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Parabolic Anderson model

The Parabolic Anderson model is the heat equation on Z
d

∂u

∂t
= ∆u + ξu

with independent identically distributed random potential
{
ξ(z) : z ∈ Z

d
}

and localised initial condition u(0, z) = 10(z).
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Parabolic Anderson model

The Parabolic Anderson model is the heat equation on Z
d

∂u

∂t
= ∆u + ξu

with independent identically distributed random potential
{
ξ(z) : z ∈ Z

d
}

and localised initial condition u(0, z) = 10(z).

The discrete Laplacian is defined by

(∆f )(z) =
∑

y∼z

[f (y)− f (z)].

If E |ξ(0)|d+ε < ∞ the PAM has a unique nonnegative solution.

How does u(t, ·) behave as t → ∞?
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N(t, z) is the number of particles at time t at site z .
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Branching CTRW in random environment

state space Z
d

random environment {ξ(z) : z ∈ Z
d} — i.i.d.

start with one particle at the origin

each particle performs an independent continuous-time random walk

each particle at site z splits into two at rate ξ(z)

low potential

high potential

Z
d

ξ:
0

N(t, z) is the number of particles at time t at site z .

u(t, z) = EN(t, z) is the average number of particles at time t at site z , still random.
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Two approaches to study u(t, z)

Analytical:

Probabilistic:
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Two approaches to study u(t, z)

Analytical: use Spectral Theory to analyse the parabolic Anderson equation

∂u

∂t
= ∆u + ξu

Probabilistic: use path analysis to analyse the Feynman–Kac Formula

u(t, z) = E

{

e
∫
t
0 ξ(Xs ) ds1{Xt=z}

}

,

where (Xs) is a continuous-time random walk starting at zero.
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Heat equation

The propagation of temperature u(t, x) at time t at the point x ∈ R is described by

∂u

∂t
= ∆u.

If the initial temperature is δ0 then

u(t, x) =
1√
4πt

e
− x2

4t .
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Heat equation with a potential

Consider
∂u

∂t
= ∆u + Vu,

where V : R → R is a reasonably nice potential.

V
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where ξ : Zd → R is a random i.i.d. potential.
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Parabolic Anderson Model

Consider
∂u

∂t
= ∆u + ξu,

where ξ : Zd → R is a random i.i.d. potential.

ξ

Does the solution of a random heat equation behaves similar to a deterministic one?
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Parabolic Anderson Model

Consider
∂u

∂t
= ∆u + ξu,

where ξ : Zd → R is a random i.i.d. potential.

No!u(t, ·)

ξ

Does the solution of a random heat equation behaves similar to a deterministic one?
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Why not?

Bernoulli potential:

ξ
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Intermittency

At large times t the mass of the solution is concentrated on a small number of
spatially remote small islands.
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Intermittency

At large times t the mass of the solution is concentrated on a small number of
spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly
random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people.
There is a survey by König (155 pages, 10 pages of references).

What is known for unbounded potentials?

Pareto: P(ξ(0) > x) = x−α, α > d

Weibull: P(ξ(0) > x) = exp{−xγ}, γ > 0

Double-exponential: P(ξ(0) > x) = exp{−ex/ρ}, ρ > 0

’Almost bounded’ — quite different, not in this talk
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What is known

[König, Mörters, S. ’06] Pareto
[S., Twarowski ’12] Weibull with γ < 2
[Fiodorov, Muirhead ’13] Weibull with any γ

[Biskup, König, dos Santos, ’16] Double-exponential potentials
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[Fiodorov, Muirhead ’13] Weibull with any γ

There exists a process Zt with values in Z
d such that

lim
t→∞

u(t,Zt)
∑

z∈Zd

u(t, z)
= 1 in probability.

[Biskup, König, dos Santos, ’16] Double-exponential potentials
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What is known

[König, Mörters, S. ’06] Pareto
[S., Twarowski ’12] Weibull with γ < 2
[Fiodorov, Muirhead ’13] Weibull with any γ






complete localisation

There exists a process Zt with values in Z
d such that

lim
t→∞

u(t,Zt)
∑

z∈Zd

u(t, z)
= 1 in probability.

[Biskup, König, dos Santos, ’16] Double-exponential potentials

The solution u(t, ·) is concentrated on just one finite ball.

In any case, the solution is localised at just one small island, where the balance
between the high values of ξ and the probabilistic cost of using them is optimal.

Main question of this talk: How can we break this and make the solution spread
between two (or more) independent locations?

Nadia Sidorova Delocalising the PAM



Model: the PAM with duplication
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Model: the PAM with duplication

Let p ∈ (0, 1).

Let {ξ(z) : z ∈ Z
d} be such that ξ(z) = ξ(−z) with probability p but otherwise i.i.d.
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d} be such that ξ(z) = ξ(−z) with probability p but otherwise i.i.d.
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the potential has Pareto distribution with parameter α > 1, i.e.,

P(ξ(0) > x) = x
−α, x > 1.

d = 1
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Model: the PAM with duplication

Let p ∈ (0, 1).

Let {ξ(z) : z ∈ Z
d} be such that ξ(z) = ξ(−z) with probability p but otherwise i.i.d.

We consider the PAM with the potential ξ (PAM with duplication) and assume that

the potential has Pareto distribution with parameter α > 1, i.e.,

P(ξ(0) > x) = x
−α, x > 1.

[for α ≤ 1 the solution to the PAM (with or without duplication) explodes]

[for lighter tails the duplication will not affect the PAM]

d = 1

[d ≥ 2 is work in progress]
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Questions

For t > 0 and z ∈ Z, let

Ψt(z) = ξ(z)− |z |
t

log ξ(z).
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Questions

For t > 0 and z ∈ Z, let

Ψt(z) = ξ(z)− |z |
t

log ξ(z).

Very roughly,
u(t, z) ≈ e

tΨt (z).

Let Zt be a maximiser of Ψt . Denote

Dt = {duplication at Zt}.

The standard PAM would localise at Zt .

On the event Dt the points Zt and −Zt are equally good in terms of the value of
ξ and distance from the origin.

Will the PAM with duplication localise at both points on the event Dt?

If so, what is the proportion of the mass carries by each point?

What is the probability of Dt?

Denote the total mass of the solution by

U(t) =
∑

z∈Z

u(t, z).
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Answers

Theorem 1 (Muirhead, Pymar, S. ’16)

Let 1 < α < 2.

Theorem 2 (Muirhead, Pymar, S. ’16)

Let α ≥ 2.
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Let 1 < α < 2. Conditionally on no duplication at Zt , as t → ∞, one point

u(t,Zt)

U(t)
→ 1 in probability.

Conditionally on the duplication at Zt , as t → ∞, two points, each with a
random amount of mass

u(t,Zt) + u(t,−Zt)

U(t)
→ 1 in probability

and u(t,Zt)
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⇒ Υ,

where Υ is a random variable with positive density on (0,∞).

P(Dt) → p
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Theorem 2 (Muirhead, Pymar, S. ’16)
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Answers

Theorem 1 (Muirhead, Pymar, S. ’16) delocalised

Let 1 < α < 2. Conditionally on no duplication at Zt , as t → ∞, one point

u(t,Zt)

U(t)
→ 1 in probability.

Conditionally on the duplication at Zt , as t → ∞, two points, each with a
random amount of mass

u(t,Zt) + u(t,−Zt)

U(t)
→ 1 in probability

and u(t,Zt)

u(t,−Zt)
⇒ Υ,

where Υ is a random variable with positive density on (0,∞).

P(Dt) → p

2− p
=

p/2

p/2 + q

Theorem 2 (Muirhead, Pymar, S. ’16) still localised

Let α ≥ 2. As t → ∞, one pointu(t,Zt)

U(t)
→ 1 in probability.
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Increasing duplication for α ≥ 2

Can we achieve delocalisation for α ≥ 2 by increasing the duplication?
Let p = p(n) depend on the distance from the origin and chose p(n) → 1.
Observe that P(Dt) → 1.

Theorem 3 (Muirhead, Pymar, S. ’17)

Let α ≥ 2, denote q(n) = 1− p(n), and introduce the critical scale

qc(n) =
{

n
2
α
−1 if α > 2

1
log n

if α = 2
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Let α ≥ 2, denote q(n) = 1− p(n), and introduce the critical scale
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∣
∣
∣ log

u(t,Zt)
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∣
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If q(n) ∼ qc(n) then two points, each with a random amount of mass
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All points except Zt and −Zt are negligible (in fact, exponentially).

New and hard:
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Some proofs

u(t, z) ≈ exp
{
tΨt(z) + error

}

Standard PAM methods:

All points except Zt and −Zt are negligible (in fact, exponentially).

New and hard:

Compare Zt and −Zt , that is, understand the error.

Feynman-Kac:

u(t,±Zt) = E

{

e
∫
t
0 ξ(Xs ) ds1{Xt=±Zt}

}

=
∑

y∈P±
t

E

{

e
∫
t
0 ξ(Xs )ds1{X follows y}

}

︸ ︷︷ ︸

,

U(t, y)

where P±
t are the sets of paths on Z starting at 0 and ending at ±Zt .
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Some proofs
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y∈P±
t

U(t, y)

Magic formula:

U(t, y) ∼ ?

Which paths y really contribute to the sum?
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Some proofs

u(t,±Zt) =
∑

y∈P±
t

U(t, y)

Magic formula:

U(t, y) =

n∑

i=0

e
tci−2t

n∏

k=0
k 6=i

1

ci − ck

where c0 . . . . . . cn are the values of ξ along y

Which paths y really contribute to the sum?
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Some proofs

u(t,±Zt) =
∑

y∈P±
t

U(t, y)

Magic formula:

U(t, y) ∼ e
tcn−2t
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k=0

1

cn − ck

where c0 < · · · < cn are the values of ξ along y

Which paths y really contribute to the sum?
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Some proofs
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where c0 < · · · < cn are the values of ξ along y

and m is the number of visits to ±Zt .
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Nadia Sidorova Delocalising the PAM



Some proofs
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e
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k=0

1

cn − ck

where c0 < · · · < cn are the values of ξ along y

and m is the number of visits to ±Zt .

Which paths y really contribute to the sum?

1 < α < 2:
α ≥ 2:
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Magic formula:
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m!
e
tcn−2t

n−1∏

k=0

1

cn − ck

where c0 < · · · < cn are the values of ξ along y

and m is the number of visits to ±Zt .

Which paths y really contribute to the sum?

1 < α < 2: only the straight path from 0 to ±Zt

α ≥ 2:
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Some proofs
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y∈P±
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Magic formula:
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where c0 < · · · < cn are the values of ξ along y

and m is the number of visits to ±Zt .
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Some proofs

u(t,±Zt) =
∑

y∈P±
t

U(t, y)

Magic formula:

U(t, y) ∼ tm

m!
e
tcn−2t

n−1∏

k=0

1

cn − ck

where c0 < · · · < cn are the values of ξ along y

and m is the number of visits to ±Zt .

Which paths y really contribute to the sum?

1 < α < 2: only the straight path from 0 to ±Zt

α ≥ 2: lots of paths

In particular, for 1 < α < 2 we have

u(t,±Zt) ∼ e
tξ(Zt )−2t

Zt∏

k=0

1

ξ(Zt)− ξ(±k)
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1 < α < 2

u(t,Zt)

u(t,−Zt)
∼

Zt∏

k=1

1

ξ(Zt)− ξ(k)
:

Zt∏

k=1

1

ξ(Zt)− ξ(−k)
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1 < α < 2

u(t,Zt)

u(t,−Zt)
∼

Zt∏

k=1

1

ξ(Zt)− ξ(k)
:

Zt∏

k=1

1
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