Localisation and delocalisation in the parabolic Anderson model

Nadia Sidorova

University College London

joint with Stephen Muirhead (Oxford) and Richard Pymar (Birkbeck)

LMS-EPSRC Durham Symposium: Markov Processes, Mixing Times and Cutoff 4 August 2017

The Parabolic Anderson model is the heat equation on \mathbb{Z}^d

$$\frac{\partial u}{\partial t} = \Delta u + \xi u$$

with independent identically distributed random potential $\{\xi(z): z \in \mathbb{Z}^d\}$ and localised initial condition $u(0, z) = \mathbf{1}_0(z)$.

The Parabolic Anderson model is the heat equation on \mathbb{Z}^d

$$\frac{\partial u}{\partial t} = \Delta u + \xi u$$

with independent identically distributed random potential $\{\xi(z): z \in \mathbb{Z}^d\}$ and localised initial condition $u(0, z) = \mathbf{1}_0(z)$.

The discrete Laplacian is defined by

$$(\Delta f)(z) = \sum_{y \sim z} [f(y) - f(z)].$$

The Parabolic Anderson model is the heat equation on \mathbb{Z}^d

$$\frac{\partial u}{\partial t} = \Delta u + \xi u$$

with independent identically distributed random potential $\{\xi(z): z \in \mathbb{Z}^d\}$ and localised initial condition $u(0, z) = \mathbf{1}_0(z)$.

The discrete Laplacian is defined by

$$(\Delta f)(z) = \sum_{y \sim z} [f(y) - f(z)].$$

If $E|\xi(0)|^{d+\varepsilon} < \infty$ the PAM has a unique nonnegative solution.

The Parabolic Anderson model is the heat equation on \mathbb{Z}^d

$$\frac{\partial u}{\partial t} = \Delta u + \xi u$$

with independent identically distributed random potential $\{\xi(z): z \in \mathbb{Z}^d\}$ and localised initial condition $u(0, z) = \mathbf{1}_0(z)$.

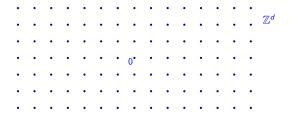
The discrete Laplacian is defined by

$$(\Delta f)(z) = \sum_{y \sim z} [f(y) - f(z)].$$

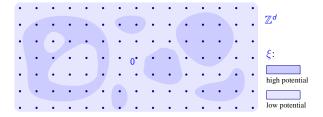
If $E|\xi(0)|^{d+\varepsilon} < \infty$ the PAM has a unique nonnegative solution.

How does $u(t, \cdot)$ behave as $t \to \infty$?

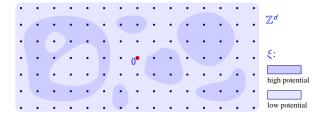
• state space \mathbb{Z}^d



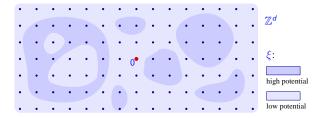
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.



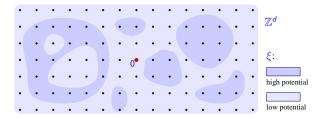
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin



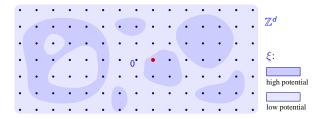
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk



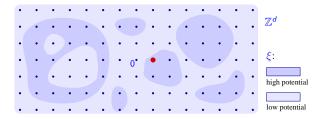
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



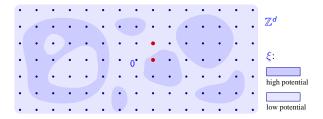
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



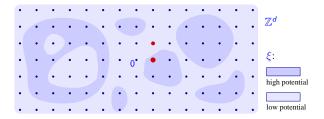
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



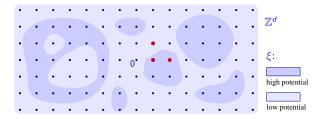
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



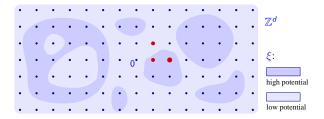
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



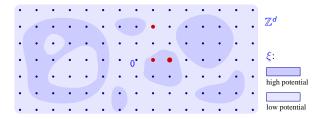
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



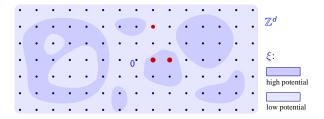
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



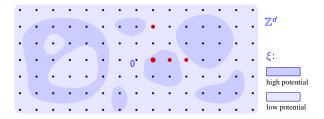
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



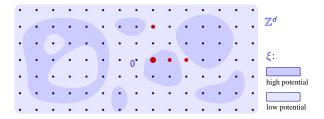
- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



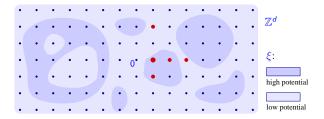
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



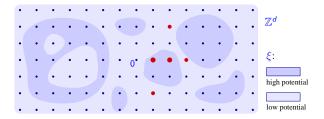
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



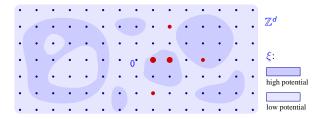
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



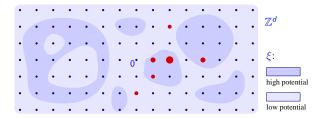
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



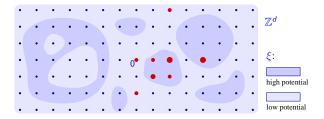
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



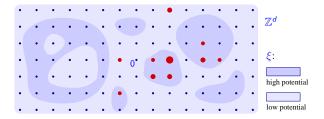
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



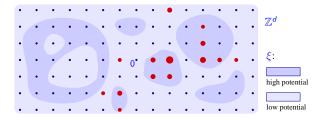
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



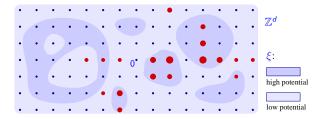
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



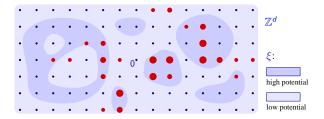
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



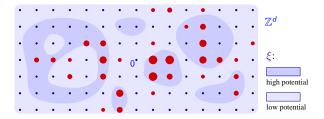
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



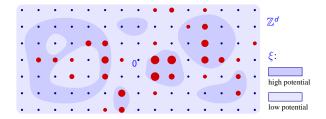
- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$

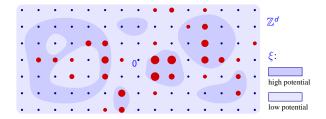


- state space Z^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



N(t, z) is the number of particles at time t at site z.

- state space \mathbb{Z}^d
- random environment $\{\xi(z) : z \in \mathbb{Z}^d\}$ i.i.d.
- start with one particle at the origin
- each particle performs an independent continuous-time random walk
- each particle at site z splits into two at rate $\xi(z)$



N(t, z) is the number of particles at time t at site z.

 $u(t,z) = \mathbb{E}N(t,z)$ is the average number of particles at time t at site z, still random.

Two approaches to study u(t, z)

• Analytical:

• Probabilistic:

Two approaches to study u(t, z)

• Analytical: use Spectral Theory to analyse the parabolic Anderson equation

$$\frac{\partial u}{\partial t} = \Delta u + \xi u$$

Probabilistic:

Two approaches to study u(t, z)

Analytical: use Spectral Theory to analyse the parabolic Anderson equation

$$\frac{\partial u}{\partial t} = \Delta u + \xi u$$

• Probabilistic: use path analysis to analyse the Feynman-Kac Formula

$$u(t,z) = \mathbb{E}\Big\{e^{\int_0^t \xi(X_s)\,\mathrm{d}s}\mathbf{1}_{\{X_t=z\}}\Big\},\$$

where (X_s) is a continuous-time random walk starting at zero.

The propagation of temperature u(t, x) at time t at the point $x \in \mathbb{R}$ is described by

$$\frac{\partial u}{\partial t} = \Delta u.$$

$$u(t,x)=\frac{1}{\sqrt{4\pi t}}e^{-\frac{x^2}{4t}}.$$

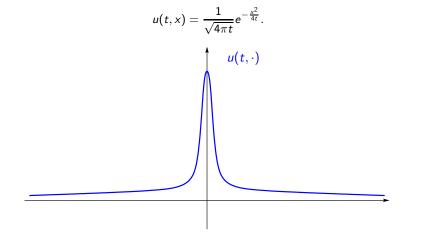
The propagation of temperature u(t, x) at time t at the point $x \in \mathbb{R}$ is described by

$$\frac{\partial u}{\partial t} = \Delta u.$$

$$u(t,x) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}.$$

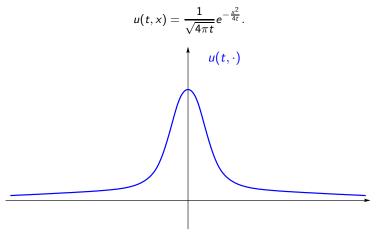
The propagation of temperature u(t,x) at time t at the point $x \in \mathbb{R}$ is described by

$$\frac{\partial u}{\partial t} = \Delta u.$$



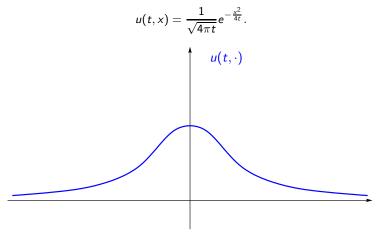
The propagation of temperature u(t,x) at time t at the point $x \in \mathbb{R}$ is described by

$$\frac{\partial u}{\partial t} = \Delta u.$$



The propagation of temperature u(t,x) at time t at the point $x \in \mathbb{R}$ is described by

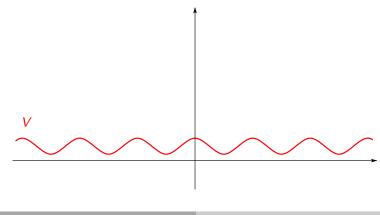
$$\frac{\partial u}{\partial t} = \Delta u.$$



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \mathbf{V} u,$$

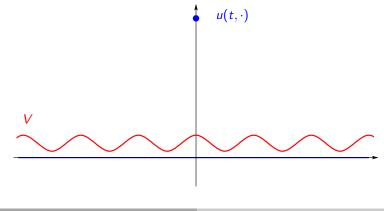
where $V : \mathbb{R} \to \mathbb{R}$ is a reasonably nice potential.



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \mathbf{V} u,$$

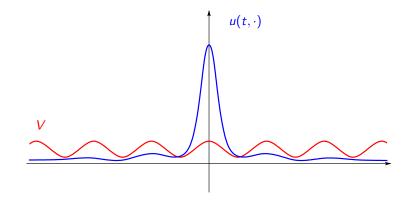
where $V : \mathbb{R} \to \mathbb{R}$ is a reasonably nice potential.



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \mathbf{V} u,$$

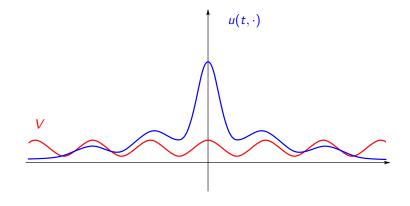
where $V : \mathbb{R} \to \mathbb{R}$ is a reasonably nice potential.



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \mathbf{V} u,$$

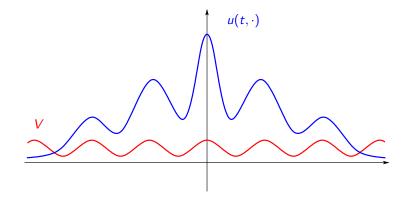
where $V : \mathbb{R} \to \mathbb{R}$ is a reasonably nice potential.



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \mathbf{V} u,$$

where $V : \mathbb{R} \to \mathbb{R}$ is a reasonably nice potential.



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \frac{\xi}{\xi} u,$$

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random i.i.d. potential.

Consider

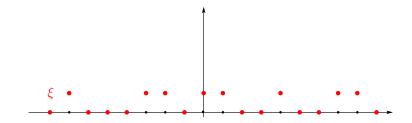
$$\frac{\partial u}{\partial t} = \Delta u + \frac{\xi}{\xi} u,$$

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random i.i.d. potential.

Consider

$$\frac{\partial u}{\partial t} = \Delta u + \frac{\xi}{\xi} u,$$

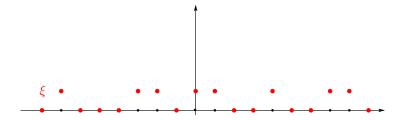
where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random i.i.d. potential.



Consider

$$\frac{\partial u}{\partial t} = \Delta u + \boldsymbol{\xi} u,$$

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random i.i.d. potential.

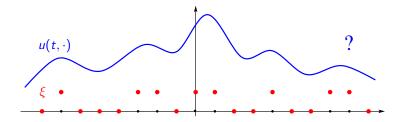


Does the solution of a random heat equation behaves similar to a deterministic one?

Consider

$$\frac{\partial u}{\partial t} = \Delta u + \frac{\xi}{\xi} u,$$

where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random i.i.d. potential.

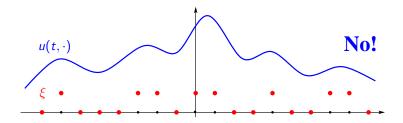


Does the solution of a random heat equation behaves similar to a deterministic one?

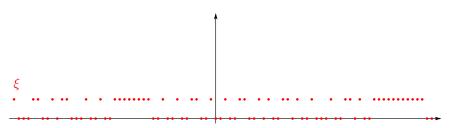
Consider

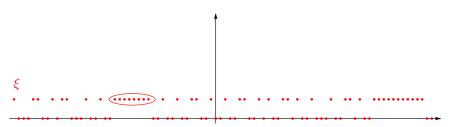
$$\frac{\partial u}{\partial t} = \Delta u + \frac{\xi}{\xi} u,$$

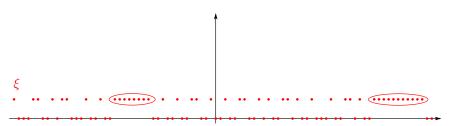
where $\xi : \mathbb{Z}^d \to \mathbb{R}$ is a random i.i.d. potential.

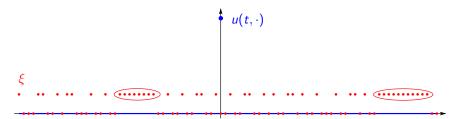


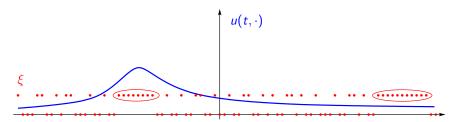
Does the solution of a random heat equation behaves similar to a deterministic one?

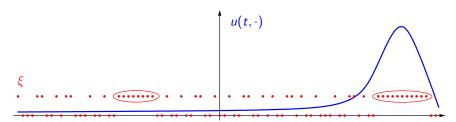




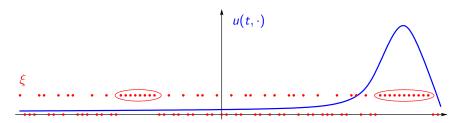




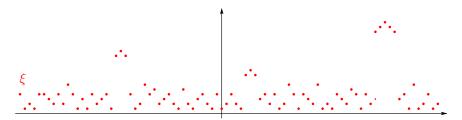




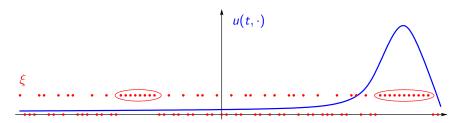
Bernoulli potential:



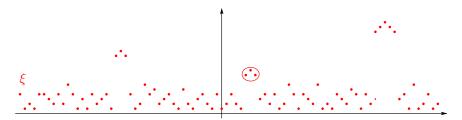
Some unbounded potential:



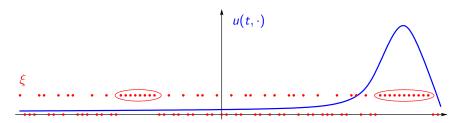
Bernoulli potential:



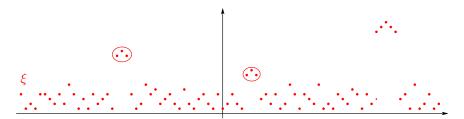
Some unbounded potential:



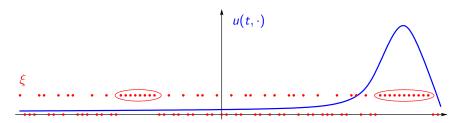
Bernoulli potential:



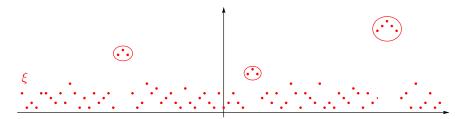
Some unbounded potential:



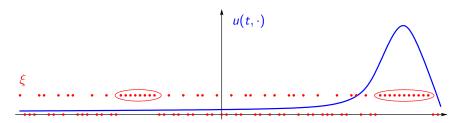
Bernoulli potential:



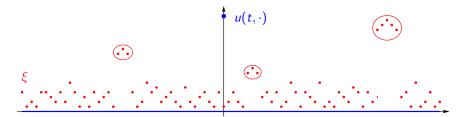
Some unbounded potential:



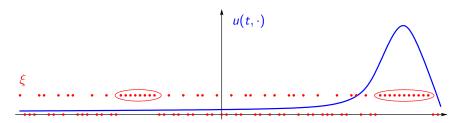
Bernoulli potential:



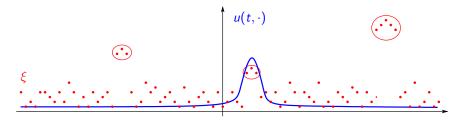
Some unbounded potential:



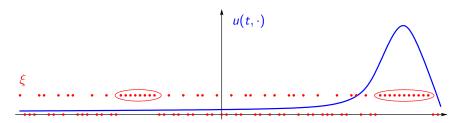
Bernoulli potential:



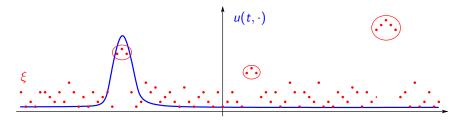
Some unbounded potential:



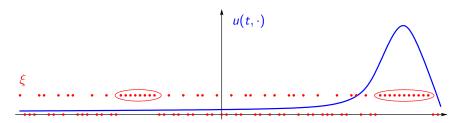
Bernoulli potential:



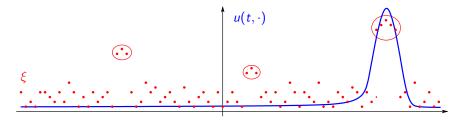
Some unbounded potential:



Bernoulli potential:



Some unbounded potential:



Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

Intermittency

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people. There is a survey by König (155 pages, 10 pages of references).

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people. There is a survey by König (155 pages, 10 pages of references).

What is known for unbounded potentials?

At large times t the mass of the solution is concentrated on a small number of spatially remote small islands.

This is an example of the intermittency effect: the solution becomes increasingly random and does not exhibit any averaging.

The PAM has been studied since 1990 (Gärtner and Molchanov) by a lot of people. There is a survey by König (155 pages, 10 pages of references).

What is known for unbounded potentials?

- Pareto: $P(\xi(0) > x) = x^{-\alpha}, \ \alpha > d$
- Weibull: $P(\xi(0) > x) = \exp\{-x^{\gamma}\}, \ \gamma > 0$
- Double-exponential: $P(\xi(0) > x) = \exp\{-e^{x/\rho}\}, \rho > 0$
- 'Almost bounded' quite different, not in this talk

 $\begin{array}{ll} \mbox{[König, Mörters, S. '06]} & \mbox{Pareto} \\ \mbox{[S., Twarowski '12]} & \mbox{Weibull with } \gamma < 2 \\ \mbox{[Fiodorov, Muirhead '13]} & \mbox{Weibull with any } \gamma \end{array}$

[Biskup, König, dos Santos, '16] Double-exponential potentials

There exists a process Z_t with values in \mathbb{Z}^d such that

$$\lim_{t\to\infty}\frac{u(t,Z_t)}{\sum\limits_{z\in\mathbb{Z}^d}u(t,z)}=1 \quad \text{ in probability}.$$

[Biskup, König, dos Santos, '16] Double-exponential potentials

complete localisation

There exists a process Z_t with values in \mathbb{Z}^d such that

$$\lim_{t\to\infty}\frac{u(t, \mathsf{Z}_t)}{\sum\limits_{z\in\mathbb{Z}^d}u(t, z)}=1 \quad \text{ in probability}.$$

[Biskup, König, dos Santos, '16] Double-exponential potentials

complete localisation

There exists a process Z_t with values in \mathbb{Z}^d such that

$$\lim_{t\to\infty}\frac{u(t, \mathsf{Z}_t)}{\sum\limits_{z\in\mathbb{Z}^d}u(t, z)}=1 \quad \text{ in probability}.$$

[Biskup, König, dos Santos, '16] Double-exponential potentials The solution $u(t, \cdot)$ is concentrated on just one finite ball.

complete localisation

There exists a process Z_t with values in \mathbb{Z}^d such that

$$\lim_{t o \infty} rac{u(t, \mathsf{Z}_t)}{\sum\limits_{z \in \mathbb{Z}^d} u(t, z)} = 1$$
 in probability.

[Biskup, König, dos Santos, '16] Double-exponential potentials The solution $u(t, \cdot)$ is concentrated on just one finite ball.

In any case, the solution is localised at just one small island, where the balance between the high values of ξ and the probabilistic cost of using them is optimal.

complete localisation

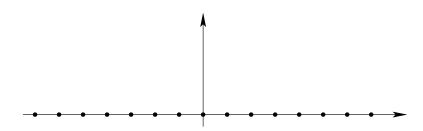
There exists a process Z_t with values in \mathbb{Z}^d such that

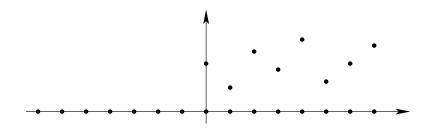
$$\lim_{t\to\infty}\frac{u(t, \mathsf{Z}_t)}{\sum\limits_{z\in\mathbb{Z}^d}u(t, z)}=1 \quad \text{ in probability}.$$

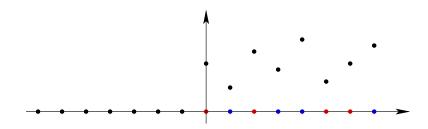
[Biskup, König, dos Santos, '16] Double-exponential potentials The solution $u(t, \cdot)$ is concentrated on just one finite ball.

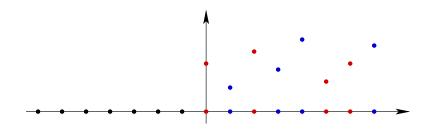
In any case, the solution is localised at just one small island, where the balance between the high values of ξ and the probabilistic cost of using them is optimal.

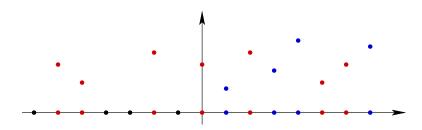
Main question of this talk: How can we break this and make the solution spread between two (or more) independent locations?

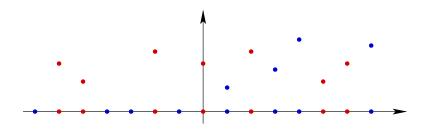


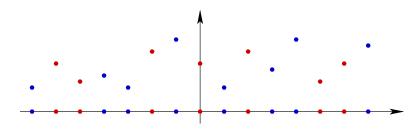




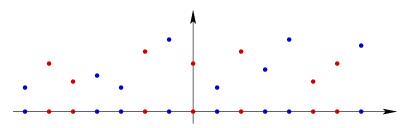






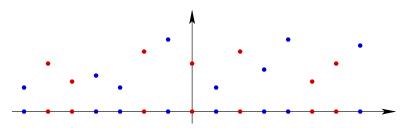


Let $p \in (0, 1)$. Let $\{\xi(z) : z \in \mathbb{Z}^d\}$ be such that $\xi(z) = \xi(-z)$ with probability p but otherwise i.i.d.



We consider the PAM with the potential ξ (PAM with duplication) and assume that

Let $p \in (0, 1)$. Let $\{\xi(z) : z \in \mathbb{Z}^d\}$ be such that $\xi(z) = \xi(-z)$ with probability p but otherwise i.i.d.



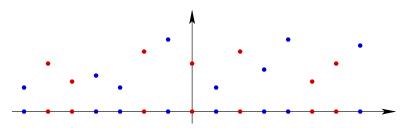
We consider the PAM with the potential ξ (PAM with duplication) and assume that

• the potential has Pareto distribution with parameter $\alpha > 1$, i.e.,

$$P(\xi(0) > x) = x^{-\alpha}, \qquad x > 1.$$

● *d* = 1

Let $p \in (0, 1)$. Let $\{\xi(z) : z \in \mathbb{Z}^d\}$ be such that $\xi(z) = \xi(-z)$ with probability p but otherwise i.i.d.



We consider the PAM with the potential ξ (PAM with duplication) and assume that

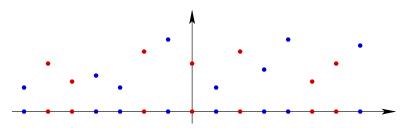
• the potential has Pareto distribution with parameter $\alpha > 1$, i.e.,

$$P(\xi(0) > x) = x^{-\alpha}, \qquad x > 1.$$

[for $\alpha \leq 1$ the solution to the PAM (with or without duplication) explodes]

● *d* = 1

Let $p \in (0, 1)$. Let $\{\xi(z) : z \in \mathbb{Z}^d\}$ be such that $\xi(z) = \xi(-z)$ with probability p but otherwise i.i.d.



We consider the PAM with the potential ξ (PAM with duplication) and assume that

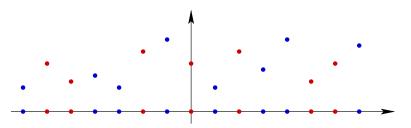
• the potential has Pareto distribution with parameter $\alpha > 1$, i.e.,

$$P(\xi(0) > x) = x^{-\alpha}, \qquad x > 1.$$

[for $\alpha \leq 1$ the solution to the PAM (with or without duplication) explodes] [for lighter tails the duplication will not affect the PAM]

● *d* = 1

Let $p \in (0, 1)$. Let $\{\xi(z) : z \in \mathbb{Z}^d\}$ be such that $\xi(z) = \xi(-z)$ with probability p but otherwise i.i.d.



We consider the PAM with the potential ξ (PAM with duplication) and assume that

• the potential has Pareto distribution with parameter $\alpha > 1$, i.e.,

$$P(\xi(0) > x) = x^{-\alpha}, \qquad x > 1.$$

[for $\alpha \leq 1$ the solution to the PAM (with or without duplication) explodes] [for lighter tails the duplication will not affect the PAM]

d = 1
 [*d* ≥ 2 is work in progress]

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z)\approx e^{t\Psi_t(z)}.$$

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z) \approx e^{t\Psi_t(z)}$$

Let Z_t be a maximiser of Ψ_t .

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z) \approx e^{t\Psi_t(z)}$$

Let Z_t be a maximiser of Ψ_t .

• The standard PAM would localise at Z_t .

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z)\approx e^{t\Psi_t(z)}.$$

Let Z_t be a maximiser of Ψ_t . Denote

 $\mathcal{D}_t = \{ \text{duplication at } Z_t \}.$

• The standard PAM would localise at Z_t .

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z) \approx e^{t\Psi_t(z)}.$$

Let Z_t be a maximiser of Ψ_t . Denote

- The standard PAM would localise at Z_t .
- On the event D_t the points Z_t and $-Z_t$ are equally good in terms of the value of ξ and distance from the origin.

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z)\approx e^{t\Psi_t(z)}.$$

Let Z_t be a maximiser of Ψ_t . Denote

- The standard PAM would localise at Z_t.
- On the event D_t the points Z_t and $-Z_t$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event D_t ?

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z)\approx e^{t\Psi_t(z)}.$$

Let Z_t be a maximiser of Ψ_t . Denote

- The standard PAM would localise at Z_t.
- On the event D_t the points Z_t and $-Z_t$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event D_t ?
- If so, what is the proportion of the mass carries by each point?

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z)\approx e^{t\Psi_t(z)}.$$

Let Z_t be a maximiser of Ψ_t . Denote

- The standard PAM would localise at Z_t .
- On the event D_t the points Z_t and $-Z_t$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event \mathcal{D}_t ?
- If so, what is the proportion of the mass carries by each point?
- What is the probability of D_t?

For t > 0 and $z \in \mathbb{Z}$, let

$$\Psi_t(z) = \xi(z) - \frac{|z|}{t} \log \xi(z).$$

Very roughly,

$$u(t,z)\approx e^{t\Psi_t(z)}.$$

Let Z_t be a maximiser of Ψ_t . Denote

 $\mathcal{D}_t = \{ \text{duplication at } Z_t \}.$

- The standard PAM would localise at Z_t .
- On the event D_t the points Z_t and $-Z_t$ are equally good in terms of the value of ξ and distance from the origin.
- Will the PAM with duplication localise at both points on the event \mathcal{D}_t ?
- If so, what is the proportion of the mass carries by each point?
- What is the probability of \mathcal{D}_t ?

Denote the total mass of the solution by

$$U(t)=\sum_{z\in\mathbb{Z}}u(t,z).$$

Nadia Sidorova Delocalising the PAM

Theorem 1 (Muirhead, Pymar, S. '16)

Let $1 < \alpha < 2$.

Theorem 2 (Muirhead, Pymar, S. '16)

Let $\alpha \geq 2$.

Theorem 1 (Muirhead, Pymar, S. '16)

Let $1 < \alpha < 2$.

Theorem 2 (Muirhead, Pymar, S. '16)

Let $\alpha \geq 2$. As $t \to \infty$,

$$rac{U(t,Z_t)}{U(t)}
ightarrow 1$$

in probability.

one point

Theorem 1 (Muirhead, Pymar, S. '16) Let $1 < \alpha < 2$. Conditionally on no duplication at Z_t , as $t \to \infty$, one point $rac{u(t,Z_t)}{U(t)}
ightarrow 1$ in probability. Theorem 2 (Muirhead, Pymar, S. '16) Let $\alpha \geq 2$. As $t \to \infty$, one point $\frac{u(t,Z_t)}{U(t)} \to 1$ in probability. Nadia Sidorova Delocalising the PAM

Theorem 1 (Muirhead, Pymar, S. '16)

Let $1 < \alpha < 2$. Conditionally on no duplication at Z_t , as $t \to \infty$,

$$rac{u(t,Z_t)}{U(t)} o 1$$
 in probability.

Conditionally on the duplication at Z_t , as $t \to \infty$,

$$rac{u(t,Z_t)+u(t,-Z_t)}{U(t)}
ightarrow 1$$
 in probability

Theorem 2 (Muirhead, Pymar, S. '16)

Let $\alpha \geq 2$. As $t \to \infty$,

$$rac{U(t,Z_t)}{U(t)}
ightarrow 1$$

in probability.

one point

one point

Delocalising the PAM

Theorem 1 (Muirhead, Pymar, S. '16)

Let $1 < \alpha < 2$. Conditionally on no duplication at Z_t , as $t \to \infty$,

$$rac{u(t,Z_t)}{U(t)} o 1$$
 in probability.

one point

Conditionally on the duplication at Z_t , as $t \to \infty$,

$$egin{aligned} & rac{u(t,Z_t)+u(t,-Z_t)}{U(t)}
ightarrow 1 & ext{ in probability} \ & rac{u(t,Z_t)}{u(t,-Z_t)} \Rightarrow \Upsilon, \end{aligned}$$

and

where Υ is a random variable with positive density on $(0,\infty)$.

Theorem 2 (Muirhead, Pymar, S. '16) Let $\alpha \ge 2$. As $t \to \infty$, $\frac{u(t, Z_t)}{U(t)} \to 1$ in probability. One point

Theorem 1 (Muirhead, Pymar, S. '16) Let $1 < \alpha < 2$. Conditionally on no duplication at Z_t , as $t \to \infty$, one point $\frac{u(t, Z_t)}{U(t)} \rightarrow 1$ in probability. Conditionally on the duplication at Z_t , as $t \to \infty$, two points, each with a random amount of mass $rac{u(t,Z_t)+u(t,-Z_t)}{U(t)}
ightarrow 1$ in probability and $\frac{u(t, Z_t)}{u(t, -Z_t)} \Rightarrow \Upsilon,$ where Υ is a random variable with positive density on $(0,\infty)$.

Theorem 2 (Muirhead, Pymar, S. '16)Let
$$\alpha \ge 2$$
. As $t \to \infty$, $u(t, Z_t)$ one point $U(t)$ $\rightarrow 1$ in probability.

Answers

Theorem 1 (Muirhead, Pymar, S. '16) Let $1 < \alpha < 2$. Conditionally on no duplication at Z_t , as $t \to \infty$, one point $\frac{u(t, Z_t)}{U(t)} \to 1$ in probability. Conditionally on the duplication at Z_t , as $t \to \infty$, two points, each with a random amount of mass $rac{u(t,Z_t)+u(t,-Z_t)}{U(t)} o 1$ in probability and $\frac{u(t, Z_t)}{u(t, -Z_t)} \Rightarrow \Upsilon,$ where Υ is a random variable with positive density on $(0,\infty)$. $P(\mathcal{D}_t) \rightarrow \frac{p}{2-p} = \frac{p/2}{p/2+q}$ Theorem 2 (Muirhead, Pymar, S. '16) Let $\alpha > 2$. As $t \to \infty$, one point $\frac{u(t, Z_t)}{U(t)} \to 1$ in probability. Nadia Sidorova Delocalising the PAM

Answers

delocalised Theorem 1 (Muirhead, Pymar, S. '16) Let $1 < \alpha < 2$. Conditionally on no duplication at Z_t , as $t \to \infty$, one point $\frac{u(t, Z_t)}{U(t)} \to 1$ in probability. Conditionally on the duplication at Z_t , as $t \to \infty$, two points, each with a random amount of mass $rac{u(t,Z_t)+u(t,-Z_t)}{U(t)}
ightarrow 1$ in probability and $\frac{u(t, Z_t)}{u(t, -Z_t)} \Rightarrow \Upsilon,$ where Υ is a random variable with positive density on $(0,\infty)$. $P(\mathcal{D}_t) \rightarrow \frac{p}{2-p} = \frac{p/2}{p/2+q}$ Theorem 2 (Muirhead, Pymar, S. '16) still localised Let $\alpha > 2$. As $t \to \infty$, one point $\frac{u(t, Z_t)}{U(t)} \rightarrow 1$ in probability. Nadia Sidorova Delocalising the PAM

Can we achieve delocalisation for $\alpha \ge 2$ by increasing the duplication?

Can we achieve delocalisation for $\alpha \ge 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$.

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

If $q(n) \gg q_c(n)$ then

If $q(n) \sim q_c(n)$ then

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

two points, each with half of the mass

If $q(n) \gg q_c(n)$ then

If $q(n) \sim q_c(n)$ then

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

two points, each with half of the mass

If $q(n) \gg q_c(n)$ then

If $q(n) \sim q_c(n)$ then

one point

Can we achieve delocalisation for $\alpha \geq 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

two points, each with half of the mass

If $q(n) \gg q_c(n)$ then

one point

If $q(n) \sim q_c(n)$ then

two points, each with a random amount of mass

Can we achieve delocalisation for $\alpha \ge 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

two points, each with half of the mass

$$rac{u(t,Z_t)}{u(t,-Z_t)} o 1$$
 in probability.

If $q(n) \gg q_c(n)$ then

one point

If $q(n) \sim q_c(n)$ then

two points, each with a random amount of mass

Can we achieve delocalisation for $\alpha \ge 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

two points, each with half of the mass

$$rac{u(t,Z_t)}{u(t,-Z_t)} o 1$$
 in probability.

If $q(n) \gg q_c(n)$ then $\left|\log \frac{u(t, Z_t)}{u(t, -Z_t)}\right| \to \infty$ in probability. one point

If $q(n) \sim q_c(n)$ then

two points, each with a random amount of mass

Can we achieve delocalisation for $\alpha \ge 2$ by increasing the duplication? Let p = p(n) depend on the distance from the origin and chose $p(n) \rightarrow 1$. Observe that $P(\mathcal{D}_t) \rightarrow 1$.

Theorem 3 (Muirhead, Pymar, S. '17)

Let $\alpha \geq 2$, denote q(n) = 1 - p(n), and introduce the critical scale

$$q_c(n) = \begin{cases} n^{\frac{2}{\alpha}-1} & \text{if } \alpha > 2\\ \frac{1}{\log n} & \text{if } \alpha = 2 \end{cases}$$

If $q(n) \ll q_c(n)$ then

two points, each with half of the mass

$$rac{u(t,Z_t)}{u(t,-Z_t)} o 1$$
 in probability.

If
$$q(n) \gg q_c(n)$$
 then $\left|\log \frac{u(t, Z_t)}{u(t, -Z_t)}\right| \to \infty$ in probability. one point

If $q(n) \sim q_c(n)$ then

two points, each with a random amount of mass

$$\frac{u(t,Z_t)}{u(t,-Z_t)} \Rightarrow \Upsilon,$$

where Υ is a random variable with positive density on $(0,\infty)$.

 $u(t,z) \approx \exp\left\{t\Psi_t(z) + \operatorname{error}\right\}$

$$u(t,z) \approx \exp\left\{t\Psi_t(z) + \operatorname{error}\right\}$$

Standard PAM methods:

All points except Z_t and $-Z_t$ are negligible (in fact, exponentially).

$$u(t,z) \approx \exp\left\{t\Psi_t(z) + \operatorname{error}\right\}$$

Standard PAM methods:

All points except Z_t and $-Z_t$ are negligible (in fact, exponentially).

New and hard:

Compare Z_t and $-Z_t$, that is, understand the error.

$$u(t,z) \approx \exp\left\{t\Psi_t(z) + \operatorname{error}\right\}$$

Standard PAM methods:

All points except Z_t and $-Z_t$ are negligible (in fact, exponentially).

New and hard:

Compare Z_t and $-Z_t$, that is, understand the error.

Feynman-Kac:

$$u(t,z) \approx \exp\left\{t\Psi_t(z) + \operatorname{error}\right\}$$

Standard PAM methods:

All points except Z_t and $-Z_t$ are negligible (in fact, exponentially).

New and hard:

Compare Z_t and $-Z_t$, that is, understand the error.

Feynman-Kac:

$$u(t,\pm Z_t) = \mathbb{E}\left\{e^{\int_0^t \xi(X_s)\,\mathrm{d}s}\mathbf{1}_{\{X_t=\pm Z_t\}}\right\}$$

$$u(t,z) \approx \exp\left\{t\Psi_t(z) + \operatorname{error}\right\}$$

Standard PAM methods:

All points except Z_t and $-Z_t$ are negligible (in fact, exponentially).

New and hard:

Compare Z_t and $-Z_t$, that is, understand the error.

Feynman-Kac:

$$u(t,\pm Z_t) = \mathbb{E}\Big\{e^{\int_0^t \xi(X_s) \, ds} \mathbf{1}_{\{X_t=\pm Z_t\}}\Big\} = \sum_{y \in \mathcal{P}_t^{\pm}} \underbrace{\mathbb{E}\Big\{e^{\int_0^t \xi(X_s) \, ds} \mathbf{1}_{\{X \text{ follows } y\}}\Big\}}_{U(t,y)},$$

where \mathcal{P}_t^{\pm} are the sets of paths on \mathbb{Z} starting at 0 and ending at $\pm Z_t$.

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

• Magic formula:

$$U(t,y) \sim ?$$

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

• Magic formula:

$$U(t, y) = \sum_{i=0}^{n} e^{tc_i - 2t} \prod_{\substack{k=0 \ k \neq i}}^{n} \frac{1}{c_i - c_k}$$

where $c_0 \ldots c_n$ are the values of ξ along y

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

• Magic formula:

$$U(t, y) = \sum_{i=0}^{n} e^{tc_i - 2t} \prod_{\substack{k=0 \ k \neq i}}^{n} \frac{1}{c_i - c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along y

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

• Magic formula:

$$U(t,y) \sim e^{tc_n-2t} \prod_{k=0}^{n-1} \frac{1}{c_n-c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along y

$$u(t,\pm Z_t)=\sum_{y\in \mathcal{P}_t^{\pm}}U(t,y)$$

• Magic formula:

$$U(t,y) \sim \frac{t^m}{m!} e^{tc_n - 2t} \prod_{k=0}^{n-1} \frac{1}{c_n - c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along yand m is the number of visits to $\pm Z_t$.

$$u(t,\pm Z_t)=\sum_{y\in \mathcal{P}_t^{\pm}}U(t,y)$$

• Magic formula:

$$U(t,y) \sim \frac{t^m}{m!} e^{tc_n - 2t} \prod_{k=0}^{n-1} \frac{1}{c_n - c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along yand m is the number of visits to $\pm Z_t$.

- Which paths y really contribute to the sum?
 - $1 < \alpha < 2$: • $\alpha \ge 2$:

$$u(t,\pm Z_t)=\sum_{y\in \mathcal{P}_t^{\pm}}U(t,y)$$

• Magic formula:

$$U(t,y) \sim \frac{t^m}{m!} e^{tc_n - 2t} \prod_{k=0}^{n-1} \frac{1}{c_n - c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along yand m is the number of visits to $\pm Z_t$.

- Which paths y really contribute to the sum?
 - 1 < α < 2: only the straight path from 0 to ±Z_t
 α ≥ 2:

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

• Magic formula:

$$U(t,y) \sim \frac{t^m}{m!} e^{tc_n - 2t} \prod_{k=0}^{n-1} \frac{1}{c_n - c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along yand m is the number of visits to $\pm Z_t$.

- $1 < \alpha < 2$: only the straight path from 0 to $\pm Z_t$
- $\alpha \ge 2$: lots of paths

$$u(t,\pm Z_t) = \sum_{y\in \mathcal{P}_t^{\pm}} U(t,y)$$

• Magic formula:

$$U(t,y) \sim \frac{t^m}{m!} e^{tc_n - 2t} \prod_{k=0}^{n-1} \frac{1}{c_n - c_k}$$

where $c_0 < \cdots < c_n$ are the values of ξ along yand m is the number of visits to $\pm Z_t$.

• Which paths y really contribute to the sum?

1 < α < 2: only the straight path from 0 to ±Z_t
α ≥ 2: lots of paths

In particular, for $1 < \alpha < 2$ we have

$$u(t,\pm Z_t)\sim e^{t\xi(Z_t)-2t}\prod_{k=0}^{Z_t}rac{1}{\xi(Z_t)-\xi(\pm k)}$$

Nadia Sidorova Delocalising the PAM

 $\mathbf{1} < \alpha < \mathbf{2}$

$$rac{u(t,Z_t)}{u(t,-Z_t)} \sim \prod_{k=1}^{Z_t} rac{1}{\xi(Z_t)-\xi(k)} : \prod_{k=1}^{Z_t} rac{1}{\xi(Z_t)-\xi(-k)}$$

$$\begin{aligned} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \\ &= \exp\Big\{-\sum_{k: \text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k: \text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big)\Big\}.\end{aligned}$$

$1<\alpha<2$

$$\begin{aligned} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \\ &= \exp\Big\{-\sum_{k: \text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k: \text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big)\Big\}.\end{aligned}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox$$

$1<\alpha<2$

$$\begin{aligned} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \\ &= \exp\Big\{-\sum_{k: \text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k: \text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big)\Big\}.\end{aligned}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

$$\frac{u(t,Z_t)}{u(t,-Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ normal}} = \exp\Big\{-\sum_{\substack{k: \text{non-dupl}}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{\substack{k: \text{non-dupl}}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big)\Big\}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

$$\frac{u(t,Z_t)}{u(t,-Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \text{ normal}} \text{ if } \mathbb{E}X_i^2 < \infty$$

$$\stackrel{\uparrow}{=} \exp\Big\{-\sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big)\Big\}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

$$\frac{u(t, Z_t)}{u(t, -Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\left[\sum_{i=1}^n X_i \approx n\mu + n^{1/2} \mathcal{N} \quad \text{if } \mathbb{E}X_i^2 < \infty \right]}{\left[\sum_{i=1}^n X_i \approx n\mu + n^{1/2} \mathcal{N} \quad \text{if } \mathbb{E}X_i^2 < \infty \right]}$$
$$= \exp\left\{ -\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(k)}{\xi(Z_t)}\right) + \sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(-k)}{\xi(Z_t)}\right) \right\}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

 $1<\alpha<2$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

$$\frac{u(t, Z_t)}{u(t, -Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ \text{normal} \\ = \exp\left\{-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(k)}{\xi(Z_t)}\right) + \sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(-k)}{\xi(Z_t)}\right)\right\}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

$$\frac{u(t, Z_t)}{u(t, -Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ \text{Stable}} Pareto(\alpha)} = \exp\Big\{ -\sum_{\substack{k:\text{non-dupl}}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{\substack{k:\text{non-dupl}}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big) \Big\}$$

$$-\sum_{k: ext{non-dupl}} \log \left(1 - rac{\xi(\pm k)}{\xi(Z_t)}
ight) pprox rac{1}{\xi(Z_t)} \sum_{k: ext{non-dupl}} \xi(\pm k) pprox$$

 $1<\alpha<2$

$$\begin{split} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ stable} Pareto(\alpha)} \\ &= \exp\Big\{ -\sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big) \Big\} \end{split}$$

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$

 $1<\alpha<2$

$$\begin{split} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ stable} Pareto(\alpha)} \\ &= \exp\Big\{ -\sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big) \Big\} \end{split}$$

Insightful cheating:

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$
everything is determined by

$$\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)} \asymp$$

$$\frac{u(t, Z_t)}{u(t, -Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ \text{stable} \\ = \exp\left\{-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(k)}{\xi(Z_t)}\right) + \sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(-k)}{\xi(Z_t)}\right)\right\}$$

Insightful cheating:

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$
everything is determined by

$$\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)} \asymp \qquad \begin{cases} \infty \quad \Rightarrow \text{ one point dominates} \\ 1 \quad \Rightarrow \text{ random proportion of mass at each point} \\ 0 \quad \Rightarrow 1/2 \text{ of the mass at each point} \end{cases}$$

 $1<\alpha<2$

$$\frac{u(t, Z_t)}{u(t, -Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ \text{stable} \\ = \exp\left\{-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(k)}{\xi(Z_t)}\right) + \sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(-k)}{\xi(Z_t)}\right)\right\}$$

Insightful cheating:

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$
everything is determined by

$$\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)} \asymp \frac{r_t^{1/\alpha}}{a_t} \asymp \begin{cases} \infty \Rightarrow \text{one point dominates} \\ 1 \Rightarrow \text{random proportion of mass at each point} \\ 0 \Rightarrow 1/2 \text{ of the mass at each point} \end{cases}$$

 $1<\alpha<2$

$$\frac{u(t, Z_t)}{u(t, -Z_t)} \sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ \text{Stable}} Pareto(\alpha)} = \exp\Big\{ -\sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big) \Big\}$$

Insightful cheating:

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$
everything is determined by

$$\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)} \asymp \frac{r_t^{1/\alpha}}{a_t} \asymp \begin{cases} \infty \Rightarrow \text{one point dominates} \\ 1 \Rightarrow \text{random proportion of mass at each point} \\ 0 \Rightarrow 1/2 \text{ of the mass at each point} \end{cases}$$

Miracle! $a_t = r_t^{1/\alpha}$

$$\begin{aligned} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ stable} Pareto(\alpha)} \\ &= \exp\Big\{ -\sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big) \Big\} \end{aligned}$$

Insightful cheating:

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$
everything is determined by

$$\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)} \asymp \frac{r_t^{1/\alpha}}{a_t} \asymp \begin{cases} \infty \Rightarrow \text{one point dominates} \\ 1 \Rightarrow \text{random proportion of mass at each point} \\ 0 \Rightarrow 1/2 \text{ of the mass at each point} \end{cases}$$

Miracle! $a_t = r_t^{1/\alpha}$

Hence

The scale of fluctuations remains finite for all values of $1 < \alpha < 2$.

$$\begin{aligned} \frac{u(t,Z_t)}{u(t,-Z_t)} &\sim \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(k)} : \prod_{k=1}^{Z_t} \frac{1}{\xi(Z_t) - \xi(-k)} \xrightarrow{\uparrow \\ stable} Pareto(\alpha)} \\ &= \exp\Big\{ -\sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(k)}{\xi(Z_t)}\Big) + \sum_{k:\text{non-dupl}} \log\Big(1 - \frac{\xi(-k)}{\xi(Z_t)}\Big) \Big\} \end{aligned}$$

Insightful cheating:

$$-\sum_{k:\text{non-dupl}} \log\left(1 - \frac{\xi(\pm k)}{\xi(Z_t)}\right) \approx \frac{1}{\xi(Z_t)} \sum_{k:\text{non-dupl}} \xi(\pm k) \approx \underbrace{\frac{\mu q |Z_t|}{\xi(Z_t)}}_{\text{LLN}} + \underbrace{\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)}}_{\text{fluctuations}} \mathcal{N}^{\pm}$$
everything is determined by

$$\frac{|Z_t|^{1/\alpha}}{\xi(Z_t)} \asymp \frac{r_t^{1/\alpha}}{a_t} \asymp \begin{cases} \infty \Rightarrow \text{one point dominates} \\ 1 \Rightarrow \text{random proportion of mass at each point} \\ 0 \Rightarrow 1/2 \text{ of the mass at each point} \end{cases}$$

Miracle! $a_t = r_t^{1/\alpha}$

Hence

The scale of fluctuations remains finite for all values of $1 < \alpha < 2$.