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Geometric sums

Let Y = X1 + X2 + · · ·+ XN , where

X ,X1,X2, . . . are i.i.d. positive integer-valued random variables, and

N has a geometric distribution (independent of the Xi ), supported on
{0, 1, 2, . . .}, with P(N = 0) = p.

Applications include

Records processes (time until a new record is set)

Random walks, including the ruin problem (maximum of the random
walk)

Reliability systems (time to failure)
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Geometric sums

We will consider situations where a (non-negative, integer-valued) random
variable of interest W has a distribution close to that of a geometric sum,
measured by total variation distance:

dTV (L(W ),L(Y )) = sup
A⊆Z+

|P(W ∈ A)− P(Y ∈ A)|

= inf
(W ,Y )

P(W 6= Y ) ,

where the infemum is taken over all couplings of W and Y .
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Geometric sums

Rényi’s theorem:

lim
p→0

P
(

1

EN
Y ≤ x

)
= 1− exp

{
− x

EX

}

Explicit bounds in exponential approximation are available, as are explicit
bounds for geometric approximation of the geometric sum Y .
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A characterisation

Define the random variable V by

V + X
d
= (W |W > 0) .

Note that if W is a geometric sum (with summand X ), then V
d
= W . The

converse is also true.

We may expect to be able to quantify the distance of W from our
geometric sum Y by assessing the distance of W from V .
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Approximation by geometric sums

Theorem

If p = P(W = 0),

dTV (L(W ),L(Y )) ≤ 1− p

p
dTV (L(W ),L(V )) .

The proof, using Stein’s method, is based on the above characterisation
for geometric sums.
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Proof

Write q = 1− p. Given a function h : Z+ 7→ R, define the function f = fh
as the solution to the following ‘Stein equation’:

h(k)− Eh(Y ) = qE[f (k + X )]− f (k)

(with f (0) = 0), so that

Eh(W )− Eh(Y ) = qE[f (W + X )]− qE[f (W )|W > 0]

= qE[f (W + X )− f (V + X )] .

Hence
|Eh(W )− Eh(Y )| ≤ qP(W 6= V ) sup

j ,k
|f (j)− f (k)| .

With h(k) = I (k ∈ A), taking the supremum over A ⊆ Z+ gives us dTV on
the LHS. The final term on the RHS may be shown to be bounded by 1/p.
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Markov chain passage times

Let {ξi : i ≥ 0} be an ergodic discrete-time Markov chain with transition
matrix P, started according to its stationary distribution π, and let
W = min{i : ξi ∈ B} for some set of states B.

Let Bi be the set of states j from which a move to B requires a minimum
of i steps, i.e., for which P(ξi ∈ B|ξ0 = j) > 0 but P(ξk ∈ B|ξ0 = j) = 0
for k < i .

Let

p = P(W = 0) = π(B) ,

µi = P(ξ0 ∈ Bi |ξ0 6∈ B) =

∑
j∈Bi

π(j)

1− p
.

Define the random variable X by P(X = i) = µi .
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Markov chain passage times

Theorem

dTV (L(W ),L(Y )) ≤ 1

p
E
∑
i ,j∈B

πi
∑
n≥0

∣∣∣P(n+X )
ij − πj

∣∣∣ .
This is proved using our earlier bound: construct copies of the original
chain, but started according to π restricted to Bj for each j . Randomising
j according to X gives us the random variable V by considering the first
passage time to the set of states B.

We now use the maximal coupling of these processes with copies of our
original Markov chain to estimate P(W 6= V ). Some analysis yields the
stated bound.
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Application: Sequence patterns

Consider a sequence of IID Bernoulli trials (of 0s and 1s), and let Ii be the
indicator that a given k-digit pattern (B, say) appears, starting at position
i in our sequence. We are interested in W = min{i : Ii = 1}, the time we
have to wait to observe our pattern.

Define a 2k state Markov chain such that at time n, the state of the
process is the outcome of the k Bernoulli trials from time n to time
n + k − 1.

Our theorem gives the bound

dTV (L(W ),L(Y )) ≤
k−1∑
i=1

i∑
n=1

µn|ci − p| ,

where ci = P(Ii = 1|I0 = 1). This represents the i-step transition
probability from B to B, for i ≤ k − 1.

This is sharper than available geometric approximation bounds.
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Application: Sequence patterns

For example, let k = 3 and consider the pattern 010.

We have that p = r(1− r)2, where r is the expected value of each of the
original Bernoulli variables.

We have the following partition of the state space of our Markov chain:

B = {010} , B1 = {001, 101} , B2 = {000, 100, 110} , B3 = {011, 111} .

We can easily calculate c1 = 0, c2 = r(1− r),

µ1 =
r(1− r)

1− p
, µ2 =

(1− r)(1− r + r2)

1− p
, µ3 =

r2

1− p
.
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Approximations using bounded failure rate

Our general bound above can be tricky to evaluate: estimating
dTV (L(W ),L(V )) is not always easy.

However, simpler upper bounds for the approximation of W by a
geometric sum are available, under assumptions on the structure of the
underlying random variables.
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Notation

Let W be a non-negative, integer-valued random variable. Define the
failure (or hazard) rate of W by

rW (j) =
P(W = j)

P(W > j)
.

For future use, we also define (for 0 ≤ p < 1 and X a positive,
integer-valued random variable)

Hp(X ) = min

{
p + (1− p)P(X > 1), p

(
1 +

√
−2

u log(1− p)

)}
,

where u = 1− dTV (L(X ),L(X + 1)), a measure of the ‘smoothness’ of X .
This is small (close to p) when X is ‘smooth’ or P(X = 1) is large.
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Approximations using bounded failure rate

Theorem

Let P(W = 0) = p and rW (j) > δ > 0 for all j . If

EX ≥ p

(1− p)δ
,

then
dTV (L(W ),L(Y )) ≤ Hp(X ) (EY − EW ) ,

where Y = X1 + · · ·+ XN is our geometric sum.

Natural candidates for applications are when W has increasing failure rate
(IFR) or decreasing failure rate (DFR). The first setting leads to simple
geometric approximation bounds (X = 1 almost surely).
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Proof

Let X be as in the theorem, and V be as before. We can show that
P(V + X > j) ≤ P(W + X > j).

Let f be the solution to the same ‘Stein equation’ as before:

h(k)− Eh(Y ) = (1− p)E[f (k + X )]− f (k) .

When h(k) = I (k ∈ A) for A ⊆ Z+, we can show that

sup
j
|∆f (j)| ≤ 1

p
Hp(X ) ,

where ∆f (j) = f (j + 1)− f (j).
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Proof

Rearrange our Stein equation to get

Eh(W )− Eh(Y ) = (1− p)
∞∑
j=0

∆f (j) [P(W + X > j)− P(V + X > j)] .

With h(k) = I (k ∈ A), we then obtain

|P(W ∈ A)− P(Y ∈ A)| ≤ 1− p

p
Hp(X )E[W − V ] = Hp(X )E[Y −W ] .

Taking the supremum over A ⊆ Z+ gives us dTV (L(W ),L(Y )).
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Applications to the M/G/1 queue

Consider a single server queue with

customers arriving at rate λ, and

i.i.d. customer service times with the same distribution as S .

Let ρ = λES and assume ρ < 1.

We will approximate

1 the number of customers in the system in equilibrium by a geometric
distribution (so X = 1 almost surely), and

2 the number of customers served during a busy period by a geometric
sum.
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Number of customers in the system

Let W be the equilibrium number of customers in the system. It is
well-known that

P(W = 0) = 1− ρ , EW = ρ+
ρ2E[S2]

2(1− ρ)(ES)2
,

rW (j) ≥ 1− ρ
λ supt≥0 E[S − t|S ≥ t]

, ∀j ∈ Z+ .

S is said to be New Better than Used in Expectation (NBUE) if
E[S − t|S ≥ t] ≤ ES for all t ≥ 0. In that case our theorem gives

dTV (L(W ),Ge(1− ρ)) ≤ ρ2

(
1− E[S2]

2(ES)2

)
.

As expected, this upper bound is zero if S has an exponential distribution.
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Customers served during a busy period

Let W + 1 be the number of customers served during a busy period of our
system. Then P(W = 0) = Ee−λS = p and EW = ρ(1− ρ)−1.

If S is IFR, it is known that W is DFR. We may then find a lower bound
on the failure rate as follows.

Let ψ be the Laplace transform of the density of S and let ξ be the real
root of 1 + λψ′(s) nearest the origin. Let

θ =
ξ − λ+ λψ(ξ)

(ξ − λ)ψ(λ)
.

Then if Y =
∑N

i=1 Xi , where N ∼ Ge(p) and (1− p)θEX ≥ 1− pθ,

dTV (L(W ),L(Y )) ≤ Hp(X )

(
(1− p)EX

p
− ρ

1− ρ

)
.
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