserstein mixing.

How to transfer to TV mixing?

NEXT: a standard approach.

Aaron Smith Kac
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Continuity and Mixing 1

Many authors

Let transition kernel K satisfy “continuity condition”

{‖x − y‖ < ε} =⇒ {‖K `(x , ·)− K `(y , ·)‖TV < 0.1}

for some ε > 0, ` ∈ N. Then

τTV
mix . `+ τ

(W2)
mix (ε).

Proof: “one-shot” Coupling.

Aaron Smith Kac
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Continuity and Mixing 2

Kac’s walk, and other Gibbs samplers, fail the continuity
assumption for ` moderately large:

Trivial Observation

For ` < n(n−1)
2 and all ε > 0, there exist x , y ∈ SO(n) so that

‖x − y‖ < 2ε, ‖K `(x , ·)− K `(y , ·)‖TV = 1.

Main technical problem in talk: how to compare τmix, τ
(W2)
mix

without obvious continuity?
Approach: More complicated coupling.

Aaron Smith Kac
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Coupling Notation

GOAL: Force two chains {Xt}t≥0, {Yt}t≥0 to collide.

Our chains defined in terms of i.i.d. sequences of update
variables i(t), j(t), θ(t).

In this setting, coupling Markov chains is equivalent to
coupling sequences of update variables.

In sequel, we use superscripts i(t)(x), i(t)(y) to denote coupled
update sequences.

Next: coupling arguments for Kac’s walk on sphere.

Aaron Smith Kac
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Naive Coupling for Kac’s Walk on the Sphere 1

General wish for Gibbs samplers: try to update so that
updated variables agree - i.e.

Xt+1[i(t)] = Yt+1[i(t)]

Xt+1[j(t)] = Yt+1[j(t)].

Immediate Problem: even if Xt ,Yt are arbitrarily close, can
only choose one of these equations to satisfy.

Question: can any step-by-step “greedy” coupling work?

Aaron Smith Kac
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Naive Coupling for Kac’s Walk on the Sphere 2

A coupling is Markovian if the joint process {Xt ,Yt}t∈N is also a
Markov chain.

Inefficiency of Markovian Couplings

For any Markovian coupling of Kac’s walk,

P[τcoup < t] ≤ 2t

n(n − 1)
.

Aaron Smith Kac
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Inefficiency Proof

P[τcoup = t + 1] = E[P[τcoup = t + 1|{X 2
s ,Y

2
s }s≤t ]]

= E[P[τcoup = t + 1|X 2
t ,Y

2
t ]]

≤ E[ max
x2 6=y2

P[τcoup = t + 1|X 2
t = x2,Y 2

t = y2]]

=
2

n(n − 1)
.

Thus for all times t and all X 2
0 6= Y 2

0 fixed,

P[τcoup ≤ t] =
t∑

s=1

P[τcoup = s] ≤ 2t

n(n − 1)
.

Aaron Smith Kac
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Building a Good Coupling

Plan: As always, force two chains to “agree” more and more.

Problem: Markovian greedy couplings can’t work.

Revised plan: Construct greedy coupling that “looks into the
future.”

Aaron Smith Kac
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Simplest Forward-Looking Coupling

Aaron Smith Kac



Motivations
Background

Proof Sketches
Random Matrices

Mixing for Walk on Sphere
Mixing on SO(n)

Facts About Greedy Forward-Looking Coupling

1 There exists a “greedy” attempted coupling, and it is unique.

2 Distance max0≤t≤T ‖Xt − Yt‖2 ≤ 2n2‖X0 − Y0‖2 w.h.p.
(non-obvious!).

3 Everything works fine.

4 Problem: This doesn’t generalize well to more complicated
manifolds, including SO(n).

Aaron Smith Kac
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Notation: Random Mappings and Perturbations

For T ∈ N, set random mapping

GT (X0, {i(t), j(t), θ(t)}Tt=0) ≡ XT .

Consider small perturbation

θ̃(t) = θ(t) + δ(t)

FT (δ(0), . . . , δ(T )) ≡ GT (X0, {i(t), j(t), θ̃(t)}Tt=0).

For δ(t) ∼ Unif[−ε1t∈S ,−ε1t∈S ] small, have linear
approximation

FT (δ(0), . . . , δ(T )) ≈ FT (0) eJT (δ0,...,δT ),

where JT is the Jacobian of FT at 0.

Aaron Smith Kac
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Greedy Couplings for Perturbation

Since δ(z)(t) are uniform, get high coupling probability if

|F (x)
T ([−ε, ε]T ) ∩ F

(y)
T ([−ε, ε]T )|

|F (x)
T ([−ε, ε]T )|

≈ 1

and Jacobians of F
(x)
T , F

(y)
T roughly constant.

From heuristic, occurs if singular values satisfy

σ1(J
(x)
T ) ≈ σ1(J

(y)
T )� ‖F (x)

T (0)− F
(y)
T (0)‖.

With appropriate technical conditions, this gives generic
continuity lemma.

Aaron Smith Kac
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Conclusions:

Reduced problem to estimating the smallest singular value of

the random matrix J
(x)
T (plus some easy estimates).

Good news: there is a large literature on bounding the
smallest singular value of random matrices.

Bad news: all of it assumes matrices with far more
independence than J

(x)
T .

Current state: obtain bound that is far worse than conjecture,
much better and more general than “immediate” bound via
Turan’s inequality.

Time permitting: a bit about random matrices.

Aaron Smith Kac
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Representative Results

Farrell/Vershynin 2015

Let M be an n by n random matrix with independent entries, with
density less than 1. Then

P[σ1(M) ≤ 1

16n2
] ≤ 1

2
.

Friedland/Giladi 2013

With only independent diagonals,

P[σ1(M) ≤ (5n)−n] ≤ 1

2
.

Ours: high-dimensional dependence; unbounded density; hard
constraints...

Aaron Smith Kac
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Ugly Formula for J
(x)
T

For 1 ≤ i < j ≤ n(n−1)
2 ,

J
(x)
T [i , j ] = Tr[aiMi ,jRjajR

−1
j M−1i ,j ]

where

Rk =

S(k+1)−1∏
s=S(k)+1

R(s)(x), Mi ,j =
i−1∏

k=j+1

(Rk e
θ̃(S(k))(x) ak )

and {ak}
n(n−1)

2
k=1 is basis of T0 SO(n).

In end, obtain conclusion similar to Friedland/Giladi.

Aaron Smith Kac
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Right Answers: Computing, Cutoff, Conjectures

Since state space is continuous, it is not obvious a priori how
to obtain any sensible simulated bound on mixing time.

Possible to sample distribution of σ1(J
(x)
T ) by computer;

coupling proofs relate this to mixing times.

Simulation gives empirical evidence for conjecture that mixing
time on SO(n) is O∗(n2).

See Ph.D. thesis of Amir Sepehri for additional confirmation,
including conjectured cutoff windows for both walks.

Aaron Smith Kac
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