Random Cluster Dynamics for the Ising model is Rapidly Mixing

Heng Guo (Joint work with Mark Jerrum)
Durham
Jul 292017
Queen Mary, University of London

The Model

The random cluster model (Fortuin, Kasteleyn 69)

Parameters $0 \leqslant p \leqslant 1$ (edge weight), $q \geqslant 0$ (cluster weight).

Given graph $G=(V, E)$, the measure on subgraph $r \subseteq E$ is defined as

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| \mid} q^{K(r)}
$$

where $\kappa(r)$ is the number of connected components in (V, r).

$(1-p)^{4} q^{4}$

$p^{2}(1-p)^{2} q^{2}$

$p^{4} q$

The random cluster model (Fortuin, Kasteleyn 69)

The partition function (normalizing factor):

$$
z_{R C}(p, q)=\sum_{r \subseteq E} p^{|r|}(1-p)^{|E \backslash| \mid} q^{k(r)} .
$$

Equivalent to the Tutte polynomial $Z_{\text {Tutte }}(x, y)$:

$$
q=(x-1)(y-1) \quad p=1-\frac{1}{y}
$$

The random cluster model (Fortuin, Kasteleyn 69)

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| r \mid} q^{k(r)}
$$

The motivation is to unify:

- Ising model

- Potts model
- Bond percolation
$q=1$ (On Kn, Erdős-Rényi random graph)
- Electrical network

The random cluster model (Fortuin, Kasteleyn 69)

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| r \mid} q^{k(r)}
$$

The motivation is to unify:

- Ising model

$$
q=2
$$

- Potts model
- Bond percolation
- Electrical network

The random cluster model (Fortuin, Kasteleyn 69)

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| r \mid} q^{k(r)}
$$

The motivation is to unify:

- Ising model
$q=2$
- Potts model $\quad q>2$, integer
- Bond percolation
$q=1$ (On Kn, Erdős-Rényi random graph)
- Electrical network $q \rightarrow 0$ (Spanning trees if $p \rightarrow 0$ and $\frac{q}{p} \rightarrow 0$)

The random cluster model (Fortuin, Kasteleyn 69)

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| \mid} q^{k(r)}
$$

The motivation is to unify:

- Ising model
$q=2$
- Potts model $\quad q>2$, integer
- Bond percolation $q=1$ (On K_{n}, Erdős-Rényi random graph)
- Electrical network $q \rightarrow 0$ (Spanning trees if $p \rightarrow 0$ and $\frac{q}{n} \rightarrow 0$)

The random cluster model (Fortuin, Kasteleyn 69)

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| \mid} q^{k(r)}
$$

The motivation is to unify:

- Ising model

$$
q=2
$$

- Potts model $\quad q>2$, integer
- Bond percolation
$q=1$ (On K ${ }_{n}$, Erdős-Rényi random graph)
- Electrical network $q \rightarrow 0$ (Spanning trees if $p \rightarrow 0$ and $\frac{q}{p} \rightarrow 0$)

The random cluster model (Fortuin, Kasteleyn 69)

$$
\pi_{R C}(r) \propto p^{|r|}(1-p)^{|E \backslash| \mid} q^{k(r)}
$$

The motivation is to unify:

- Ising model

$$
q=2
$$

- Potts model $\quad q>2$, integer
- Bond percolation
$q=1$ (On K ${ }_{n}$, Erdős-Rényi random graph)
- Electrical network $q \rightarrow 0$ (Spanning trees if $p \rightarrow 0$ and $\frac{q}{p} \rightarrow 0$)

Glauber dynamics

Glauber dynamics (single edge update) $P_{R C}$ (Metropolis):

Current state $x \subseteq E$

1. With prob. $1 / 2$ do nothing. (Lazy)
2. Otherwise, choose an edge e u.a.r.
3. Move to $y=x \oplus\{e\}$ with prob. $\min \left\{1, \frac{\pi_{R}(y)}{\pi_{R C}(x)}\right\}$.

Detailed balance:

$$
\pi(x) P(x, y)=\pi(y) P(y, x)=\min \{\pi(x), \pi(y)\}
$$

Glauber dynamics

Glauber dynamics (single edge update) $P_{R C}$ (Metropolis):

$$
P_{R C}(x, y)= \begin{cases}\frac{1}{2 m} \min \left\{1, \frac{\pi_{R}(y)}{\pi_{R C}(x)}\right\} & \text { if }|x \oplus y|=1 \\ 1-\frac{1}{2 m} \sum_{e \in E} \min \left\{1, \frac{\pi_{R C}(x \oplus\{e\})}{\pi_{R C}(x)}\right\} & \text { if } x=y ; \\ 0 & \text { otherwise }\end{cases}
$$

We are interested in:

$$
\begin{aligned}
T_{\text {mix }}\left(P_{R C}\right) & =\min \left\{t:\left\|P_{R C}^{\mathrm{t}}\left(x_{0}, \cdot\right)-\pi\right\|_{T V} \leqslant \epsilon\right\}, \\
T_{\text {rel }}\left(P_{R C}\right) & =\frac{1}{1-\lambda_{2}\left(P_{R C}\right)} .
\end{aligned}
$$

A simple example

Let $p<1 / 2$.
$\min \left\{1, \frac{\pi_{R C}(x \cup\{e\})}{\pi_{R C}(x)}\right\}$
$= \begin{cases}\frac{p}{1-p} & \text { if } e \text { is not a cut edge } \\ \frac{p}{q(1-p)} & \text { if } e \text { is a cut edge }\end{cases}$

A simple example

Let $p<1 / 2$.
$\min \left\{1, \frac{\pi_{R C}(x \cup\{e\})}{\pi_{R C}(x)}\right\}$
$= \begin{cases}\frac{p}{1-p} & \text { if } e \text { is not a cut edge } \\ \frac{p}{q(1-p)} & \text { if } e \text { is a cut edge }\end{cases}$

A simple example

Let $p<1 / 2$.
$\min \left\{1, \frac{\pi_{R C}(x \cup\{e\})}{\pi_{R C}(x)}\right\}$
$= \begin{cases}\frac{p}{1-p} & \text { if } e \text { is not a cut edge } \\ \frac{p}{q(1-p)} & \text { if } e \text { is a cut edge }\end{cases}$

A simple example

Let $p<1 / 2$.
$\min \left\{1, \frac{\pi_{R C}(x \cup\{e\})}{\pi_{R C}(x)}\right\}$
$= \begin{cases}\frac{p}{1-p} & \text { if } e \text { is not a cut edge } \\ \frac{p}{q(1-p)} & \text { if } e \text { is a cut edge }\end{cases}$

A simple example

Let $p<1 / 2$.
$\min \left\{1, \frac{\pi_{R C}(x \cup\{e\})}{\pi_{R C}(x)}\right\}$
$= \begin{cases}\frac{p}{1-p} & \text { if } e \text { is not a cut edge } \\ \frac{p}{q(1-p)} & \text { if } e \text { is a cut edge }\end{cases}$

Previous results

Previous results focus on special graphs.

- On the complete graph (mean-field):
[Gore, Jerrum 99] [Blanca, Sinclair 15]
- On the 2D lattice \mathbb{Z}^{2} :
[Borgs et al. 99] [Blanca, Sinclair 16] [Gheissari, Lubetzky 16]
$q>2$: Slow mixing for the complete graph.
$0 \leqslant q \leqslant 2$: No known fast mixing bound for general graphs.

Main theorem

Theorem
For the random cluster model with parameters $0<p<1$ and $q=2$,

$$
\begin{aligned}
& T_{\text {rel }}\left(P_{R C}\right) \leqslant 8 n^{4} m^{2}, \\
& T_{\text {mix }}\left(P_{R C}\right) \leqslant 8 n^{4} m^{2}\left(\ln \pi_{R C}\left(x_{0}\right)^{-1}+\ln \epsilon^{-1}\right) .
\end{aligned}
$$

($n=\#$ vertices, $m=\#$ edges.)
> - For $q>2$, there exists p such that $T_{\text {mix }}\left(P_{R c}\right)$ is exponential on complete graphs. [Gore, Jerrum 99] [Blanca, Sinclair 15] [Gheissari, Lubetzky, Peres 17]
> - For $q>2$ and $0<p<1$, it is \#BIS-hard to approximate $Z_{R C}(p, q)$. [Goldberg, Jerrum 12]

- For $0 \leqslant a<2$, there is no known obstacle.

Main theorem

Theorem
For the random cluster model with parameters $0<p<1$ and $q=2$,

$$
\begin{aligned}
& T_{\text {rel }}\left(P_{R C}\right) \leqslant 8 n^{4} m^{2}, \\
& T_{\text {mix }}\left(P_{R C}\right) \leqslant 8 n^{4} m^{2}\left(\ln \pi_{R C}\left(x_{0}\right)^{-1}+\ln \epsilon^{-1}\right) .
\end{aligned}
$$

($n=\#$ vertices, $m=\#$ edges.)

- For $q>2$, there exists p such that $T_{\text {mix }}\left(P_{R C}\right)$ is exponential on complete graphs. [Gore, Jerrum 99] [Blanca, Sinclair 15] [Gheissari, Lubetzky, Pere 17]
- For $q>2$ and $0<p<1$, it is \#BIS-hard to approximate $Z_{R C}(p, q)$. [Goldberg, Jorum 12]
- For $n<a<2$, there is no known obstacle.

Main theorem

Theorem
For the random cluster model with parameters $0<p<1$ and $q=2$,

$$
\begin{aligned}
T_{\text {rel }}\left(P_{R C}\right) & \leqslant 8 n^{4} m^{2}, \\
T_{\text {mix }}\left(P_{R C}\right) & \leqslant 8 n^{4} m^{2}\left(\ln \pi_{R C}\left(x_{0}\right)^{-1}+\ln \epsilon^{-1}\right) .
\end{aligned}
$$

($n=\#$ vertices, $m=\#$ edges.)

- For $q>2$, there exists p such that $T_{\text {mix }}\left(P_{R C}\right)$ is exponential on complete graphs. [Gore, Jerrum 99] [Blanca, Sinclair 15] [Gheissari, Lubetzky, Meres 17]
- For $q>2$ and $0<p<1$, it is \#BIS-hard to approximate $Z_{R C}(p, q)$. [Goldberg, Jerrum 12]
- For $0 \leqslant q<2$, there is no known obstacle.

Main theorem

Theorem
For the random cluster model with parameters $0<p<1$ and $q=2$,

$$
\begin{aligned}
T_{\text {rel }}\left(P_{R C}\right) & \leqslant 8 n^{4} m^{2}, \\
T_{\text {mix }}\left(P_{R C}\right) & \leqslant 8 n^{4} m^{2}\left(\ln \pi_{R C}\left(x_{0}\right)^{-1}+\ln \epsilon^{-1}\right) .
\end{aligned}
$$

($n=\#$ vertices, $m=\#$ edges.)

- For $q>2$, there exists p such that $T_{\text {mix }}\left(P_{R C}\right)$ is exponential on complete graphs. [Gore, Jerrum 99] [Blanca, Sinclair 15] [Gheissari, Lubetzky, Meres 17]
- For $q>2$ and $0<p<1$, it is \#BIS-hard to approximate $Z_{R C}(p, q)$. [Goldberg, Jerrum 12]
- For $0 \leqslant q<2$, there is no known obstacle.

Swandsen-Wang algorithm

Ferromagnetic Ising model (Ising, Lenz 25)

A configuration $\sigma: V \rightarrow\{\bullet, \bullet\}$. Parameter $\beta>1$.

$$
w(\sigma)=\beta^{\mid \text {mono }(\sigma) \mid}
$$

Gibbs distribution: $\pi(\sigma) \sim w(\sigma)$.
Partition function: $Z_{\text {Ising }}(\beta)=\sum_{\sigma} w(\sigma)$.

β^{4}

β^{2}

β^{0}

Exact evaluation of $Z_{\text {sing }}$ is \#P-hard even for $\beta \in \mathbb{C}$ unless $\beta=0, \pm 1, \pm i$.
rDnAS for $Z_{\text {sing }}$ for $\beta>1$ [ierrum, Sinclair 93$]$
Efficient sampling [Randall, Wilson 99]

Ferromagnetic Ising model (Ising, Lenz 25)

A configuration $\sigma: V \rightarrow\{\bullet, \bullet\}$. Parameter $\beta>1$.

$$
w(\sigma)=\beta^{|\operatorname{mono}(\sigma)|}
$$

Gibbs distribution: $\pi(\sigma) \sim w(\sigma)$.
Partition function: $Z_{\text {Ising }}(\beta)=\sum_{\sigma} w(\sigma)$.

β^{4}

β^{2}

β^{0}

Exact evaluation of $Z_{\text {Ising }}$ is \#P-hard even for $\beta \in \mathbb{C}$ unless $\beta=0, \pm 1, \pm i$.
FPRAS for $Z_{\text {sing }}$ for $\beta>1$ [Jerrum, Sinclair 93]
Efficient sampling [Randall, Wilson 99]

Ferromagnetic Ising model (Ising, Lenz 25)

A configuration $\sigma: V \rightarrow\{\bullet, \bigcirc$. Parameter $\beta>1$.

$$
w(\sigma)=\beta^{\mid \text {mono }(\sigma) \mid}
$$

Gibbs distribution: $\pi(\sigma) \sim w(\sigma)$.
Partition function: $Z_{\text {Ising }}(\beta)=\sum_{\sigma} w(\sigma)$.

β^{4}

β^{2}

β^{0}

Exact evaluation of $Z_{\text {Ising }}$ is \#P-hard even for $\beta \in \mathbb{C}$ unless $\beta=0, \pm 1, \pm i$.
FPRAS for $Z_{\text {Ising }}$ for $\beta>1$ [Jerrum, Sinclair 93]
Efficient sampling [Randall, Wilson 99]

Equivalence at $q=2$

Let $\beta=\frac{1}{1-p}$.

$$
Z_{\text {ssing }}(\beta)=\beta^{|E|} Z_{R C}(p, 2)
$$

Joint distribution on vertices and edges [Edwards, Sokal 88]:
vertex colors assigned uniformly, edges chosen with nroh n,
conditioned on no chosen edge is bichromatic.

Marginal on vertices \Rightarrow Ising model.
Marginal on edres \rightarrow random cluster model.

Equivalence at $q=2$

Let $\beta=\frac{1}{1-p}$.

$$
Z_{\text {Ising }}(\beta)=\beta^{|E|} Z_{R C}(p, 2)
$$

Joint distribution on vertices and edges [Edwards, Sokal 88]: vertex colors assigned uniformly, edges chosen with prob. p, conditioned on no chosen edge is bichromatic.

Marginal on vertices \Rightarrow Ising model.
Marginal on edges \Rightarrow random cluster model.

Equivalence at $q=2$

Let $\beta=\frac{1}{1-p}$.

$$
Z_{\text {Ising }}(\beta)=\beta^{|E|} Z_{R C}(p, 2)
$$

Joint distribution on vertices and edges [Edwards, Sokal 88]: vertex colors assigned uniformly, edges chosen with prob. p, conditioned on no chosen edge is bichromatic.

Marginal on vertices \Rightarrow Ising model.
Marginal on edges \Rightarrow random cluster model.

Swendsen-Wang algorithm [Swendsen, Wang 87]

\rightarrow 1. Select monochromatic edges.
2. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).

"This algorithm appears to work extremely well but there are no quan titative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

\rightarrow 1. Select monochromatic edges.
2. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quan titative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

1. Select monochromatic edges.
$\rightarrow 2$. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
2. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quan titative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

1. Select monochromatic edges.
$\rightarrow 2$. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
2. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quan titative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

1. Select monochromatic edges.
2. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
\rightarrow 3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quan titative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

1. Select monochromatic edges.
2. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
\rightarrow 3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quan titative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

1. Select monochromatic edges.
2. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quantitative theoretical results to support this experimental finding." (Saloff-Coste 97)

Swendsen-Wang algorithm [Swendsen, Wang 87]

1. Select monochromatic edges.
2. Re-randomize monochromatic edges - keep with probability $p=1-\beta^{-1}$.
3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).
"This algorithm appears to work extremely well but there are no quantitative theoretical results to support this experimental finding." (Saloff-Coste 97)

Previous Results

Again, most previous results focus on special graph families.

- On the complete graph: [Gore, Jerrum 99] [Cooper, Dyer, Frieze, Rue 00] [Long, Nachimus, Ning, Peres 11] [Borgs, Chayes, Tetali 11] [Galanis, Štefankovič, Vigoda 15] [Gheissari, Lubetzky, Peres 17]
- On trees (or bounded tree-width):
[Cooper, Frieze 99] [Ge, Štefankovič 10]

Concequence - Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 14)

$$
T_{\text {rel }}\left(P_{S W}\right) \leqslant T_{\text {rel }}\left(P_{R C}\right)
$$

Combine with our theorem:
 Swendsen wang is ranidlymixing at $q=2$,
 namely, for the ferromagnetic Ising model at any temperature

However, our mixing time bound is $O\left(n^{4} m^{3}\right)$.
Conjecture (Peres)
The mixing time of Swendsen-Wang at $q=2$ is $O\left(n^{1 / 4}\right)$

Concequence - Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 14)

$$
T_{\text {rel }}\left(P_{S W}\right) \leqslant T_{\text {rel }}\left(P_{R C}\right)
$$

Combine with our theorem:
Swendsen-Wang is rapidly mixing at $q=2$,
namely, for the ferromagnetic Ising model at any temperature.

However, our mixing time bound is $O\left(n^{4} m^{3}\right)$
Conjecture (Peres)
The mixing time of Swendsen-Wang at $q=2$ is $O\left(n^{1 / 4}\right)$.

Concequence - Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 14)

$$
T_{\text {rel }}\left(P_{S W}\right) \leqslant T_{\text {rel }}\left(P_{R C}\right)
$$

Combine with our theorem:
Swendsen-Wang is rapidly mixing at $q=2$,
namely, for the ferromagnetic Ising model at any temperature.

However, our mixing time bound is $O\left(n^{4} m^{3}\right)$.
Conjecture (Peres)
The mixing time of Swendsen-Wang at $q=2$ is $O\left(n^{1 / 4}\right)$.

Even subgraphs

Another equivalent formulations at $q=2$

Subgraph $r \subseteq E$ is even if every vertex in (V, r) has an even degree.

$$
\pi_{\text {even }}(r) \propto p^{|r|}(1-p)^{|E \backslash r|}
$$

Partition function $Z_{\text {even }}(p)$

$(1-p)^{4}$

NOT EVEN

p^{4}

Equivalence at $q=2$

Let $\beta=\frac{1}{1-p}$.

$$
Z_{\text {Ising }}(\beta)=\beta^{|E|} Z_{R C}(p, 2)=2^{|V|} \beta^{|E|} Z_{\text {even }}\left(\frac{p}{2}\right)
$$

Overview

[Swendsen, Wang 87]

Overview

Overview

Grimmett-Janson coupling

Given a graph G, draw a random even subgraph $S \subseteq E$ with $p \leqslant \frac{1}{2}$:

$$
\operatorname{Pr}(S=s)=\pi_{\text {even }}(s)
$$

Then we add every edge $e \notin S$ with probability $p^{\prime}=\frac{p}{1-p}$.
Call this subgraph R.
Theorem (Grimmett, Janson 09)
$\operatorname{Pr}(R=r)=\pi_{R G ;} 2 p, 2(r)$.

Grimmett-Janson coupling

Given a graph G, draw a random even subgraph $S \subseteq E$ with $p \leqslant \frac{1}{2}$:

$$
\operatorname{Pr}(S=s)=\pi_{\text {even }}(s)
$$

Then we add every edge $e \notin S$ with probability $p^{\prime}=\frac{p}{1-p}$.
Call this subgraph R.
Theorem (Grimmett, Janson 09)

$$
\operatorname{Pr}(R=r)=\pi_{R C ; 2 p, 2}(r)
$$

The Proof

Congestion and flows

$T_{\text {rel }} \leqslant$ congestion of any flow [Sinclair 92].

The random variable

1. Random independent initial and final states $/$ and F.
2. A random path γ from I to F
3. Z_{k} is the k th state of

Congestion and flows

$T_{\text {rel }} \leqslant$ congestion of any flow [Sinclair 92].

For any two states x and y, we construct a random path from x to y.
The random variable Z_{k} :

1. Random independent initial and final states I and F.
2. A random path γ from I to F.
3. Z_{k} is the k th state of γ.

The quantity $\max _{k} \frac{\operatorname{Pr}\left(z_{k}=z\right)}{\pi(z)}$ is polynomially related to the congestion.

Lifting flows

In an ideal world ...

- Suppose we have canonical paths $\Gamma_{\text {even }}$ for even subgraphs with low congestion (similar to [Jerrum, Sinclair 93]).
- Then use Grimmett-Janson to lift $\Gamma_{\text {even }}$ to a flow for random cluster.

Two issues:

1. We do not have good canonical paths for even subgraphs -Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs, and extend Grimmett-Janson for near-even.
2. Grimmett-Janson adds indepdendent edges $-Z_{i}$ and Z_{i+1} are not adjacent states! They may differ by a lot of edges. Patch 2: correlated lifting - re-randomization.

In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs -Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs, and extend Grimmett-Janson for near-even.
2. Grimmett-Janson adds indepdendent edges $-z_{i}$ and Z_{i+1} are not adjacent states! They may differ by a lot of edges. Patch 2: correlated lifting - re-randomization.

In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs -Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs, and extend Grimmett-Janson for near-even.
2. Grimmett-Janson adds indepdendent edges $-z_{i}$ and z_{i+1} are not adjacent states! They may differ by a lot of edges.

Patch 2: correlated lifting - re-randomization.

In the real world ...

Two issues:

1. We do not have good canonical paths for even subgraphs -Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs, and extend Grimmett-Janson for near-even.
2. Grimmett-Janson adds indepdendent edges $-z_{i}$ and z_{i+1} are not adjacent states! They may differ by a lot of edges.

Patch 2: correlated lifting - re-randomization.

Lifting flows

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

Lifting flows

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.

Lifting flows

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).

Lifting flows

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).

Lifting flows

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
- Correlated lifting of this path to random cluster by (extended) Grimmett-Janson.

Lifting flows

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
- Correlated lifting of this path to random cluster by (extended) Grimmett-Janson.

Lifting flows

Z_{k} is close to $R C$.
\Rightarrow low congestion

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
- Correlated lifting of this path to random cluster by (extended) Grimmett-Janson.

Lifting flows

Z_{R} is close to $R C$.
\Rightarrow low congestion

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
- Correlated lifting of this path to random cluster by (extended) Grimmett-Janson.

Lifting flows

Z_{R} is close to $R C$.
\Rightarrow low congestion

- Goal: low congestion flows.

Random initial and final random cluster configurations Z_{0} and $Z_{2 m}$.

- Lifted from even subgraphs W_{0} and W_{m} by Grimmett-Janson.
- (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
- Correlated lifting of this path to random cluster by (extended) Grimmett-Janson.
- Re-randomization to remove correlations between Z_{0} and Z_{m}.

Recap

Theorem

$$
\text { At } q=2, \quad T_{\text {rel }}\left(P_{R C}\right) \leqslant 8 n^{4} m^{2}
$$

- $q=2$ tighter mixing time bound? $O\left(n^{1 / 4}\right)$?
- $1<q<2$ (monotone) fast mixing?
- $0 \leqslant q<1$ (e.g. \#Forests) fast mixing???

Recap

Theorem

$$
\text { At } q=2, \quad T_{\text {rel }}\left(P_{R C}\right) \leqslant 8 n^{4} m^{2}
$$

- $q=2$ tighter mixing time bound? $O\left(n^{1 / 4}\right)$?
- $1<q<2$ (monotone) fast mixing?
- $0 \leqslant q<1$ (e.g. \#Forests) fast mixing???

$$
\underset{\text { arxiv.org/abs/1605.00139 }}{\text { Thank You! }}
$$

