Approximation by Geometric Sums:

Markov chain passage times and queueing models

Fraser Daly

Heriot—Watt University

LMS-EPSRC Durham Symposium
Markov Processes, Mixing Times and Cutoff
July 2017

Fraser Daly (Heriot—Watt University) Geometric Sums July 2017 1/21



@ Geometric sums
@ Approximation results
o Application to Markov chain passage times
@ Approximations using bounded failure rate
o Applications to the M/G/1 queue
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Geometric sums

Let Y = X1 +Xo + -+ Xy, where
o X, X1,Xo,... are i.i.d. positive integer-valued random variables, and

@ N has a geometric distribution (independent of the X;), supported on
{0,1,2,...}, with P(N =0) = p.

Applications include
@ Records processes (time until a new record is set)

e Random walks, including the ruin problem (maximum of the random
walk)

@ Reliability systems (time to failure)
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Geometric sums

We will consider situations where a (non-negative, integer-valued) random
variable of interest W has a distribution close to that of a geometric sum,
measured by total variation distance:

drv(£(W).L(Y)) = sup [B(W € A) ~B(Y € A)
= it BW£Y),

where the infemum is taken over all couplings of W and Y.
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Geometric sums

Rényi's theorem:
1 X
imP(—Y<x)=1- {——}
P30 <IEN = X) P EX

Explicit bounds in exponential approximation are available, as are explicit
bounds for geometric approximation of the geometric sum Y.
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A characterisation

Define the random variable V by

V+XZ(WW > 0).

Note that if W is a geometric sum (with summand X), then V 2 W. The
converse is also true.

We may expect to be able to quantify the distance of W from our
geometric sum Y by assessing the distance of W from V.
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Approximation by geometric sums

If p=P(W = 0),

drv(L(W), £(Y)) < *=P

drv(L(W), L(V)).

The proof, using Stein’s method, is based on the above characterisation
for geometric sums.
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Write ¢ = 1 — p. Given a function h: ZT +— R, define the function f = f,
as the solution to the following ‘Stein equation’:

h(k) —Eh(Y) = gE[f(k + X)] — f(k)
(with £(0) = 0), so that

Eh(W) —Eh(Y) = qE[f(W + X)] — qE[f(W)|W > 0]
= GE[f(W + X) — f(V + X)].

Hence

[EA(W) — EA(Y)| < qP(W # V)S}Jflf(j) — f(k)I.

With h(k) = I(k € A), taking the supremum over A C Z™ gives us d7y on
the LHS. The final term on the RHS may be shown to be bounded by 1/p.
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Markov chain passage times

Let {& : 7 > 0} be an ergodic discrete-time Markov chain with transition
matrix P, started according to its stationary distribution 7, and let
W = min{i : {; € B} for some set of states B.

Let B; be the set of states j from which a move to B requires a minimum
of i steps, i.e., for which P(§; € B|¢p =j) > 0 but P(&x € B|§o =j) =0
for k < i.

Let
p = B(W=0) = n(B),

pi = Pl € Bl & B) = M

1-p
Define the random variable X by P(X = i) = p;.
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Markov chain passage times

dry (L(W), £(Y)) < ,%IE S Y|P - x|

ijeB  n>0

This is proved using our earlier bound: construct copies of the original
chain, but started according to 7 restricted to B; for each j. Randomising
J according to X gives us the random variable V' by considering the first
passage time to the set of states B.

We now use the maximal coupling of these processes with copies of our
original Markov chain to estimate P(W # V). Some analysis yields the
stated bound.
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Application: Sequence patterns

Consider a sequence of 11D Bernoulli trials (of Os and 1s), and let /; be the
indicator that a given k-digit pattern (B, say) appears, starting at position
i in our sequence. We are interested in W = min{j : [; = 1}, the time we
have to wait to observe our pattern.

Define a 2% state Markov chain such that at time n, the state of the
process is the outcome of the k Bernoulli trials from time n to time
n+ k—1.

Our theorem gives the bound

k—1 i
dTV(‘C(W)VC(Y)) < ZZMn’Ci - P| 5

i=1 n=1

where ¢; = P(l; = 1|lp = 1). This represents the i-step transition
probability from B to B, for i < k — 1.

This is sharper than available geometric approximation bounds.
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Application: Sequence patterns

For example, let kK = 3 and consider the pattern 010.

We have that p = r(1 — r)?, where r is the expected value of each of the
original Bernoulli variables.

We have the following partition of the state space of our Markov chain:

B = {010}, B; ={001,101}, B, = {000,100,110}, Bs = {011,111}.

We can easily calculate ¢; =0, o = r(1 —r),

_r(1—r)

(1—r)(1—r+r? r?
:U’l - i

1-p y H2 = 1-p Mszl_p-

Fraser Daly (Heriot-Watt University) Geometric Sums July 2017 12 /21



Approximations using bounded failure rate

Our general bound above can be tricky to evaluate: estimating
drv(L(W), L(V)) is not always easy.

However, simpler upper bounds for the approximation of W by a
geometric sum are available, under assumptions on the structure of the
underlying random variables.
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Let W be a non-negative, integer-valued random variable. Define the
failure (or hazard) rate of W by

For future use, we also define (for 0 < p < 1 and X a positive,
integer-valued random variable)

Hp(X) = min {p+ (1= p)P(X >1),p (1 * \/E)} |

where u =1 — dry(L(X), L(X 4+ 1)), a measure of the ‘smoothness’ of X.
This is small (close to p) when X is ‘smooth’ or P(X = 1) is large.
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Approximations using bounded failure rate

Let P(W =0) = p and rw(j) > ¢ > 0 for all j. If

p

EX> 2
~ (1-p)s

then
drv(L(W), L(Y)) < Hp(X) (EY —EW) ,

where Y = X1 + - - - + Xpy is our geometric sum.

Natural candidates for applications are when W has increasing failure rate
(IFR) or decreasing failure rate (DFR). The first setting leads to simple
geometric approximation bounds (X = 1 almost surely).
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@ Let X be as in the theorem, and V be as before. We can show that
P(V + X > j) <P(W+ X > ).

@ Let f be the solution to the same ‘Stein equation’ as before:
h(k) —Eh(Y) = (1 — p)E[f(k + X)] — f(k).

When h(k) = I(k € A) for AC Z*, we can show that
. 1
sup[AF(j)] = —Hp(X),
j

where Af(j) = £(j + 1) — £(j).
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Rearrange our Stein equation to get

EA(W) —BA(Y) = (1— p) S AFG) (W + X > )~ B(V + X > )]
j=0

With h(k) = I(k € A), we then obtain

IP(W € A) — (Y € A)| < 1;pHp(X)IE[W — V] = Hy(X)E[Y — W].

Taking the supremum over A C Z™ gives us drv(L(W), L(Y)).
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Applications to the M/G/1 queue

Consider a single server queue with
@ customers arriving at rate A, and
@ i.i.d. customer service times with the same distribution as S.

Let p = AES and assume p < 1.

We will approximate

@ the number of customers in the system in equilibrium by a geometric
distribution (so X = 1 almost surely), and

@ the number of customers served during a busy period by a geometric
sum.
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Number of customers in the system

Let W be the equilibrium number of customers in the system. It is
well-known that

p°E[S?]

]P)(WZO):].—/), EWZP+W7

> 1-p
T Asup,soE[S — t|S > 1]’

rw(j) VjeZt.

S is said to be New Better than Used in Expectation (NBUE) if
E[S — t|S > t] <ES for all t > 0. In that case our theorem gives

2
drv(L(W), Ge(1 — p)) < p? <1 - ;]E:I[EE'S)L) .

As expected, this upper bound is zero if S has an exponential distribution.
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Customers served during a busy period

Let W + 1 be the number of customers served during a busy period of our
system. Then P(W = 0) = Ee™*° = p and EW = p(1 — p)~L.

If S is IFR, it is known that W is DFR. We may then find a lower bound
on the failure rate as follows.

Let ¢ be the Laplace transform of the density of S and let £ be the real
root of 1 4+ A\¢/’(s) nearest the origin. Let

g E= AT NH(E)
€PN

Then if Y = 3", X;, where N ~ Ge(p) and (1 — p)dEX > 1 — pb,

drv(L(W). £(Y)) < Hy(X) ((1 _,’)’)EX - 1fp> .
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