Approximation by Geometric Sums: Markov chain passage times and queueing models

Fraser Daly

Heriot-Watt University

LMS-EPSRC Durham Symposium
Markov Processes, Mixing Times and Cutoff July 2017

Outline

- Geometric sums
- Approximation results
- Application to Markov chain passage times
- Approximations using bounded failure rate
- Applications to the M/G/1 queue

Geometric sums

Let $Y=X_{1}+X_{2}+\cdots+X_{N}$, where

- X, X_{1}, X_{2}, \ldots are i.i.d. positive integer-valued random variables, and
- N has a geometric distribution (independent of the X_{i}), supported on $\{0,1,2, \ldots\}$, with $\mathbb{P}(N=0)=p$.

Applications include

- Records processes (time until a new record is set)
- Random walks, including the ruin problem (maximum of the random walk)
- Reliability systems (time to failure)

Geometric sums

We will consider situations where a (non-negative, integer-valued) random variable of interest W has a distribution close to that of a geometric sum, measured by total variation distance:

$$
\begin{aligned}
d_{T V}(\mathcal{L}(W), \mathcal{L}(Y)) & =\sup _{A \subseteq \mathbb{Z}^{+}}|\mathbb{P}(W \in A)-\mathbb{P}(Y \in A)| \\
& =\inf _{(W, Y)} \mathbb{P}(W \neq Y),
\end{aligned}
$$

where the infemum is taken over all couplings of W and Y.

Geometric sums

Rényi's theorem:

$$
\lim _{p \rightarrow 0} \mathbb{P}\left(\frac{1}{\mathbb{E} N} Y \leq x\right)=1-\exp \left\{-\frac{x}{\mathbb{E} X}\right\}
$$

Explicit bounds in exponential approximation are available, as are explicit bounds for geometric approximation of the geometric sum Y.

A characterisation

Define the random variable V by

$$
V+X \stackrel{d}{=}(W \mid W>0)
$$

Note that if W is a geometric sum (with summand X), then $V \stackrel{d}{=} W$. The converse is also true.

We may expect to be able to quantify the distance of W from our geometric sum Y by assessing the distance of W from V.

Approximation by geometric sums

Theorem

If $p=\mathbb{P}(W=0)$,

$$
d_{T V}(\mathcal{L}(W), \mathcal{L}(Y)) \leq \frac{1-p}{p} d_{T V}(\mathcal{L}(W), \mathcal{L}(V))
$$

The proof, using Stein's method, is based on the above characterisation for geometric sums.

Proof

Write $q=1-p$. Given a function $h: \mathbb{Z}^{+} \mapsto \mathbb{R}$, define the function $f=f_{h}$ as the solution to the following 'Stein equation':

$$
h(k)-\mathbb{E} h(Y)=q \mathbb{E}[f(k+X)]-f(k)
$$

(with $f(0)=0$), so that

$$
\begin{aligned}
\mathbb{E} h(W)-\mathbb{E} h(Y) & =q \mathbb{E}[f(W+X)]-q \mathbb{E}[f(W) \mid W>0] \\
& =q \mathbb{E}[f(W+X)-f(V+X)]
\end{aligned}
$$

Hence

$$
|\mathbb{E} h(W)-\mathbb{E} h(Y)| \leq q \mathbb{P}(W \neq V) \sup _{j, k}|f(j)-f(k)| .
$$

With $h(k)=I(k \in A)$, taking the supremum over $A \subseteq \mathbb{Z}^{+}$gives us $d_{T V}$ on the LHS. The final term on the RHS may be shown to be bounded by $1 / p$.

Markov chain passage times

Let $\left\{\xi_{i}: i \geq 0\right\}$ be an ergodic discrete-time Markov chain with transition matrix P, started according to its stationary distribution π, and let $W=\min \left\{i: \xi_{i} \in B\right\}$ for some set of states B.

Let B_{i} be the set of states j from which a move to B requires a minimum of i steps, i.e., for which $\mathbb{P}\left(\xi_{i} \in B \mid \xi_{0}=j\right)>0$ but $\mathbb{P}\left(\xi_{k} \in B \mid \xi_{0}=j\right)=0$ for $k<i$.

Let

$$
\begin{aligned}
p & =\mathbb{P}(W=0)=\pi(B) \\
\mu_{i} & =\mathbb{P}\left(\xi_{0} \in B_{i} \mid \xi_{0} \notin B\right)=\frac{\sum_{j \in B_{i}} \pi(j)}{1-p}
\end{aligned}
$$

Define the random variable X by $\mathbb{P}(X=i)=\mu_{i}$.

Markov chain passage times

Theorem

$$
d_{T V}(\mathcal{L}(W), \mathcal{L}(Y)) \leq \frac{1}{p} \mathbb{E} \sum_{i, j \in B} \pi_{i} \sum_{n \geq 0}\left|P_{i j}^{(n+X)}-\pi_{j}\right|
$$

This is proved using our earlier bound: construct copies of the original chain, but started according to π restricted to B_{j} for each j. Randomising j according to X gives us the random variable V by considering the first passage time to the set of states B.

We now use the maximal coupling of these processes with copies of our original Markov chain to estimate $\mathbb{P}(W \neq V)$. Some analysis yields the stated bound.

Application: Sequence patterns

Consider a sequence of IID Bernoulli trials (of 0 s and 1 s), and let l_{i} be the indicator that a given k-digit pattern (B, say) appears, starting at position i in our sequence. We are interested in $W=\min \left\{i: I_{i}=1\right\}$, the time we have to wait to observe our pattern.
Define a 2^{k} state Markov chain such that at time n, the state of the process is the outcome of the k Bernoulli trials from time n to time $n+k-1$.

Our theorem gives the bound

$$
d_{T V}(\mathcal{L}(W), \mathcal{L}(Y)) \leq \sum_{i=1}^{k-1} \sum_{n=1}^{i} \mu_{n}\left|c_{i}-p\right|
$$

where $c_{i}=\mathbb{P}\left(l_{i}=1 \mid l_{0}=1\right)$. This represents the i-step transition probability from B to B, for $i \leq k-1$.

This is sharper than available geometric approximation bounds.

Application: Sequence patterns

For example, let $k=3$ and consider the pattern 010.
We have that $p=r(1-r)^{2}$, where r is the expected value of each of the original Bernoulli variables.

We have the following partition of the state space of our Markov chain:

$$
B=\{010\}, \quad B_{1}=\{001,101\}, \quad B_{2}=\{000,100,110\}, B_{3}=\{011,111\}
$$

We can easily calculate $c_{1}=0, c_{2}=r(1-r)$,

$$
\mu_{1}=\frac{r(1-r)}{1-p}, \mu_{2}=\frac{(1-r)\left(1-r+r^{2}\right)}{1-p}, \mu_{3}=\frac{r^{2}}{1-p} .
$$

Approximations using bounded failure rate

Our general bound above can be tricky to evaluate: estimating $d_{T V}(\mathcal{L}(W), \mathcal{L}(V))$ is not always easy.

However, simpler upper bounds for the approximation of W by a geometric sum are available, under assumptions on the structure of the underlying random variables.

Notation

Let W be a non-negative, integer-valued random variable. Define the failure (or hazard) rate of W by

$$
r_{W}(j)=\frac{\mathbb{P}(W=j)}{\mathbb{P}(W>j)}
$$

For future use, we also define (for $0 \leq p<1$ and X a positive, integer-valued random variable)

$$
H_{p}(X)=\min \left\{p+(1-p) \mathbb{P}(X>1), p\left(1+\sqrt{\frac{-2}{u \log (1-p)}}\right)\right\}
$$

where $u=1-d_{T V}(\mathcal{L}(X), \mathcal{L}(X+1))$, a measure of the 'smoothness' of X. This is small (close to p) when X is 'smooth' or $\mathbb{P}(X=1)$ is large.

Approximations using bounded failure rate

Theorem

Let $\mathbb{P}(W=0)=p$ and $r_{W}(j)>\delta>0$ for all j. If

$$
\mathbb{E} X \geq \frac{p}{(1-p) \delta}
$$

then

$$
d_{T V}(\mathcal{L}(W), \mathcal{L}(Y)) \leq H_{p}(X)(\mathbb{E} Y-\mathbb{E} W)
$$

where $Y=X_{1}+\cdots+X_{N}$ is our geometric sum.

Natural candidates for applications are when W has increasing failure rate (IFR) or decreasing failure rate (DFR). The first setting leads to simple geometric approximation bounds ($X=1$ almost surely).

Proof

- Let X be as in the theorem, and V be as before. We can show that $\mathbb{P}(V+X>j) \leq \mathbb{P}(W+X>j)$.
- Let f be the solution to the same 'Stein equation' as before:

$$
h(k)-\mathbb{E} h(Y)=(1-p) \mathbb{E}[f(k+X)]-f(k)
$$

When $h(k)=I(k \in A)$ for $A \subseteq \mathbb{Z}^{+}$, we can show that

$$
\sup _{j}|\Delta f(j)| \leq \frac{1}{p} H_{p}(X),
$$

where $\Delta f(j)=f(j+1)-f(j)$.

Proof

Rearrange our Stein equation to get

$$
\mathbb{E} h(W)-\mathbb{E} h(Y)=(1-p) \sum_{j=0}^{\infty} \Delta f(j)[\mathbb{P}(W+X>j)-\mathbb{P}(V+X>j)]
$$

With $h(k)=I(k \in A)$, we then obtain

$$
|\mathbb{P}(W \in A)-\mathbb{P}(Y \in A)| \leq \frac{1-p}{p} H_{p}(X) \mathbb{E}[W-V]=H_{p}(X) \mathbb{E}[Y-W]
$$

Taking the supremum over $A \subseteq \mathbb{Z}^{+}$gives us $d_{T V}(\mathcal{L}(W), \mathcal{L}(Y))$.

Applications to the $\mathrm{M} / \mathrm{G} / 1$ queue

Consider a single server queue with

- customers arriving at rate λ, and
- i.i.d. customer service times with the same distribution as S.

Let $\rho=\lambda \mathbb{E} S$ and assume $\rho<1$.

We will approximate
(1) the number of customers in the system in equilibrium by a geometric distribution (so $X=1$ almost surely), and
(2) the number of customers served during a busy period by a geometric sum.

Number of customers in the system

Let W be the equilibrium number of customers in the system. It is well-known that

$$
\begin{aligned}
& \mathbb{P}(W=0)=1-\rho, \quad \mathbb{E} W=\rho+\frac{\rho^{2} \mathbb{E}\left[S^{2}\right]}{2(1-\rho)(\mathbb{E} S)^{2}} \\
& r_{W}(j) \geq \frac{1-\rho}{\lambda \sup _{t \geq 0} \mathbb{E}[S-t \mid S \geq t]}, \quad \forall j \in \mathbb{Z}^{+}
\end{aligned}
$$

S is said to be New Better than Used in Expectation (NBUE) if $\mathbb{E}[S-t \mid S \geq t] \leq \mathbb{E} S$ for all $t \geq 0$. In that case our theorem gives

$$
d_{T V}(\mathcal{L}(W), G e(1-\rho)) \leq \rho^{2}\left(1-\frac{\mathbb{E}\left[S^{2}\right]}{2(\mathbb{E} S)^{2}}\right)
$$

As expected, this upper bound is zero if S has an exponential distribution.

Customers served during a busy period

Let $W+1$ be the number of customers served during a busy period of our system. Then $\mathbb{P}(W=0)=\mathbb{E} e^{-\lambda S}=p$ and $\mathbb{E} W=\rho(1-\rho)^{-1}$.
If S is IFR, it is known that W is DFR. We may then find a lower bound on the failure rate as follows.

Let ψ be the Laplace transform of the density of S and let ξ be the real root of $1+\lambda \psi^{\prime}(s)$ nearest the origin. Let

$$
\theta=\frac{\xi-\lambda+\lambda \psi(\xi)}{(\xi-\lambda) \psi(\lambda)}
$$

Then if $Y=\sum_{i=1}^{N} X_{i}$, where $N \sim \operatorname{Ge}(p)$ and $(1-p) \theta \mathbb{E} X \geq 1-p \theta$,

$$
d_{T V}(\mathcal{L}(W), \mathcal{L}(Y)) \leq H_{p}(X)\left(\frac{(1-p) \mathbb{E} X}{p}-\frac{\rho}{1-\rho}\right)
$$

References

- S. Asmussen (2003). Applied Probability and Queues 2nd ed. Springer, New York.
- F. Daly (2010). Stein's method for compound geometric approximation. J. Appl. Prob. 47: 146-156.
- F. Daly (2016). Compound geometric approximation under a failure rate constraint. J. Appl. Prob. 53: 700-714.
- V. Kalashnikov (1997). Geometric Sums: Bounds for Rare Events with Applications. Kluwer, Dordrecht.
- E. K. Kyprianou (1972). The quasi-stationary distributions of queues in heavy traffic. J. Appl. Prob. 35: 821-831.
- E. Peköz (1996). Stein's method for geometric approximation. J. Appl. Prob. 33: 707-713.
- E. Peköz and A. Röllin (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Prob. 39: 587-608.
- E. Peköz, A. Röllin and N. Ross (2013). Total variation error bounds for geometric approximation. Bernoulli 19: 610-632.
- A. Rényi (1957). A characterization of Poisson processes. Magyar Tud. Akad. Mat. Kutató Int. Közl. 1: 519-527.
- S. Ross (2006). Bounding the stationary distribution of the M/G/1 queue size. Probab. Engrg. Inform. Sci. 20: 571-574.
- J. G. Shanthikumar (1988). DFR property of first-passage times and its preservation under geometric compounding. Ann. Prob. 16: 397-406.

