ASYMPTOTIC APERIODICITY AND THE STRONG RATIO LIMIT PROPERTY

Erik A. van Doorn
Department of Applied Mathematics
University of Twente
Enschede, The Netherlands

London Mathematical Society - EPSRC Durham Symposium
Markov Processes, Mixing Times and Cutoff
27 July - 4 August 2017

outline

1. general setting: discrete-time Markov chains
(i) strong ratio limit property (SRLP)
(ii) conditions for SRLP
(iii) problem
2. specific setting: birth-death processes
(i) necessary and sufficient condition for SRLP
(ii) sufficient condition for SRLP
(iii) probabilistic interpretation
3. SRLP and asymptotic aperiodicity
(i) asymptotic period
(ii) birth-death processes
(iii) Markov chains
time-homogeneous, discrete-time Markov chain

$$
\mathcal{X} \equiv\{X(n), n=0,1, \ldots\}
$$

state space $S:=\{0,1,2, \ldots\}$
matrix of one-step transition probabilities

$$
P \equiv(P(i, j), i, j \in S)
$$

n-step transition probabilities

$$
\begin{aligned}
P^{(n)}(i, j) & \equiv \operatorname{Pr}\{X(m+n)=j \mid X(m)=i\} \\
P^{(n)} & \equiv\left(P^{(n)}(i, j), i, j \in S\right)=P^{n}
\end{aligned}
$$

assumption: P irreducible, aperiodic, (sub)stochastic

strong ratio limit property

definition (Orey (1961)): \mathcal{X} recurrent
\mathcal{X} has strong ratio limit property (SRLP) if there exist positive constants $\mu(i), i \in S$, such that

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+m)}(i, j)}{P^{(n)}(k, l)}=\frac{\mu(j)}{\mu(l)}, \quad i, j, k, l \in S, m \in \mathbb{Z}
$$

definition (Pruitt (1965)): \mathcal{X} recurrent or transient
\mathcal{X} has SRLP if there exist positive constants $\rho, \mu(i), i \in S$, and $f(i), i \in S$, such that

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+m)}(i, j)}{P^{(n)}(k, l)}=\rho^{m} \frac{f(i) \mu(j)}{f(k) \mu(l)}, \quad i, j, k, l \in S, m \in \mathbb{Z}
$$

problems: (i) give conditions on P for SRLP
(ii) identify constants $\rho, \mu(i)$ and $f(i)$

strong ratio limit property

SRLP: there exist positive constants $\rho, \mu(i)$ and $f(i)$ such that

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+m)}(i, j)}{P^{(n)}(k, l)}=\rho^{m} \frac{f(i) \mu(j)}{f(k) \mu(l)}, \quad i, j, k, l \in S, m \in \mathbb{Z}
$$

SRLP prevails if and only if there exist positive constants $\rho, \mu(i)$ and $f(i)$, such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{P^{(n+1)}(i, j)}{P^{(n)}(i, j)}=\rho, \quad i, j \in S \tag{1}\\
& \lim _{n \rightarrow \infty} \frac{P^{(n)}(i, j)}{P^{(n)}(i, l)}=\frac{\mu(j)}{\mu(l)}, \quad i, j, l \in S \tag{2}\\
& \lim _{n \rightarrow \infty} \frac{P^{(n)}(i, j)}{P^{(n)}(k, j)}=\frac{f(i)}{f(k)}, \quad i, j, k \in S \tag{3}
\end{align*}
$$

intermezzo: R-recurrence, R-transience
theorem (Vere-Jones (1962)): the power series

$$
P_{i j}(z) \equiv \sum_{n=0}^{\infty} P^{(n)}(i, j) z^{n}, \quad i, j \in S
$$

have common radius of convergence $R, 1 \leq R<\infty$, and converge or diverge together
definition: P is R-transient if

$$
P_{i j}(R)<\infty
$$

and R-recurrent if

$$
P_{i j}(R)=\infty
$$

intermezzo: R-recurrence, R-transience
theorem (Kingman (1963)):

$$
\lim _{n \rightarrow \infty}\left(P^{(n)}(i, j)\right)^{1 / n}=\frac{1}{R}, \quad i, j \in S
$$

hence, if

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+1)}(i, j)}{P^{(n)}(i, j)} \text { exists }
$$

then

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+1)}(i, j)}{P^{(n)}(i, j)}=\frac{1}{R}
$$

so ρ in SRLP satisfies

$$
\rho=\frac{1}{R}
$$

ρ is decay parameter

strong ratio limit property

SRLP: there exist positive constants $\rho, \mu(i)$ and $f(i)$ such that

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+m)}(i, j)}{P^{(n)}(k, l)}=\rho^{m} \frac{f(i) \mu(j)}{f(k) \mu(l)}, \quad i, j, k, l \in S, m \in \mathbb{Z}
$$

SRLP prevails if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{P^{(n+1)}(i, j)}{P^{(n)}(i, j)} \text { exists, } \quad i, j \in S \tag{1}
\end{equation*}
$$

and there exist positive constants $\mu(i)$ and $f(i)$, such that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{P^{(n)}(i, j)}{P^{(n)}(i, l)} & =\frac{\mu(j)}{\mu(l)}, \quad i, j, l \in S \tag{2}\\
\lim _{n \rightarrow \infty} \frac{P^{(n)}(i, j)}{P^{(n)}(k, j)} & =\frac{f(i)}{f(k)}, \quad i, j, k \in S \tag{3}
\end{align*}
$$

strong ratio limit property

theorem (Pruitt (1965)): P (sub)stochastic and R-recurrent;

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text { exists }
$$

$\Longleftrightarrow \quad P$ has SRLP:

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+m)}(i, j)}{P^{(n)}(k, l)}=\rho^{m} \frac{f(i) \mu(j)}{f(k) \mu(l)}, \quad i, j, k, l \in S, m \in \mathbb{Z}
$$

where $\rho=R^{-1}$ and, up to constant factors, μ is unique ρ-invariant measure:

$$
\sum_{i \in S} \mu(i) P(i, j)=\rho \mu(j), \quad j \in S
$$

and f is unique ρ-harmonic function (or ρ-invariant vector):

$$
\sum_{j \in S} P(i, j) f(j)=\rho f(i), \quad i \in S
$$

parenthetically

if P is strictly substochastic (coffin state ∂), $\rho<1$ and μ a ρ-invariant measure, that is,

$$
\sum_{i \in S} \mu(i) P(i, j)=\rho \mu(j), \quad j \in S
$$

then absorption at ∂ is certain and μ constitutes a (minimal) quasistationary distribution, that is

$$
\mathbb{P}_{\mu}(X(n)=j \mid T>n)=\mu_{j}, \quad j \in S
$$

with T denoting the absorption time
theorem (Pruitt (1965)): P (sub)stochastic and R-recurrent;

$$
P \text { has SRLP } \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text { exists }
$$

sufficient conditions for SRLP:

- $\quad P$ is R-recurrent and symmetrizable (Pruitt (1965))
- $\quad P$ is R-recurrent and
$P^{(n)}(i, i) \geq \varepsilon>0$ for some n and all $i \in S$ (extension of Kingman \& Orey (1964))
problems: (i) can we do better if P is R-recurrent?
(ii) what can be said if P is R-transient?

strong ratio limit property

setting: P irreducible, aperiodic, (sub)stochastic (but not necessarily R-recurrent)
theorem (Kesten (1995)): if for each n sufficiently large there exists a constant $\varepsilon \equiv \varepsilon(n)>0$ such that $P^{(n)}(i, i) \geq \varepsilon$ for all $i \in S$ ($=$ condition K) then

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+1)}(i, j)}{P^{(n)}(i, j)}=\rho, \quad i, j \in S
$$

theorem (Handelman (1999)): assume condition K SRLP \Longleftrightarrow there exist unique ρ-invariant measure μ and unique ρ-harmonic function f, in which case

$$
\lim _{n \rightarrow \infty} \frac{P^{(n)}(i, j)}{P^{(n)}(i, l)}=\frac{\mu(j)}{\mu(l)} \text { and } \lim _{n \rightarrow \infty} \frac{P^{(n)}(i, j)}{P^{(n)}(k, j)}=\frac{f(i)}{f(k)}, \quad i, j, k, l \in S
$$

strong ratio limit property

Handelman (2002): "Your e-mail brought back painful memories - struggling through the details of the arguments in the paper which I had put completely out of my mind."

strong ratio limit property

conclusion: condition $K+$ existence of unique ρ-invariant measure and unique ρ-harmonic function \Rightarrow SRLP
remark: without condition K existence of unique ρ-invariant measure and unique ρ-harmonic function is not necessary for SRLP, so existence of

$$
\lim _{n \rightarrow \infty} \frac{P^{(n+1)}(i, j)}{P^{(n)}(i, j)}, \quad i, j \in S
$$

per se is not sufficient for Handelman's conclusions
problem: find condition weaker (and more elegant) than condition K for SRLP to prevail, assuming existence of a unique ρ-invariant measure and unique ρ-harmonic function
approach: first look at birth-death chains, then try to generalize

birth-death chains

setting:

$$
P=\left(\begin{array}{ccccc}
r_{0} & p_{0} & 0 & 0 & \cdots \\
q_{1} & r_{1} & p_{1} & 0 & \cdots \\
0 & q_{2} & r_{2} & p_{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

matrix of 1 -step transition probabilities of birth-death chain \mathcal{X} on $\{0,1,2, \ldots\}$
assumption: P irreducible, aperiodic, (sub)stochastic
recall: decay parameter

$$
\rho=\frac{1}{R} \leq 1
$$

with $R=$ radius of convergence of $\sum_{n=0}^{\infty} P^{(n)}(i, j) z^{n}$

birth-death chains

letting

$$
\begin{aligned}
& p_{i} Q_{i+1}(x)=\left(x-r_{i}\right) Q_{i}(x)-q_{i} Q_{i-1}(x), \quad i>0 \\
& p_{0} Q_{1}(x)=x-r_{0}, \quad Q_{0}(x)=1
\end{aligned}
$$

and

$$
\pi_{0}:=1, \quad \pi_{i}:=\frac{p_{0} \ldots p_{i-1}}{q_{1} \cdots q_{i}}, \quad i>0
$$

we have (up to constant factors) unique ρ-harmonic function f

$$
\sum_{j \in S} P(i, j) f(j)=\rho f(i) \Longleftrightarrow f(i)=c Q_{i}(\rho)
$$

and unique ρ-invariant measure μ

$$
\sum_{j \in S} \mu(j) P(j, i)=\rho \mu(i) \Longleftrightarrow \mu(i)=c \pi_{i} Q_{i}(\rho)
$$

note: $\left\{Q_{i}\right\}$ orthogonal polynomial sequence with respect to (unique) Borel measure ψ on ($-1,1$]

birth-death chains

recall: for Markov chain condition $K+$ existence of unique ρ invariant measure and unique ρ-harmonic function implies SRLP
birth-death chain has unique ρ-harmonic function f and ρ-invariant measure μ, but we do not assume condition K
fact: P is symmetrizable so, by Pruitt's (1965) result, P has SRLP if P is R-recurrent
assumptions in what follows (wlog):

- P is stochastic and $\rho=1$, so that $f(i)=Q_{i}(1)=1$
- P is transient

birth-death chains ($\rho=1$)

theorem (Papangelou (1967)): P has SRLP (involving μ and f)

$$
\Longleftrightarrow \quad \lim _{n \rightarrow \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text { exists }
$$

results (vD \& Schrijner (1995)):

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text { exists } \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{\int_{-1}^{0}(-x)^{n} \psi(d x)}{\int_{0}^{1} x^{n} \psi(d x)}=0 \\
& \lim _{n \rightarrow \infty}\left|Q_{n}(-1)\right|=\infty \Rightarrow \lim _{n \rightarrow \infty} \frac{\int_{-1}^{0}(-x)^{n} \psi(d x)}{\int_{0}^{1} x^{n} \psi(d x)}=0 \\
& \text { ice } \quad \lim _{n \rightarrow \infty}\left|Q_{n}(-1)\right|=\infty \Rightarrow \text { SRLP }
\end{aligned}
$$

hence
and under mild regularity conditions on ψ :

$$
\lim _{n \rightarrow \infty}\left|Q_{n}(-1)\right|=\infty \Longleftrightarrow \text { SRLP }
$$

birth-death chains ($\rho=1$)

result:

$$
\lim _{n \rightarrow \infty}\left|Q_{n}(-1)\right|=\infty \Rightarrow \text { SRLP }
$$

with $\boldsymbol{Q}(x):=\left(Q_{0}(x), Q_{1}(x), \ldots\right)$ we have $P \boldsymbol{Q}(x)=x \boldsymbol{Q}(x)$, and hence

$$
P^{2} \boldsymbol{Q}(x)=x^{2} \boldsymbol{Q}(x)
$$

while

$$
Q_{n}(1)=1, \quad\left|Q_{n}(-1)\right| \geq 1 \text { and increasing }
$$

so $\boldsymbol{Q}(1)$ and $\boldsymbol{Q}(-1)$ are two distinct solutions of $P^{2} \boldsymbol{y}=\boldsymbol{y}$, and hence any solution of $P^{2} \boldsymbol{y}=\boldsymbol{y}$, that is, any 1 -harmonic function for P^{2}, is a linear combination of $Q(1)$ and $Q(-1)$
result: the constant function is the only bounded 1-harmonic function for $P^{2} \Rightarrow \quad P$ has SRLP

birth-death chains ($\rho=1$)

result: the constant function is the only bounded 1-harmonic function for $P^{2} \Rightarrow \quad P$ has SRLP
recall: P (and hence P^{2}) is transient
boundary theory: the constant function is the only bounded 1-harmonic function for $P^{2} \Longleftrightarrow P^{2}$ has exactly one escape route to infinity

birth-death chains ($\rho=1$)

summary: assume (wlog) P stochastic, transient and $\rho=1$, and define

$$
\begin{aligned}
& p_{i} Q_{i+1}(x)=\left(x-r_{i}\right) Q_{i}(x)-q_{i} Q_{i-1}(x), \quad i>0 \\
& p_{0} Q_{1}(x)=x-r_{0}, \quad Q_{0}(x)=1
\end{aligned}
$$

(orthogonal polynomials w.r.t. measure ψ on $(-1,1]$), then
SRLP prevails $\Longleftrightarrow \lim _{n \rightarrow \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)}$ exists
$\Longleftrightarrow \lim _{n \rightarrow \infty} \frac{\int_{-1}^{0}(-x)^{n} \psi(d x)}{\int_{0}^{1} x^{n} \psi(d x)}=0$
$\Leftarrow \quad \lim _{n \rightarrow \infty}\left|Q_{n}(-1)\right|=\infty \quad($ conjecture: \Longleftrightarrow)
$\Longleftrightarrow \quad P^{2}$ has exactly one escape route to ∞

asymptotic period

setting: Markov chain $\mathcal{X} \equiv\{X(n), n=0,1, \ldots\}$ on countable S with irreducible, aperiodic, stochastic transition matrix P
let $\beta(\mathcal{X}):=\#$ almost closed sets for \mathcal{X}

$$
\begin{gathered}
(\approx \# \text { escape routes to infinity if } \mathcal{X} \text { is transient }) \\
\mathcal{X}^{(m)} \equiv\{X(m n), n=0,1, \ldots\} \quad m \text {-step chain }
\end{gathered}
$$

assumptions:

- \mathcal{X} is transient and $\rho=1$
- constant function is only bounded 1-harmonic function for \mathcal{X} $(\beta(\mathcal{X})=1)$
definition: asymptotic period of \mathcal{X} :

$$
d(\mathcal{X}):=\sup \left\{\beta\left(\mathcal{X}^{(m)}\right) \mid m \geq 1\right\} \quad(1 \leq d(\mathcal{X}) \leq \infty)
$$

\mathcal{X} is asymptotically aperiodic if $d(\mathcal{X})=1$

asymptotic period: birth-death chain

results: \mathcal{X} is birth-death chain $\Rightarrow d(\mathcal{X})=1,2$ or ∞

$$
d(\mathcal{X})=2 \text { or } d(\mathcal{X})=\infty \quad \Longleftrightarrow \quad \beta\left(\mathcal{X}^{(2)}\right)=2
$$

hence

$$
\beta\left(\mathcal{X}^{(2)}\right)=1 \Longleftrightarrow \mathcal{X} \text { is asymptotically aperiodic }
$$

$$
\text { recall: } \quad \beta\left(\mathcal{X}^{(2)}\right)=1 \Rightarrow \mathcal{X} \text { has SRLP } \quad(\text { conjecture: } \Longleftrightarrow)
$$

conclusion:

\mathcal{X} is asymptotically aperiodic $\Rightarrow \mathcal{X}$ has SRLP
conjecture (valid under mild regularity conditions):
\mathcal{X} is asymptotically aperiodic $\Longleftrightarrow \mathcal{X}$ has SRLP
setting: irreducible, aperiodic, (sub)stochastic Markov chain \mathcal{X} asymptotic period $d(\mathcal{X})$

$$
1 \leq d(\mathcal{X})=\sup \left\{\beta\left(\mathcal{X}^{(m)}\right) \mid m \geq 1\right\} \leq \infty
$$

birth-death setting:

- asymptotic aperiodicity of related birth-death process is sufficient (and, under mild conditions, necessary) for SRLP
general setting, assuming existence of unique ρ-harmonic function and ρ-invariant measure:
- asymptotic aperiodicity of two related Markov chains is not sufficient, but conjectured to be necessary for SRLP

generalization?

setting: Markov chain \mathcal{X} on $S=\{0,1,2, \ldots\}$ with irreducible, aperiodic, (sub)stochastic transition matrix P
assumption: P has unique ρ-invariant measure μ and unique ρ-harmonic function f
let

$$
\mu_{D}:=\operatorname{diag}(\mu(i), \quad i \in S) \text { and } f_{D}:=\operatorname{diag}(f(i), \quad i \in S)
$$

and define

$$
P_{\mu}:=\frac{1}{\rho} \mu_{D}^{-1} P^{T} \mu_{D} \quad \text { and } \quad P_{f}:=\frac{1}{\rho} f_{D}^{-1} P f_{D}
$$

then P_{μ} and P_{f} are nonnegative and stochastic, hence matrices of 1 -step transition probabilities of Markov chains \mathcal{X}_{μ} and \mathcal{X}_{f}

generalization?

$$
P_{\mu}:=\frac{1}{\rho} \mu_{D}^{-1} P^{T} \mu_{D} \quad \text { and } \quad P_{f}:=\frac{1}{\rho} f_{D}^{-1} P f_{D}
$$

P_{μ} and P_{f} are matrices of 1-step transition probabilities of (stochastic) Markov chains \mathcal{X}_{μ} and \mathcal{X}_{f}
also: P_{μ} and P_{f} are irreducible, aperiodic, $\rho\left(P_{\mu}\right)=\rho\left(P_{f}\right)=1$

furthermore:

P_{μ} and P_{f} have unique 1-harmonic function $g(i)=1$ so that \mathcal{X}_{μ} and \mathcal{X}_{f} are simple
P_{μ} and P_{f} have unique 1-invariant measure $\nu(i)=\mu(i) f(i)$
P has SRLP $\Longleftrightarrow P_{\mu}$ and P_{f} have SRLP
and

$$
P_{\mu}=P_{f} \Longleftrightarrow P \text { is symmetrizable }
$$

generalization?

$$
P_{\mu}:=\frac{1}{\rho} \mu_{D}^{-1} P^{T} \mu_{D} \quad \text { and } \quad P_{f}:=\frac{1}{\rho} f_{D}^{-1} P f_{D}
$$

P_{μ} and P_{f} are matrices of 1-step transition probabilities of (stochastic) Markov chains \mathcal{X}_{μ} and \mathcal{X}_{f}
result: \mathcal{X} satisfies condition $K \Rightarrow \mathcal{X}_{\mu}$ and \mathcal{X}_{f} asymptotically aperiodic
but asymptotic aperiodicity of \mathcal{X}_{μ} and \mathcal{X}_{f} is not, in general, sufficient for the SRLP since

$$
\mathcal{X} \text { is } R \text {-recurrent } \Rightarrow \mathcal{X}_{\mu} \text { and } \mathcal{X}_{f} \text { asymptotically aperiodic }
$$

while example exists of recurrent chain not satisfying the SRLP
conjecture: \mathcal{X} has SRLP $\Rightarrow \mathcal{X}_{\mu}$ and \mathcal{X}_{f} are asymptotically aperiodic

