ASYMPTOTIC APERIODICITY AND THE STRONG RATIO LIMIT PROPERTY

Erik A. van Doorn Department of Applied Mathematics University of Twente Enschede, The Netherlands

London Mathematical Society – EPSRC Durham Symposium

Markov Processes, Mixing Times and Cutoff

27 July - 4 August 2017

1. general setting: discrete-time Markov chains

- (i) strong ratio limit property (SRLP)
- (ii) conditions for SRLP
- (iii) problem

2. specific setting: birth-death processes

- (i) necessary and sufficient condition for SRLP
- (ii) sufficient condition for SRLP
- (iii) probabilistic interpretation

3. SRLP and asymptotic aperiodicity

- (i) asymptotic period
- (ii) birth-death processes
- (iii) Markov chains

time-homogeneous, discrete-time Markov chain

$$\mathcal{X} \equiv \{X(n), n = 0, 1, \dots\}$$

state space $S := \{0, 1, 2, ...\}$

matrix of one-step transition probabilities

$$P \equiv (P(i,j), i, j \in S)$$

n-step transition probabilities

$$P^{(n)}(i,j) \equiv \Pr\{X(m+n) = j \mid X(m) = i\}$$
$$P^{(n)} \equiv (P^{(n)}(i,j), i, j \in S) = P^{n}$$

assumption: *P* irreducible, aperiodic, (sub)stochastic

definition (Orey (1961)): X recurrent

 \mathcal{X} has strong ratio limit property (SRLP) if there exist positive constants $\mu(i)$, $i \in S$, such that

$$\lim_{n \to \infty} \frac{P^{(n+m)}(i,j)}{P^{(n)}(k,l)} = \frac{\mu(j)}{\mu(l)}, \quad i,j,k,l \in S, \ m \in \mathbb{Z}$$

definition (Pruitt (1965)): X recurrent or transient

 \mathcal{X} has SRLP if there exist positive constants ρ , $\mu(i)$, $i \in S$, and f(i), $i \in S$, such that

$$\lim_{n \to \infty} \frac{P^{(n+m)}(i,j)}{P^{(n)}(k,l)} = \rho^m \frac{f(i)\mu(j)}{f(k)\mu(l)}, \quad i,j,k,l \in S, \ m \in \mathbb{Z}$$

problems: (i) give conditions on P for SRLP (ii) identify constants ρ , $\mu(i)$ and f(i) **SRLP**: there exist positive constants ρ , $\mu(i)$ and f(i) such that

$$\lim_{n \to \infty} \frac{P^{(n+m)}(i,j)}{P^{(n)}(k,l)} = \rho^m \frac{f(i)\mu(j)}{f(k)\mu(l)}, \quad i,j,k,l \in S, \ m \in \mathbb{Z}$$

SRLP prevails if and only if there exist positive constants ρ , $\mu(i)$ and f(i), such that

$$\lim_{n \to \infty} \frac{P^{(n+1)}(i,j)}{P^{(n)}(i,j)} = \rho, \quad i, j \in S$$

$$\tag{1}$$

$$\lim_{n \to \infty} \frac{P^{(n)}(i,j)}{P^{(n)}(i,l)} = \frac{\mu(j)}{\mu(l)}, \quad i, j, l \in S$$
(2)

$$\lim_{n \to \infty} \frac{P^{(n)}(i,j)}{P^{(n)}(k,j)} = \frac{f(i)}{f(k)}, \quad i, j, k \in S$$
(3)

theorem (Vere-Jones (1962)): the power series

$$P_{ij}(z) \equiv \sum_{n=0}^{\infty} P^{(n)}(i,j)z^n, \quad i,j \in S$$

have common radius of convergence $R, \ 1 \le R < \infty$, and converge or diverge together

definition: *P* is *R*-transient if

 $P_{ij}(R) < \infty$

and *R*-recurrent if

$$P_{ij}(R) = \infty$$

theorem (Kingman (1963)):

$$\lim_{n \to \infty} \left(P^{(n)}(i,j) \right)^{1/n} = \frac{1}{R}, \quad i, j \in S$$

hence, if

$$\lim_{n \to \infty} \frac{P^{(n+1)}(i,j)}{P^{(n)}(i,j)} \quad \text{exists}$$

then

$$\lim_{n \to \infty} \frac{P^{(n+1)}(i,j)}{P^{(n)}(i,j)} = \frac{1}{R}$$

so ρ in SRLP satisfies

$$\rho = \frac{1}{R}$$

 ρ is decay parameter

SRLP: there exist positive constants ρ , $\mu(i)$ and f(i) such that

$$\lim_{n \to \infty} \frac{P^{(n+m)}(i,j)}{P^{(n)}(k,l)} = \rho^m \frac{f(i)\mu(j)}{f(k)\mu(l)}, \quad i,j,k,l \in S, \ m \in \mathbb{Z}$$

SRLP prevails if and only if

$$\lim_{n \to \infty} \frac{P^{(n+1)}(i,j)}{P^{(n)}(i,j)} \quad \text{exists,} \quad i, j \in S$$
(1)

and there exist positive constants $\mu(i)$ and f(i), such that

$$\lim_{n \to \infty} \frac{P^{(n)}(i,j)}{P^{(n)}(i,l)} = \frac{\mu(j)}{\mu(l)}, \quad i, j, l \in S$$
(2)

$$\lim_{n \to \infty} \frac{P^{(n)}(i,j)}{P^{(n)}(k,j)} = \frac{f(i)}{f(k)}, \quad i, j, k \in S$$
(3)

theorem (Pruitt (1965)): *P* (*sub*)*stochastic* and *R*-*recurrent*;

$$\lim_{n \to \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text{ exists}$$

 \iff *P* has **SRLP**:

$$\lim_{n \to \infty} \frac{P^{(n+m)}(i,j)}{P^{(n)}(k,l)} = \rho^m \frac{f(i)\mu(j)}{f(k)\mu(l)}, \quad i,j,k,l \in S, \ m \in \mathbb{Z}$$

where $\rho = R^{-1}$ and, up to constant factors, μ is *unique* ρ -invariant measure:

$$\sum_{i \in S} \mu(i) P(i, j) = \rho \mu(j), \quad j \in S$$

and f is unique ρ -harmonic function (or ρ -invariant vector):

$$\sum_{j \in S} P(i,j)f(j) = \rho f(i), \quad i \in S$$

if P is strictly substochastic (coffin state ∂), $\rho < 1$ and μ a ρ -invariant measure, that is,

$$\sum_{i \in S} \mu(i) P(i, j) = \rho \mu(j), \quad j \in S$$

then absorption at ∂ is certain and μ constitutes a (minimal) quasistationary distribution, that is

$$\mathbb{P}_{\mu}(X(n) = j \mid T > n) = \mu_j, \quad j \in S$$

with ${\boldsymbol{T}}$ denoting the absorption time

theorem (Pruitt (1965)): *P* (*sub*)*stochastic* and *R*-*recurrent*;

$$P \text{ has SRLP} \iff \lim_{n \to \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text{ exists}$$

sufficient conditions for SRLP:

- *P* is *R*-recurrent and symmetrizable (Pruitt (1965))
- P is R-recurrent and $P^{(n)}(i,i) \ge \varepsilon > 0$ for some n and all $i \in S$ (extension of Kingman & Orey (1964))

problems: (i) can we do better if P is R-recurrent?
 (ii) what can be said if P is R-transient?

setting: *P* irreducible, aperiodic, (sub)stochastic (but not necessarily R-recurrent)

theorem (Kesten (1995)): if for each n sufficiently large there exists a constant $\varepsilon \equiv \varepsilon(n) > 0$ such that $P^{(n)}(i,i) \ge \varepsilon$ for all $i \in S$ (= condition K) then

$$\lim_{n \to \infty} \frac{P^{(n+1)}(i,j)}{P^{(n)}(i,j)} = \rho, \quad i, j \in S$$

theorem (Handelman (1999)): assume condition KSRLP \iff there exist *unique* ρ -invariant measure μ and *unique* ρ -harmonic function f, in which case

$$\lim_{n \to \infty} \frac{P^{(n)}(i,j)}{P^{(n)}(i,l)} = \frac{\mu(j)}{\mu(l)} \text{ and } \lim_{n \to \infty} \frac{P^{(n)}(i,j)}{P^{(n)}(k,j)} = \frac{f(i)}{f(k)}, \quad i, j, k, l \in S$$

Handelman (2002): "Your e-mail brought back painful memories – struggling through the details of the arguments in the paper – which I had put completely out of my mind." **conclusion**: condition K + existence of unique ρ -invariant measure and unique ρ -harmonic function \Rightarrow SRLP

remark: without condition K existence of unique ρ -invariant measure and unique ρ -harmonic function is *not necessary* for SRLP, so existence of

$$\lim_{n \to \infty} \frac{P^{(n+1)}(i,j)}{P^{(n)}(i,j)}, \quad i, j \in S$$

per se is not sufficient for Handelman's conclusions

problem: find condition weaker (and more elegant) than condition K for SRLP to prevail, assuming existence of a unique ρ -invariant measure and unique ρ -harmonic function

approach: first look at birth-death chains, then try to generalize

setting:

$$P = \begin{pmatrix} r_0 & p_0 & 0 & 0 & \cdots \\ q_1 & r_1 & p_1 & 0 & \cdots \\ 0 & q_2 & r_2 & p_2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

matrix of 1-step transition probabilities of birth-death chain ${\cal X}$ on $\{0,1,2,\dots\}$

assumption: *P* irreducible, aperiodic, (sub)stochastic

recall: decay parameter

$$\label{eq:rho} \rho = \frac{1}{R} \leq 1$$
 with $R =$ radius of convergence of $\sum_{n=0}^\infty P^{(n)}(i,j) z^n$

letting

$$p_i Q_{i+1}(x) = (x - r_i) Q_i(x) - q_i Q_{i-1}(x), \quad i > 0$$

$$p_0 Q_1(x) = x - r_0, \quad Q_0(x) = 1$$

and

$$\pi_0 := 1, \quad \pi_i := \frac{p_0 \dots p_{i-1}}{q_1 \dots q_i}, \quad i > 0$$

we have (up to constant factors) unique ρ -harmonic function f

$$\sum_{j \in S} P(i,j)f(j) = \rho f(i) \iff f(i) = cQ_i(\rho)$$

and *unique* ρ -invariant measure μ

$$\sum_{j \in S} \mu(j) P(j, i) = \rho \mu(i) \iff \mu(i) = c \pi_i Q_i(\rho)$$

note: $\{Q_i\}$ orthogonal polynomial sequence with respect to (unique) Borel measure ψ on (-1, 1]

recall: for Markov chain condition K + existence of unique ρ -invariant measure and unique ρ -harmonic function implies SRLP

birth-death chain has unique ρ -harmonic function f and ρ -invariant measure μ , but we do *not* assume condition K

fact: P is symmetrizable so, by Pruitt's (1965) result, P has SRLP if P is R-recurrent

assumptions in what follows (wlog):

- P is stochastic and $\rho = 1$, so that $f(i) = Q_i(1) = 1$
- P is transient

theorem (Papangelou (1967)): P has SRLP (involving μ and f)

$$\iff \lim_{n \to \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)}$$
 exists

results (vD & Schrijner (1995)):

$$\lim_{n \to \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)} \text{ exists } \iff \lim_{n \to \infty} \frac{\int_{-1}^{0} (-x)^n \psi(dx)}{\int_0^1 x^n \psi(dx)} = 0$$
$$\lim_{n \to \infty} |Q_n(-1)| = \infty \implies \lim_{n \to \infty} \frac{\int_{-1}^{0} (-x)^n \psi(dx)}{\int_0^1 x^n \psi(dx)} = 0$$

hence
$$\lim_{n \to \infty} |Q_n(-1)| = \infty \Rightarrow SRLP$$

and under mild regularity conditions on ψ :

$$\lim_{n \to \infty} |Q_n(-1)| = \infty \quad \Longleftrightarrow \quad \mathsf{SRLP}$$

result:

$$\lim_{n \to \infty} |Q_n(-1)| = \infty \quad \Rightarrow \quad \mathsf{SRLP}$$

with $Q(x) := (Q_0(x), Q_1(x), \dots)$ we have PQ(x) = xQ(x), and hence

$$P^2 Q(x) = x^2 Q(x)$$

while

$$Q_n(1) = 1$$
, $|Q_n(-1)| \ge 1$ and increasing

so Q(1) and Q(-1) are two distinct solutions of $P^2y = y$, and hence any solution of $P^2y = y$, that is, any 1-harmonic function for P^2 , is a linear combination of Q(1) and Q(-1)

result: the constant function is the only bounded 1-harmonic function for $P^2 \Rightarrow P$ has SRLP

result: the constant function is the only bounded 1-harmonic function for $P^2 \Rightarrow P$ has SRLP

recall: P (and hence P^2) is transient

boundary theory: the constant function is the only bounded 1-harmonic function for $P^2 \iff P^2$ has exactly one escape route to infinity

summary: assume (wlog) *P* stochastic, transient and $\rho = 1$, and define

$$p_i Q_{i+1}(x) = (x - r_i) Q_i(x) - q_i Q_{i-1}(x), \quad i > 0$$

$$p_0 Q_1(x) = x - r_0, \quad Q_0(x) = 1$$

(orthogonal polynomials w.r.t. measure ψ on (-1,1]), then

SRLP prevails
$$\iff \lim_{n \to \infty} \frac{P^{(n+1)}(0,0)}{P^{(n)}(0,0)}$$
 exists
 $\iff \lim_{n \to \infty} \frac{\int_{-1}^{0} (-x)^{n} \psi(dx)}{\int_{0}^{1} x^{n} \psi(dx)} = 0$
 $\Leftarrow \lim_{n \to \infty} |Q_{n}(-1)| = \infty$ (conjecture: \iff)
 $\iff P^{2}$ has exactly one escape route to ∞

asymptotic period

setting: Markov chain $\mathcal{X} \equiv \{X(n), n = 0, 1, ...\}$ on countable *S* with irreducible, aperiodic, stochastic transition matrix *P*

let $\beta(\mathcal{X}) := \#$ almost closed sets for \mathcal{X} ($\approx \#$ escape routes to infinity if \mathcal{X} is transient)

 $\mathcal{X}^{(m)} \equiv \{X(mn), n = 0, 1, ...\}$ *m*-step chain

assumptions:

- \mathcal{X} is *transient* and $\rho = 1$
- constant function is only bounded 1-harmonic function for \mathcal{X} $(\beta(\mathcal{X})=1)$

definition: asymptotic period of \mathcal{X} :

$$d(\mathcal{X}) := \sup\{\beta(\mathcal{X}^{(m)}) \mid m \ge 1\} \quad (1 \le d(\mathcal{X}) \le \infty)$$

 \mathcal{X} is asymptotically aperiodic if $d(\mathcal{X}) = 1$

asymptotic period: birth-death chain

results: \mathcal{X} is birth-death chain $\Rightarrow d(\mathcal{X}) = 1, 2 \text{ or } \infty$ $d(\mathcal{X}) = 2 \text{ or } d(\mathcal{X}) = \infty \iff \beta(\mathcal{X}^{(2)}) = 2$

hence

 $\beta(\mathcal{X}^{(2)}) = 1 \iff \mathcal{X}$ is asymptotically aperiodic

recall: $\beta(\mathcal{X}^{(2)}) = 1 \Rightarrow \mathcal{X}$ has **SRLP** (conjecture: \iff)

conclusion:

 ${\mathcal X}$ is asymptotically aperiodic \Rightarrow ${\mathcal X}$ has SRLP

conjecture (valid under mild regularity conditions):

 $\mathcal X$ is asymptotically aperiodic $\iff \mathcal X$ has SRLP

setting: irreducible, aperiodic, (sub)stochastic Markov chain \mathcal{X}

asymptotic period $d(\mathcal{X})$

$$1 \le d(\mathcal{X}) = \sup\{\beta(\mathcal{X}^{(m)}) \mid m \ge 1\} \le \infty$$

birth-death setting:

• asymptotic aperiodicity of related birth-death process is sufficient (and, under mild conditions, necessary) for SRLP

general setting, assuming existence of unique ρ -harmonic function and ρ -invariant measure:

 asymptotic aperiodicity of two related Markov chains is not sufficient, but conjectured to be necessary for SRLP **setting**: Markov chain \mathcal{X} on $S = \{0, 1, 2, ...\}$ with irreducible, aperiodic, (sub)stochastic transition matrix P

assumption: *P* has *unique* ρ -invariant measure μ and *unique* ρ -harmonic function *f*

let

$$\mu_D := \operatorname{diag}(\mu(i), i \in S) \text{ and } f_D := \operatorname{diag}(f(i), i \in S)$$

and define

$$P_{\mu} := \frac{1}{\rho} \mu_D^{-1} P^T \mu_D$$
 and $P_f := \frac{1}{\rho} f_D^{-1} P f_D$

then P_{μ} and P_{f} are nonnegative and *stochastic*, hence matrices of 1-step transition probabilities of Markov chains \mathcal{X}_{μ} and \mathcal{X}_{f}

$$P_{\mu} := rac{1}{
ho} \mu_D^{-1} P^T \mu_D$$
 and $P_f := rac{1}{
ho} f_D^{-1} P f_D$

 P_{μ} and P_{f} are matrices of 1-step transition probabilities of (stochastic) Markov chains \mathcal{X}_{μ} and \mathcal{X}_{f}

also: P_{μ} and P_{f} are irreducible, aperiodic, $\rho(P_{\mu}) = \rho(P_{f}) = 1$

furthermore:

 P_{μ} and P_{f} have unique 1-harmonic function g(i) = 1 so that \mathcal{X}_{μ} and \mathcal{X}_{f} are simple

 P_{μ} and P_{f} have unique 1-invariant measure $\nu(i) = \mu(i)f(i)$

P has SRLP $\iff P_{\mu}$ and P_{f} have SRLP

and

 $P_{\mu} = P_f \iff P$ is symmetrizable

$$P_{\mu} := \frac{1}{\rho} \mu_D^{-1} P^T \mu_D$$
 and $P_f := \frac{1}{\rho} f_D^{-1} P f_D$

 P_{μ} and P_{f} are matrices of 1-step transition probabilities of (stochastic) Markov chains \mathcal{X}_{μ} and \mathcal{X}_{f}

result: \mathcal{X} satisfies condition $K \Rightarrow \mathcal{X}_{\mu}$ and \mathcal{X}_{f} asymptotically aperiodic

but asymptotic aperiodicity of \mathcal{X}_{μ} and \mathcal{X}_{f} is not, in general, sufficient for the SRLP since

 \mathcal{X} is *R*-recurrent $\Rightarrow \mathcal{X}_{\mu}$ and \mathcal{X}_{f} asymptotically aperiodic

while example exists of recurrent chain not satisfying the SRLP

conjecture: \mathcal{X} has SRLP $\Rightarrow \mathcal{X}_{\mu}$ and \mathcal{X}_{f} are asymptotically aperiodic