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The Model



The random cluster model

Parameters 0 < p < 1 (edge weight), g > 0 (cluster weight).

Given graph G = (V, E), the measure on subgraph r C E is defined as
Te(r) oc p! (1= p)F\g< ™,

where k(r) is the number of connected components in (V,r).

(1—p)q* p*(1—p)*q? pq



The random cluster model

The partition function (normalizing factor):

Zre(p,q) =) _p"(1—p)FVige,
rCE

Equivalent to the Tutte polynomial Zryete(X, y):

qg=Kx-"1y—-1 p=1—)7
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Glauber dynamics

Glauber dynamics (single edge update) Pgc (Metropolis):

Current state x C E
With prob. 1/2 do nothing. (Lazy)

Otherwise, choose an edge e u.a.r.

7 Ttre (X)

Move to y = x @ {e} with prob. min {1 iac(y) }
Detailed balance:

nt(x)P(x,y) = mt(y)P(y, X) = min{7t(x), 7t(y)}



Glauber dynamics

Glauber dynamics (single edge update) Pgc (Metropolis):

- min {1, 204} Xyl =1,
Pre(X,Y) = 41— 55 ¥ ocp min {17 ‘m;(:f(ax{)e})} ifx=y;
0 otherwise.

We are interested in:

Tmix(Pre) = min {t : [|Prc(Xo, ) — 7lly < €},

1
Trel(PRC) = m



A simple example

Let p < 1/2.

: { TERC(XU{e})}
min< 1, ——

Tre (X)

— {1% if e is not a cut edge
b o
0—p) if elis a cut edge
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A simple example

Let p < 1/2.

: { TERC(XU{e})}
min< 1, ——

Tre (X)

— {1% if e is not a cut edge
b o
0—p) if elis a cut edge




Previous results

Previous results focus on special graphs.

+ On the complete graph (mean-field):
[Gore, Jerrum 99]  [Blanca, Sinclair 15]
+ On the 2D lattice Z*:
[Borgs et al. 99]  [Blanca, Sinclair 16]  [Gheissari, Lubetzky 16]

g > 2: Slow mixing for the complete graph.
0 < g < 2: No known fast mixing bound for general graphs.
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For the random cluster model with parameters 0 < p < 1and q = 2,

Tre[(PRC) < 8n‘*m2,
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Theorem
For the random cluster model with parameters 0 < p < 1and q = 2,

Tret(Pre) < 8n“m?
T

mix(Prc) < 8n°m (lnﬂRC(XO)71 +Ine).

(n = #vertices, m = #edges.)

« For g > 2, there exists p such that T, (Prc) is exponential on
complete graphs. [Gore, Jerrum 99] [Blanca, Sinclair 15] [Gheis-
sari, Lubetzky, Peres 17]

« Forg>2and 0 < p <1, itis #BIS-hard to approximate Zz¢c(p, q).
[Goldberg, Jerrum 12]

¢ For 0 < g < 2, there is no known obstacle.



Swandsen-Wang algorithm




Ferromagnetic Ising model

A configurationo:V — { @, @ }. Parameter f > 1.

W[(Y) _ B\mono(c)\

Gibbs distribution: 7t(o) ~ w(o).
Partition function: Zising(B) = > 5 w(o).

B B’ B°
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Ferromagnetic Ising model

A configurationo:V — { @, @ }. Parameter f > 1.

W[(Y) _ B\mono(c)\

Gibbs distribution: 7t(o) ~ w(o).
Partition function: Zising(B) = > 5 w(o).

B p? p°
Exact evaluation of Zjsjnq is #P-hard even for € Cunless B = 0, %1, +I.

FPRAS for Zising for B > 1 [Jerrum, Sinclair 93]

Efficient sampling [Randall, Wilson 99]
10
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Equivalence at g =2

Letﬁzﬁ.

Z/sing(ﬁ) = BlE‘ZRC(p:Z)

Joint distribution on vertices and edges [Edwards, Sokal 88]:

vertex colors assigned uniformly, edges chosen with prob. p,
conditioned on no chosen edge is bichromatic.

Marginal on vertices = Ising model.

Marginal on edges = random cluster model.

n



Swendsen-Wang algorithm

— 1. Select monochromatic edges.

2. Re-randomize monochromatic edges
— keep with probability p =1—p~".

3. Color each component uniformly.
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Swendsen-Wang algorithm

1. Select monochromatic edges.

2. Re-randomize monochromatic edges
— keep with probability p =1—p~".

3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).

“This algorithm appears to work extremely well but there are no quan-
titative theoretical results to support this experimental finding”
(Saloff-Coste 97)

12



Previous Results

Again, most previous results focus on special graph families.

« On the complete graph:
[Gore, Jerrum 99]  [Cooper, Dyer, Frieze, Rue 00]
[Long, Nachimus, Ning, Peres 11]  [Borgs, Chayes, Tetali 11]
[Galanis, Stefankovic, Vigoda 15]  [Gheissari, Lubetzky, Peres 17]

« On trees (or bounded tree-width):
[Cooper, Frieze 99]  [Ge, Stefankovi¢ 10]

13



Concequence — Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 14)
Trel(PSW) < Trel(PRC)
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Concequence — Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 14)
Trel(PSW) < Trel(PRC)

Combine with our theorem:
Swendsen-Wang is rapidly mixing at g = 2,
namely, for the ferromagnetic Ising model at any temperature.

However, our mixing time bound is O(n*m?).

Conjecture (Peres)

The mixing time of Swendsen-Wang at g =2 is O(n'/*).

14



Even subgraphs




Another equivalent formulationsat g =2

Subgraph r C E is even if every vertex in (V, r) has an even degree.

Teven (1) o plf\(q - p)\E\rl

Partition function Zeyen(p)

(1=p)* NOT EVEN p*

15



Equivalence at g =2

Let B = 75.

ZIsing(B) = BlElZRC(pzz) = 2|V|B|E|Zeven (g)
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Overview

[Swendsen, Wang 87]
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[G., Jerrum 17] [Swendsen, Wang 87]
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Grimmett-Janson coupling

Given a graph G, draw a random even subgraph S C E with p < %:
Pr(S =s) = even(s).
Then we add every edge e € S with probability p’ = %.

Call this subgraph R.
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Grimmett-Janson coupling

Given a graph G, draw a random even subgraph S C E with p < %:
Pr(S =s) = even(s).
Then we add every edge e € S with probability p’ = %.

Call this subgraph R.

Theorem (Grimmett, Janson 09)

Pr(R=r) = mrc, 2p2(1).

19



The Proof




Congestion and flows

Tret < congestion of any flow [Sinclair 92].

20



Congestion and flows

Tret < congestion of any flow [Sinclair 92].

For any two states x and y, we construct a random path from x to y.
The random variable 7

1. Random independent initial and final states I and F.
2. Arandom path y from I to F.

3. 7 is the kth state of .

Pr(Zy,=2)
7t(2)

The quantity maxy is polynomially related to the congestion.

20



Lifting flows

In an ideal world ...

+ Suppose we have canonical paths Tleyen for even subgraphs with
low congestion (similar to [Jerrum, Sinclair 93]).

« Then use Grimmett-Janson to lift e, to a flow for random

cluster.
gy ——>» 21— 1, Zi 4 ——» 7,
) n 4 s }
S S S 12 19
g g g1 ] 13
o Z = 12 3
g1 g1 g1 Iz Iz
£ £ £ 0 iz
< 2 1 1> 1
I I I I
=Wy —— W) —— W, Wiq— W, =F

21



In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs —
Jerrum-Sinclair chain moves among all subgraphs!

22



In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs —
Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs,
and extend Grimmett-Janson for near-even.

22



In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs —
Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs,
and extend Grimmett-Janson for near-even.

2. Grimmett-Janson adds indepdendent edges — Z; and Z; 4 are
not adjacent states! They may differ by a lot of edges.

22



In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs —
Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs,
and extend Grimmett-Janson for near-even.

2. Grimmett-Janson adds indepdendent edges — Z; and Z; 4 are
not adjacent states! They may differ by a lot of edges.

Patch 2: correlated lifting — re-randomization.

22



Lifting flows

Random cluster 2o Zom

» Goal: low congestion flows.
Random initial and final random cluster configurations Zy and Zn.
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Lifting flows
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Lifting flows

Zp, is close to RC.
= low congestion

Random cluster oy —> 1 — 5 Zm Zom
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Lifting flows

Zp, is close to RC.
= low congestion

Re-rar ni
Random cluster oy —> 1 — 5 Zm Zom
st o wh o N ~
a | F I = F | 5)0 ’
51 S S =n Bt
51 | | I «\‘5‘ 7
D = =l Sl S
£ = - < &
= I I ! -
= Sl S ! g -
(&) C s
I I I N
Even subgraphs Wy —— Wy —— W, W
Pr(W,=0) ; :
PriWe=c) is holynomially

ni(o)

related to the congestion.

» Goal: low congestion flows.
Random initial and final random cluster configurations Zy and Zn.

+ Lifted from even subgraphs Wy and Wy, by Grimmett-Janson.
(Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
+ Correlated lifting of this path to random cluster by (extended) Grimmett-Janson.

Re-randomization to remove correlations between Zy and Zp,.
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Theorem
Atq=2, Tr(Prec)<8n*m?.

« g =2 tighter mixing time bound? O(n'/*)?

« 1< g < 2 (monotone) fast mixing?
« 0 < g < 1(eg. #Forests) fast mixing???

Thank You!

arxiv.org/abs/1605.00139
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