Questions

Optimal Stopping, Smooth Pasting and the Dual Problem

Saul Jacka and Dominic Norgilas, University of Warwick

Durham LMS-EPSRC Symposium, Durham 29 July 2017

Questions

The general optimal stopping problem:

Given a filtered probability space $(\Omega, (\mathcal{F}_t), \mathcal{F}, \mathbb{P})$ and an adapted gains process G find

$$S_t \stackrel{def}{=} \mathrm{ess \ sup_{optional \ \tau \geq t}} \mathbb{E}[G_{\tau} | \mathcal{F}_t]$$

Recall, under very general conditions

- $\blacktriangleright~S$ is the minimal supermartingale dominating G
- ▶ $\tau_t \stackrel{\text{def}}{=} \inf\{s \ge t : S_s = G_s\}$ is optimal
- for any t, S is a martingale on $[t, \tau_t]$

▶ when

$$G_t = g(X_t) \tag{1}$$

for some (continuous-time) Markov Process X, S_t can be written as a function, $v(X_t)$.

Questions

Remark

1.1 Condition $G_t = g(X_t)$ is less restrictive than might appear. With θ being the usual shift operator, can expand statespace of X by appending adapted functionals F with the property that

$$F_{t+s} = f(F_s, (\theta_s \circ X_u; 0 \le u \le t)).$$
(2)

・ロト ・同ト ・ヨト ・ヨト

The resulting process $Y \stackrel{\text{def}}{=} (X, F)$ is still Markovian. If X is strong Markov and F is right-cts then Y is strong Markov.

e.g if X is a BM,

$$Y_t = (X_t, L_t^0, \sup_{0 \le s \le t} X_s, \int_0^t \exp(-\int_0^s \alpha(X_u) du) g(X_s) ds$$

is a Feller process on the filtration of X.

- Questions
- When is v is in the domain of the generator, L, of X? (Surprisingly, unable to find any general results about this.)
- 2. Recall that the dual problem is to find

$$V = \inf_{M \in \mathcal{M}_0} \mathbb{E}[\sup_t (G_t - M_t)],$$

where \mathcal{M}_0 is the collection of uniformly integrable martingales started at 0.

Is the dual of the Markovian problem a controlled Markov Process problem?

3. The smooth pasting principle is used to find explicit solutions to optimal stopping problems essentially by "pasting together a martingale (on the continuation region) and the gains process (on the stopping region)"

- 4 同 6 4 日 6 4 日 6

Can we say anything about smooth pasting?

Define
$$\mathbb{G} = \{$$
semimartingales such that $\mathbb{E}\Big[\sup_{0 \le t \le T} |G_t|\Big] < \infty \}.$

Theorem

If $G \in \mathbb{G}$ then

- the Snell envelope S of G, admits a right-continuous modification and is the minimal supermartingale that dominates G.
- ▶ both G and S are class (D).
- G and S admit unique decompositions

$$G = N + D, \qquad S = M - A \tag{3}$$

• □ ▶ • • • • • • • • •

where $N \in \mathcal{M}_{0,loc}$ and D is a predictable finite-variation process, $M \in \mathcal{M}_0$, and A is a predictable, increasing process of integrable variation (in IV).

Some useful results

э

Remark

It is more normal to assume that the process A in the Doob-Meyer decomposition of S is started at zero. The dual problem is one reason why we do not do so here.

General framework Markovian setting

Recall that

$$H^1 = \{ \text{special semimartingales } N + D \text{ where } \sup_t |N_t| + \int_0^\infty |dD_t| \in L^1 \}.$$

The main assumption in this section is the following:

Assumption

3.1 G is in \mathbb{G} and in H^1_{loc} .

Under Assumption 3.1, the previous theorem's conclusions hold and, in the decomposition G = N + D, D is a predictable IV_{loc} process.

General framework Markovian setting

イロト イポト イヨト イヨト

We finally arrive to the main result:

Theorem

3.2 Suppose Assumption 3.1 holds. Let D^- (D^+) denote the decreasing (increasing) components of D. Then $A << D^-$, and μ , defined by

$$\mu_t := \frac{dA_t}{dD_t^-}, \quad 0 \le t \le T,$$

satisfies $0 \le \mu_t \le 1$.

Remark

As is usual in semimartingale calculus, we treat a process of bounded variation and its corresponding Lebesgue-Stiltjes signed measure as synonymous.

General framework Markovian setting

Proof First localise G and S so they are both in H^1 . Recall the characterisation of a predictable IV process V: we have:

$$V_t - V_s = \lim_{\delta \downarrow 0} \sum_{i=0}^{\lfloor (t-s)/\delta \rfloor} \mathbb{E}[V_{s+(i+1)\delta} - V_{s+i\delta} | \mathcal{F}_{s+i\delta}], \qquad (4)$$

э

with limit being in L^1 (taking a subsequence if necessary).

General framework Markovian setting

Now, set

$$\Delta \stackrel{\text{def}}{=} \mathbb{E}[A_{v} - A_{u}|\mathcal{F}_{u}] = \mathbb{E}[S_{u} - S_{v}|\mathcal{F}_{u}]$$
$$= \mathbb{E}\left[\mathbb{E}[G_{\tau_{u}}|\mathcal{F}_{u}] - \operatorname{ess sup}_{\sigma \geq v}\mathbb{E}[G_{\sigma}|\mathcal{F}_{v}]\Big|\mathcal{F}_{u}\right]$$
(5)

Taking $\sigma = \tau_u \lor v$ in (5), we obtain

$$\Delta \leq \mathbb{E}[G_{\tau_{u}} - G_{\tau_{u} \vee v} | \mathcal{F}_{u}] = \mathbb{E}[D_{\tau_{u}} - D_{\tau_{u} \vee v} | \mathcal{F}_{u}]$$

= $\mathbb{E}[(D_{\tau_{u}}^{+} - D_{\tau_{u} \vee v}^{+}) + D_{\tau_{u} \vee v}^{-} - D_{\tau_{u}}^{-} | \mathcal{F}_{u}] \leq \mathbb{E}[D_{\tau_{u} \vee v}^{-} - D_{\tau_{u}}^{-} | \mathcal{F}_{u}]$
 $\leq \mathbb{E}[D_{v}^{-} - D_{u}^{-} | \mathcal{F}_{u}].$ (6)

The last inequalities following since: D^+ and D^- are increasing; $\tau_u \ge u$; and, on the event that $\tau_u \ge v$, the term inside the penultimate expectation vanishes. Applying (4) to inequality (6) we get that $0 \le A_t - A_s \le D_t^- - D_s^-$ for all $s \le t$, giving the result \Box

General framework Markovian setting

(D) (A) (A)

Assumption

3.4 X is a strong Markov process with quasi continuous filtration.

Remark

Note that if X satisfies the asumption then expanding the state by a right-continuous functional F of the form in Remark 1.1, (X, F) also satisfies Assumption 3.4. If X is Feller then it satisfies the assumption.

General framework Markovian setting

(ロ) (同) (三) (三)

Finally,

Assumption

3.6
$$\sup_t |g(X_t)| \in L^1$$
 and $g \in \mathbb{D}(\mathcal{L})$, i.e.

$$g(X_t) = g(x) + M_t^g + \int_0^t \mathcal{L}g(X_s)ds, \quad 0 \le t \le T, x \in E,$$
 (7)

so that G is a semimartingale and the FV process in the semimartingale decomposition of G = g(X) is absolutely continuous with respect to Lebesgue measure, and therefore predictable. Moreover, we deduce that g(X) satisfies Assumption 3.1.

General framework Markovian setting

The result of this section is the following:

Theorem

Suppose X and g satisfy Assumptions 3.4 and 3.6, then $v \in \mathbb{D}(\mathcal{L})$.

Proof Since $D_t := g(X_0) + \int_0^t \mathcal{L}g(X_s) ds$, $0 \le t \le T$, (ignoring initial values) D^+ and D^- are explicitly given by

$$D_t^+ := \int_0^t \mathcal{L}g(X_s)^+ ds,$$

$$D_t^- := \int_0^t \mathcal{L}g(X_s)^- ds,$$

so D^- is absolutely continuous with respect to Lebesgue measure.

イロト イポト イヨト イヨト

General framework Markovian setting

・ロト ・ 同ト ・ ヨト ・ ヨト

Applying Theorem 3.2, we conclude that

$$v(X_t) = v(x) + M_t - \int_0^t \mu_s \mathcal{L}g(X_s)^- ds, \quad 0 \le t \le T, \quad (8)$$

where μ is a non-negative Radon-Nikodym derivative with 0 $\leq \mu_s \leq$ 1.

Setting $\lambda_t = \mu_t \mathcal{L}g(X_t)^-$, all that remains is to show that λ_t is $\sigma(X_t)$ -measurable (since then there exists $\beta : E \to \mathbb{R}_+$, such that $\lambda = \beta(X)$).

This is fairly elementary (by the Markov property and quasi-continuity of the filtration) and thus $v \in \mathbb{D}(\mathcal{L})$.

Dual problem Smooth pasting

Recall that the dual problem is to find

$$V = \inf_{M \in \mathcal{M}_0} \mathbb{E}[\sup_t (G_t - M_t)],$$

and we know that the optimal M is the martingale appearing in the decomposition of V. Since $v \in \mathbb{D}(\mathcal{L})$, this is $M_t^v \stackrel{def}{=} v(X_t) - v(X_0) - \int_0^t \mathcal{L}v(X_s) ds.$ It follows that the dual problem is

$$V(x) = \inf_{h \in \mathbb{D}(\mathcal{L})} \mathbb{E}_x[\sup_t (g(X_t) - h(X_t) - \int_0^t \mathcal{L}h(X_s) ds)]$$

and a little thought shows that this is a controlled Markov process problem, with controlled MP Y^h given by $Y^h = (X, F^h)$ where

$$F_t^h = \left(\int_0^t \mathcal{L}h(X_s)ds, \sup_{s \leq t}(g(X_s) - h(X_s) - \int_0^s \mathcal{L}h(X_u)du)\right).$$

イロト イヨト イヨト イヨト

Dual problem Smooth pasting

(D) (A) (A)

We assume that X is a one-dimensional regular diffusion on E, a possibly infinite interval. Let $s(\cdot)$ denote a scale function of X.

Theorem

Suppose Assumption 3.6 holds, then $v \in \mathbb{D}(\mathcal{L})$. Let Y = s(X). If $s \in C^1$ and $\langle Y, Y \rangle_t$ is absolutely continuous with respect to Lebesgue measure, then $v(\cdot)$ is C^1 .

Smooth pasting

Proof Note that Y = s(X) is a Markov process, and let \mathcal{G} denote its martingale generator. Then v(x) = W(s(x)), where

$$W(y) = \sup_{\tau} \mathbb{E}_{s^{-1}(y)}[g \circ s^{-1}(Y_{\tau})].$$
(9)

イロト 不得下 イヨト イヨト

æ

Then, since $v \in \mathbb{D}(\mathcal{L})$,

$$v(X_t) = v(x) + M_t^v + \int_0^t \mathcal{L}v(X_s) ds,$$

and thus

$$W(Y_t) = W(y) + M_t^v + \int_0^t (\mathcal{L}v) \circ s^{-1}(Y_s) ds, \quad 0 \leq t \leq T.$$

Introduction Preliminaries Main Theorems Applications Dual problem Smooth pasting

Therefore, $W \in \mathbb{D}(\mathcal{G})$, i.e.

$$W(Y_t) = W(y) + M_t^W - \int_0^t \mathcal{G}W(Y_s) ds, \qquad (10)$$

with $\mathcal{GW}(\cdot) \geq 0$.

Y is a local martingale and so it's easy to show that $W(\cdot)$ is a concave function. Using the generalised Ito formula we have

$$W(Y_t) = W(y) + \int_0^t W'_-(Y_s) dY_s + \int L_t^z \nu(dz), \quad (11)$$

(ロ) (同) (三) (三)

where L_t^z is the local time of Y at z, and ν is a non-negative, σ -finite measure corresponding to the derivative W'' in the sense of distributions.

Dual problem Smooth pasting

By the Lebesgue decomposition theorem, $\nu = \nu_c + \nu_s$, where ν_c and ν_s are measures, absolutely continuous and singular (with respect to Lebesgue measure), respectively. Denoting the Radon-Nykodym derivative of ν_c by ν'_c , the occupation time formula gives

$$W(Y_{t}) - W(y) = \int_{0}^{t} W'_{-}(Y_{s}) dY_{s} + \int L_{t}^{z} \nu'_{c}(z) dz + \int L_{t}^{z} \nu_{s}(dz)$$

= $\int_{0}^{t} W'_{-}(Y_{s}) dY_{s} + \int_{0}^{t} \nu'_{c}(Y_{s}) d < Y, Y >_{s} + \int L_{t}^{z} \nu_{s}(dz).$ (12)

By hypothesis, the quadratic variation process $(\langle Y, Y \rangle_t)_{t\geq 0}$ is absolutely continuous with respect to Lebesgue measure. Then, by comparing (12) with (10), we conclude that

$$\int L_t^z \nu_s(dz) = 0 \text{ for each } t. \tag{13}$$

イロト イポト イヨト イヨト

Dual problem Smooth pasting

Since Y is a semimartingale, L^z is carried by the set $\{t : Y_t = z\}$. We conclude that ν_s does not charge points, and therefore, left and right derivatives of $W(\cdot)$ must be equal. So $W \in C^1$, and since $s \in C^1$ by assumption and is strictly increasing, $v \in C^1$.

Dual problem Smooth pasting

Example

Suppose X is an Itô diffusion, i.e. X is a diffusion with infinitesimal generator (on C^2)

$$\mathcal{L} = rac{1}{2}\sigma^2(x)rac{d^2}{dx^2} + b(x)rac{d}{dx}, \quad x \in E,$$

where $\sigma(\cdot)$ and $b(\cdot)$ are continuous functions and $\sigma(\cdot)$ does not vanish. Then the scale function $s \in C^2$, and since $\langle X, X \rangle$ is absolutely continuous with respect to Lebesgue measure, so is $\langle s(X), s(X) \rangle$. It follows that if g is C^2 then v is C^1 .

Dual problem Smooth pasting

イロン イヨン イヨン イヨン

æ

Technical results used are all in Kallenberg, Protter and Revuz & Yor.