Mixing Times and Kac's Walks

Aaron Smith

Department of Mathematics and Statistics, uOttawa

29 July 2017

Co-Author and Thanks

Natesh Pillai
Thanks also: Tristan Collins, Persi Diaconis, John Jiang, Federico Poloni, Terence Tao and Roman Vershynin.

Overview

- Goal: Mixing bounds for specific chains of historical interest Kac's walks.
- Problem: Going from weak to strong mixing on interesting state spaces.
- General(?) Technique: Strategies for building coupling.

Main Examples: Kac's Walks

(1) Kac's walk $\left\{X_{t}\right\}_{t \in \mathbb{N}} \in \mathbb{S O}(n)$.
(2) To get X_{t+1} from X_{t},
(1) Choose $1 \leq i(t)<j(t) \leq n, \theta(t) \in[0,2 \pi)$ uniformly.
(2) Multiply X_{t} by rotation $R(i(t), j(t), \theta(t))$ of $\theta(t)$ degrees in $(i(t), j(t))$-plane.
(3) Kac's walk on sphere: just take first column of walk on $\mathbb{S O}(n)$.

Next: three stories about Kac's walks.

Motivations
Background

Balls in a Box

Figure: Hard Balls in a Box

How do their velocities evolve as particles collide?

Balls in a Box - a Condensed History

(1) Few balls, exact solution: Newton's equations of motion (1687).
(2) Many balls, "statistical" solution: Boltzmann's equation (1872).
(3) Natural question (Hilbert's 6'th problem, 1900): how to "derive" Boltzmann's equation?

Kac's Program

- Kac (1956) proposes Kac's walk as simplest version of problem; gives informal derivation of the Boltzmann equation.
- Key technical issue: To rigorize argument, need to check that Kac's model equilibrates quickly.
- Finishing Kac's argument is still open, even though Kac's original conjecture was proved by Janvresse (2001).

MCMC in Statistics

- We all know: MCMC is very popular; works iff Markov chains mix quickly.
- Historical trivia: "biggest" example in original MCMC paper (Hastings, 1970) is Kac's walk on $\mathbb{S O}(n)$!
- Given big mixing time literature - would be nice to know the mixing time of first interesting example from statistics!

Walks on Groups, Manifolds, etc

- Large literature on "conjugacy-invariant" walks on groups.
- Technical warmups for $\mathbb{S O}(n)$: Conjugacy-invariant analogues to Kac's walk has been studied by Matthews, Rosenthal, Porod, Jiang and Hough (1985-2017).
- Analogies and predictions for sphere: Behaviour "similar" to (famous, conjugacy-invariant) random transposition walk on S_{n}.

NEXT: Previous results.

Best Published Orders: Kac's Walk on Sphere

- Inverse spectral gap bounded by Janvresse (2001):

$$
\lambda(K)^{-1} \approx n
$$

- Wasserstein mixing estimated by Oliveira (2009):

$$
\tau_{\text {mix }}^{\left(W_{2}\right)} \lesssim n^{2} \log (n)
$$

- Total variation bounded by Jiang (2012):

$$
n \leq \tau_{\text {mix }} \lesssim n^{5} \log (n)^{3}
$$

Best Published Orders: Kac's Walk on $\mathbb{S O}(n)$

- Inverse spectral gap estimated by Janvresse (2003):

$$
\lambda(K)^{-1} \approx n^{2}
$$

- Wasserstein mixing estimated by Oliveira (2009):

$$
\tau_{\text {mix }}^{\left(W_{2}\right)} \lesssim n^{2} \log (n)
$$

- Total variation bounded by Diaconis/Saloff-Coste (2001):

$$
n^{2} \leq \tau_{\text {mix }} \lesssim e^{n^{2}}
$$

(See also unpublished work of Jiang).

Main Results (Pillai/S. 2016; Pillai/S. preprint)

Mixing of Kac's Walk on the Sphere

The mixing time of Kac's walk on the sphere satisfies

$$
\frac{1}{2} n \log (n) \leq \tau_{\text {mix }} \leq 200 n \log (n)
$$

Mixing of Kac's Walk on $\mathbb{S O}(n)$
The mixing time of Kac's walk on $\mathbb{S O}(n)$ satisfies

$$
\frac{n(n-1)}{2} \leq \tau_{\operatorname{mix}} \leq 10^{7} n^{4} \log (n)
$$

Next: Heuristics and proof approach.

Heuristics

- Expect

$$
\tau_{\mathrm{mix}}^{(\mathrm{TV})} \approx \tau_{\mathrm{mix}}^{\left(W_{2}\right)} \approx \tau_{\mathrm{rel}}
$$

- Whole spectrum known; good bounds on Wasserstein mixing.
- How to transfer to TV mixing?
- NEXT: a standard approach.

Continuity and Mixing 1

Many authors

Let transition kernel K satisfy "continuity condition"

$$
\{\|x-y\|<\epsilon\} \Longrightarrow\left\{\left\|K^{\ell}(x, \cdot)-K^{\ell}(y, \cdot)\right\|_{\mathrm{TV}}<0.1\right\}
$$

for some $\epsilon>0, \ell \in \mathbb{N}$. Then

$$
\tau_{\mathrm{mix}}^{\mathrm{TV}} \lesssim \ell+\tau_{\mathrm{mix}}^{\left(W_{2}\right)}(\epsilon)
$$

Proof: "one-shot" Coupling.

Continuity and Mixing 2

Kac's walk, and other Gibbs samplers, fail the continuity assumption for ℓ moderately large:

Trivial Observation

For $\ell<\frac{n(n-1)}{2}$ and all $\epsilon>0$, there exist $x, y \in \mathbb{S O}(n)$ so that

$$
\|x-y\|<2 \epsilon, \quad\left\|K^{\ell}(x, \cdot)-K^{\ell}(y, \cdot)\right\|_{\mathrm{TV}}=1
$$

Main technical problem in talk: how to compare $\tau_{\text {mix }}, \tau_{\text {mix }}^{\left(W_{2}\right)}$ without obvious continuity?
Approach: More complicated coupling.

Coupling Notation

GOAL: Force two chains $\left\{X_{t}\right\}_{t \geq 0},\left\{Y_{t}\right\}_{t \geq 0}$ to collide.

- Our chains defined in terms of i.i.d. sequences of update variables $i(t), j(t), \theta(t)$.
- In this setting, coupling Markov chains is equivalent to coupling sequences of update variables.
- In sequel, we use superscripts $i(t)^{(x)}, i(t)^{(y)}$ to denote coupled update sequences.
- Next: coupling arguments for Kac's walk on sphere.

Naive Coupling for Kac's Walk on the Sphere 1

- General wish for Gibbs samplers: try to update so that updated variables agree - i.e.

$$
\begin{aligned}
X_{t+1}[i(t)] & =Y_{t+1}[i(t)] \\
X_{t+1}[j(t)] & =Y_{t+1}[j(t)]
\end{aligned}
$$

- Immediate Problem: even if X_{t}, Y_{t} are arbitrarily close, can only choose one of these equations to satisfy.
- Question: can any step-by-step "greedy" coupling work?

Naive Coupling for Kac's Walk on the Sphere 2

A coupling is Markovian if the joint process $\left\{X_{t}, Y_{t}\right\}_{t \in \mathbb{N}}$ is also a Markov chain.

Inefficiency of Markovian Couplings

For any Markovian coupling of Kac's walk,

$$
\mathbb{P}\left[\tau_{\text {coup }}<t\right] \leq \frac{2 t}{n(n-1)}
$$

Inefficiency Proof

$$
\begin{aligned}
\mathbb{P}\left[\tau_{\text {coup }}=t+1\right] & =\mathbb{E}\left[\mathbb{P}\left[\tau_{\text {coup }}=t+1 \mid\left\{X_{s}^{2}, Y_{s}^{2}\right\}_{s \leq t}\right]\right] \\
& =\mathbb{E}\left[\mathbb{P}\left[\tau_{\text {coup }}=t+1 \mid X_{t}^{2}, Y_{t}^{2}\right]\right] \\
& \leq \mathbb{E}\left[\max _{x^{2} \neq y^{2}} \mathbb{P}\left[\tau_{\text {coup }}=t+1 \mid X_{t}^{2}=x^{2}, Y_{t}^{2}=y^{2}\right]\right] \\
& =\frac{2}{n(n-1)}
\end{aligned}
$$

Thus for all times t and all $X_{0}^{2} \neq Y_{0}^{2}$ fixed,

$$
\mathbb{P}\left[\tau_{\text {coup }} \leq t\right]=\sum_{s=1}^{t} \mathbb{P}\left[\tau_{\text {coup }}=s\right] \leq \frac{2 t}{n(n-1)}
$$

Building a Good Coupling

- Plan: As always, force two chains to "agree" more and more.
- Problem: Markovian greedy couplings can't work.
- Revised plan: Construct greedy coupling that "looks into the future."

Simplest Forward-Looking Coupling

Merge cells right to left with (i,j), then...

Facts About Greedy Forward-Looking Coupling

(1) There exists a "greedy" attempted coupling, and it is unique.
(2) Distance $\max _{0 \leq t \leq T}\left\|X_{t}-Y_{t}\right\|_{2} \leq 2 n^{2}\left\|X_{0}-Y_{0}\right\|_{2}$ w.h.p. (non-obvious!).
(3) Everything works fine.
(9) Problem: This doesn't generalize well to more complicated manifolds, including $\mathbb{S O}(n)$.

Notation: Random Mappings and Perturbations

- For $T \in \mathbb{N}$, set random mapping

$$
G_{T}\left(X_{0},\{i(t), j(t), \theta(t)\}_{t=0}^{T}\right) \equiv X_{T} .
$$

- Consider small perturbation

$$
\begin{aligned}
\tilde{\theta}(t) & =\theta(t)+\delta(t) \\
F_{T}(\delta(0), \ldots, \delta(T)) & \equiv G_{T}\left(X_{0},\{i(t), j(t), \tilde{\theta}(t)\}_{t=0}^{T}\right)
\end{aligned}
$$

- For $\delta(t) \sim \operatorname{Unif}\left[-\epsilon \mathbf{1}_{t \in S},-\epsilon \mathbf{1}_{t \in S}\right]$ small, have linear approximation

$$
F_{T}(\delta(0), \ldots, \delta(T)) \approx F_{T}(0) e^{J_{T}\left(\delta_{0}, \ldots, \delta_{T}\right)}
$$

where J_{T} is the Jacobian of F_{T} at 0 .

Greedy Couplings for Perturbation

- Since $\delta^{(z)}(t)$ are uniform, get high coupling probability if

$$
\frac{\left|F_{T}^{(x)}\left([-\epsilon, \epsilon]^{T}\right) \cap F_{T}^{(y)}\left([-\epsilon, \epsilon]^{T}\right)\right|}{\left|F_{T}^{(x)}\left([-\epsilon, \epsilon]^{T}\right)\right|} \approx 1
$$

and Jacobians of $F_{T}^{(x)}, F_{T}^{(y)}$ roughly constant.

- From heuristic, occurs if singular values satisfy

$$
\sigma_{1}\left(J_{T}^{(x)}\right) \approx \sigma_{1}\left(J_{T}^{(y)}\right) \gg\left\|F_{T}^{(x)}(0)-F_{T}^{(y)}(0)\right\| .
$$

- With appropriate technical conditions, this gives generic continuity lemma.

Conclusions:

- Reduced problem to estimating the smallest singular value of the random matrix $J_{T}^{(x)}$ (plus some easy estimates).
- Good news: there is a large literature on bounding the smallest singular value of random matrices.
- Bad news: all of it assumes matrices with far more independence than $J_{T}^{(\times)}$.
- Current state: obtain bound that is far worse than conjecture, much better and more general than "immediate" bound via Turan's inequality.
- Time permitting: a bit about random matrices.

Representative Results

Farrell/Vershynin 2015

Let M be an n by n random matrix with independent entries, with density less than 1. Then

$$
\mathbb{P}\left[\sigma_{1}(M) \leq \frac{1}{16 n^{2}}\right] \leq \frac{1}{2}
$$

Friedland/Giladi 2013

With only independent diagonals,

$$
\mathbb{P}\left[\sigma_{1}(M) \leq(5 n)^{-n}\right] \leq \frac{1}{2}
$$

Ours: high-dimensional dependence; unbounded density; hard constraints...

Ugly Formula for $J_{T}^{(x)}$

For $1 \leq i<j \leq \frac{n(n-1)}{2}$,

$$
J_{T}^{(x)}[i, j]=\operatorname{Tr}\left[a_{i} M_{i, j} R_{j} a_{j} R_{j}^{-1} M_{i, j}^{-1}\right]
$$

where

$$
R_{k}=\prod_{s=S(k)+1}^{S(k+1)-1} R(s)^{(x)}, M_{i, j}=\prod_{k=j+1}^{i-1}\left(R_{k} e^{\tilde{\theta}(S(k))^{(x)} a_{k}}\right)
$$

and $\left\{a_{k}\right\}_{k=1}^{\frac{n(n-1)}{2}}$ is basis of $\mathbb{T}_{0} \mathbb{S O}(n)$.
In end, obtain conclusion similar to Friedland/Giladi.

Right Answers: Computing, Cutoff, Conjectures

- Since state space is continuous, it is not obvious a priori how to obtain any sensible simulated bound on mixing time.

Right Answers: Computing, Cutoff, Conjectures

- Since state space is continuous, it is not obvious a priori how to obtain any sensible simulated bound on mixing time.
- Possible to sample distribution of $\sigma_{1}\left(J_{T}^{(x)}\right)$ by computer; coupling proofs relate this to mixing times.
- Simulation gives empirical evidence for conjecture that mixing time on $\mathbb{S O}(n)$ is $O^{*}\left(n^{2}\right)$.
- See Ph.D. thesis of Amir Sepehri for additional confirmation, including conjectured cutoff windows for both walks.

