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The Model



The random cluster model (Fortuin, Kasteleyn 69)

Parameters 0 ⩽ p ⩽ 1 (edge weight), q ⩾ 0 (cluster weight).

Given graph G = (V, E), the measure on subgraph r ⊆ E is defined as

πRC(r) ∝ p|r|(1− p)|E\r|qκ(r),

where κ(r) is the number of connected components in (V, r).

(1− p)4q4 p2(1− p)2q2 p4q
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The random cluster model (Fortuin, Kasteleyn 69)

The partition function (normalizing factor):

ZRC(p,q) =
∑
r⊆E

p|r|(1− p)|E\r|qκ(r).

Equivalent to the Tutte polynomial ZTutte(x, y):

q = (x− 1)(y− 1) p = 1− 1
y
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The random cluster model (Fortuin, Kasteleyn 69)

πRC(r) ∝ p|r|(1− p)|E\r|qκ(r)

The motivation is to unify:

• Ising model q = 2

• Potts model q > 2, integer

• Bond percolation q = 1 (On Kn, Erdős-Rényi random graph)

• Electrical network q→ 0 (Spanning trees if p→ 0 and q
p → 0)
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Glauber dynamics

Glauber dynamics (single edge update) PRC (Metropolis):

Current state x ⊆ E

1. With prob. 1/2 do nothing. (Lazy)

2. Otherwise, choose an edge e u.a.r.

3. Move to y = x⊕ {e} with prob. min
{
1, πRC(y)

πRC(x)

}
.

Detailed balance:

π(x)P(x, y) = π(y)P(y, x) = min{π(x),π(y)}
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Glauber dynamics

Glauber dynamics (single edge update) PRC (Metropolis):

PRC(x, y) =


1
2m min

{
1, πRC(y)

πRC(x)

}
if |x⊕ y| = 1;

1− 1
2m

∑
e∈Emin

{
1, πRC(x⊕{e})

πRC(x)

}
if x = y;

0 otherwise.

We are interested in:

Tmix(PRC) = min
{
t : ||PtRC(x0, ·) − π||TV ⩽ ϵ

}
,

Trel(PRC) =
1

1− λ2(PRC)
.
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A simple example

Let p < 1/2.

min

{
1, πRC(x ∪ {e})

πRC(x)

}

=

 p
1−p if e is not a cut edge

p
q(1−p) if e is a cut edge
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Previous results

Previous results focus on special graphs.

• On the complete graph (mean-field):
[Gore, Jerrum 99] [Blanca, Sinclair 15]

• On the 2D lattice Z2:
[Borgs et al. 99] [Blanca, Sinclair 16] [Gheissari, Lubetzky 16]

q > 2: Slow mixing for the complete graph.
0 ⩽ q ⩽ 2: No known fast mixing bound for general graphs.
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Main theorem

Theorem
For the random cluster model with parameters 0 < p < 1 and q = 2,

Trel(PRC) ⩽ 8n4m2,

Tmix(PRC) ⩽ 8n4m2(lnπRC(x0)−1 + ln ϵ−1).

(n = #vertices, m = #edges.)

• For q > 2, there exists p such that Tmix(PRC) is exponential on
complete graphs. [Gore, Jerrum 99] [Blanca, Sinclair 15] [Gheis-
sari, Lubetzky, Peres 17]

• For q > 2 and 0 < p < 1, it is #BIS-hard to approximate ZRC(p,q).
[Goldberg, Jerrum 12]

• For 0 ⩽ q < 2, there is no known obstacle.
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Swandsen-Wang algorithm



Ferromagnetic Ising model (Ising, Lenz 25)

A configuration σ : V→ { , }. Parameter β > 1.

w(σ) = β|mono(σ)|

Gibbs distribution: π(σ) ∼ w(σ).

Partition function: ZIsing(β) =
∑

σ w(σ).

β4 β2 β0

Exact evaluation of ZIsing is #P-hard even forβ ∈ C unlessβ = 0,±1,±i.

FPRAS for ZIsing for β > 1 [Jerrum, Sinclair 93]
Efficient sampling [Randall, Wilson 99]

10



Ferromagnetic Ising model (Ising, Lenz 25)

A configuration σ : V→ { , }. Parameter β > 1.

w(σ) = β|mono(σ)|

Gibbs distribution: π(σ) ∼ w(σ).

Partition function: ZIsing(β) =
∑

σ w(σ).

β4 β2 β0

Exact evaluation of ZIsing is #P-hard even forβ ∈ C unlessβ = 0,±1,±i.

FPRAS for ZIsing for β > 1 [Jerrum, Sinclair 93]
Efficient sampling [Randall, Wilson 99]

10



Ferromagnetic Ising model (Ising, Lenz 25)

A configuration σ : V→ { , }. Parameter β > 1.

w(σ) = β|mono(σ)|

Gibbs distribution: π(σ) ∼ w(σ).

Partition function: ZIsing(β) =
∑

σ w(σ).

β4 β2 β0

Exact evaluation of ZIsing is #P-hard even forβ ∈ C unlessβ = 0,±1,±i.

FPRAS for ZIsing for β > 1 [Jerrum, Sinclair 93]
Efficient sampling [Randall, Wilson 99]

10



Equivalence at q = 2

Let β = 1
1−p .

ZIsing(β) = β|E|ZRC (p, 2)

Joint distribution on vertices and edges [Edwards, Sokal 88]:

vertex colors assigned uniformly, edges chosen with prob. p,
conditioned on no chosen edge is bichromatic.

Marginal on vertices⇒ Ising model.

Marginal on edges⇒ random cluster model.
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Swendsen-Wang algorithm [Swendsen, Wang 87]

→ 1. Select monochromatic edges.

2. Re-randomize monochromatic edges
— keep with probability p = 1− β−1.

3. Color each component uniformly.

Conjectured to be rapidly mixing for all graphs (Sokal).

“This algorithm appears to work extremely well but there are no quan-
titative theoretical results to support this experimental finding.”
(Saloff-Coste 97)
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Previous Results

Again, most previous results focus on special graph families.

• On the complete graph:
[Gore, Jerrum 99] [Cooper, Dyer, Frieze, Rue 00]
[Long, Nachimus, Ning, Peres 11] [Borgs, Chayes, Tetali 11]
[Galanis, Štefankovič, Vigoda 15] [Gheissari, Lubetzky, Peres 17]

• On trees (or bounded tree-width):
[Cooper, Frieze 99] [Ge, Štefankovič 10]
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Concequence — Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 14)
Trel(PSW) ⩽ Trel(PRC)

Combine with our theorem:
Swendsen-Wang is rapidly mixing at q = 2,
namely, for the ferromagnetic Ising model at any temperature.

However, our mixing time bound is O(n4m3).

Conjecture (Peres)
The mixing time of Swendsen-Wang at q = 2 is O(n1/4).
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Even subgraphs



Another equivalent formulations at q = 2

Subgraph r ⊆ E is even if every vertex in (V, r) has an even degree.

πeven(r) ∝ p|r|(1− p)|E\r|

Partition function Zeven(p)

(1− p)4 NOT EVEN p4
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Equivalence at q = 2

Let β = 1
1−p .

ZIsing(β) = β|E|ZRC (p, 2) = 2|V|β|E|Zeven
(p
2

)
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Overview

Ising
model

Even sub-
graphs

Random
cluster

Joint dis-
tribution

[van der Waerden 41]

[Edwards, Sokal 88]

[E
dw
ar
ds
,S
ok
al
88
]

[Fortuin, Kasteleyn 69]

Slow mixing[Jerrum, Sinclair 93]

[Swendsen, Wang 87]
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Grimmett-Janson coupling

Given a graph G, draw a random even subgraph S ⊆ E with p ⩽ 1
2 :

Pr(S = s) = πeven(s).

Then we add every edge e ̸∈ S with probability p ′ = p
1−p .

Call this subgraph R.

Theorem (Grimmett, Janson 09)
Pr(R = r) = πRC; 2p,2(r).

19



Grimmett-Janson coupling

Given a graph G, draw a random even subgraph S ⊆ E with p ⩽ 1
2 :

Pr(S = s) = πeven(s).

Then we add every edge e ̸∈ S with probability p ′ = p
1−p .

Call this subgraph R.

Theorem (Grimmett, Janson 09)
Pr(R = r) = πRC; 2p,2(r).

19



The Proof



Congestion and flows

Trel ⩽ congestion of any flow [Sinclair 92].

For any two states x and y, we construct a random path from x to y.

The random variable Zk:

1. Random independent initial and final states I and F.

2. A random path γ from I to F.

3. Zk is the kth state of γ.

The quantity maxk
Pr(Zk=z)

π(z) is polynomially related to the congestion.
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Lifting flows

In an ideal world …

• Suppose we have canonical paths Γeven for even subgraphs with
low congestion (similar to [Jerrum, Sinclair 93]).

• Then use Grimmett-Janson to lift Γeven to a flow for random
cluster.

I = W0 W1 W2 WL−1 WL = F

Z0 Z1 Z2 ZL−1 ZL

Gr
im
m
et
t-J
an
so
n

Gr
im
m
et
t-J
an
so
n

Gr
im
m
et
t-J
an
so
n Grim

m
ett-Janson

Grim
m
ett-Janson
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In the real world …

Two issues:

1. We do not have good canonical paths for even subgraphs —
Jerrum-Sinclair chain moves among all subgraphs!

Patch 1: modify Jerrum-Sinclair to even/near-even subgraphs,
and extend Grimmett-Janson for near-even.

2. Grimmett-Janson adds indepdendent edges — Zi and Zi+1 are
not adjacent states! They may differ by a lot of edges.

Patch 2: correlated lifting — re-randomization.
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Lifting flows

W0 W1 W2 Wm

Z0 Z1 Z2 Zm Z2m
Re-randomization

Jerrum-Sinclair
Even subgraphs

Random cluster

Gr
im
m
et
t-J
an
so
n

Co
rr
el
at
ed

Li
fti
ng

Co
rr
el
at
ed

Li
fti
ng

Co
rr
el
at
ed

Li
fti
ng

Gri
mm

ett
-Ja
nso
n

• Goal: low congestion flows.
Random initial and final random cluster configurations Z0 and Z2m .

• Lifted from even subgraphs W0 and Wm by Grimmett-Janson.
• (Modified) low congestion paths for near-even subgraphs (Jerrum-Sinclair).
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Recap

Theorem
At q = 2, Trel(PRC) ⩽ 8n4m2.

• q = 2 tighter mixing time bound? O(n1/4)?
• 1 < q < 2 (monotone) fast mixing?
• 0 ⩽ q < 1 (e.g. #Forests) fast mixing???

Thank You!
arxiv.org/abs/1605.00139
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