Adaptive MCMC Air MCMC

Adaptive Increasingly Rarely Markov Chain Monte Carlo (AirMCMC)

> Krys Latuszynski (University of Warwick, UK)

Cyril Chimisov Gareth O. Roberts (both Warwick)

Durham - June 28th, 2017

< A ▶

(*) *) *) *) *)

Adaptive MCMC Air MCMC

Adaptive MCMC

Air MCMC

<ロト <回ト < 注ト < 注ト

E

990

• let π be a target probability distribution on \mathcal{X} , e.g. to evaluate

$$\theta := \int_{\mathcal{X}} f(x) \pi(dx).$$

• direct sampling from π is not possible or impractical

- MCMC approach is to simulate $(X_n)_{n\geq 0}$, an ergodic Markov chain with **transition kernel** *P* and limiting distribution π , and take ergodic averages as an estimate of θ .
- ▶ it is easy to design an ergodic transition kernel P, e.g. using generic Metropolis or Gibbs recipes
- ▶ it is difficult to design a transition kernel P with good convergence properties, especially if X is high dimesional
- Trying to find an optimal P would be a disaster problem

$$\theta := \int_{\mathcal{X}} f(x) \pi(dx).$$

- direct sampling from π is not possible or impractical
- MCMC approach is to simulate $(X_n)_{n\geq 0}$, an ergodic Markov chain with **transition kernel** *P* and limiting distribution π , and take ergodic averages as an estimate of θ .
- ▶ it is easy to design an ergodic transition kernel P, e.g. using generic Metropolis or Gibbs recipes
- ▶ it is difficult to design a transition kernel P with good convergence properties, especially if X is high dimesional
- Trying to find an optimal P would be a disaster problem

$$\theta := \int_{\mathcal{X}} f(x) \pi(dx).$$

- direct sampling from π is not possible or impractical
- MCMC approach is to simulate $(X_n)_{n\geq 0}$, an ergodic Markov chain with **transition kernel** *P* and limiting distribution π , and take ergodic averages as an estimate of θ .
- ▶ it is easy to design an ergodic transition kernel P, e.g. using generic Metropolis or Gibbs recipes
- ▶ it is difficult to design a transition kernel P with good convergence properties, especially if X is high dimesional
- Trying to find an optimal P would be a disaster problem

$$\theta := \int_{\mathcal{X}} f(x) \pi(dx).$$

- direct sampling from π is not possible or impractical
- MCMC approach is to simulate $(X_n)_{n\geq 0}$, an ergodic Markov chain with **transition kernel** *P* and limiting distribution π , and take ergodic averages as an estimate of θ .
- ► it is easy to design an ergodic transition kernel P, e.g. using generic Metropolis or Gibbs recipes
- ▶ it is difficult to design a transition kernel P with good convergence properties, especially if X is high dimesional
- Trying to find an optimal P would be a disaster problem

$$\theta := \int_{\mathcal{X}} f(x) \pi(dx).$$

- direct sampling from π is not possible or impractical
- MCMC approach is to simulate $(X_n)_{n\geq 0}$, an ergodic Markov chain with **transition kernel** *P* and limiting distribution π , and take ergodic averages as an estimate of θ .
- it is easy to design an ergodic transition kernel P, e.g. using generic Metropolis or Gibbs recipes
- ► it is difficult to design a transition kernel *P* with good convergence properties, especially if X is high dimesional
- Trying to find an optimal P would be a disaster problem

$$\theta := \int_{\mathcal{X}} f(x) \pi(dx).$$

- direct sampling from π is not possible or impractical
- MCMC approach is to simulate $(X_n)_{n\geq 0}$, an ergodic Markov chain with **transition kernel** *P* and limiting distribution π , and take ergodic averages as an estimate of θ .
- ► it is easy to design an ergodic transition kernel P, e.g. using generic Metropolis or Gibbs recipes
- ► it is difficult to design a transition kernel *P* with good convergence properties, especially if *X* is high dimesional
- Trying to find an optimal P would be a disaster problem

- For Metropolis chains there is a "prescription" of how to scale proposals as dimension d → ∞.
- If σ²_d = l²d⁻¹ then based on an elegant mathematical result (Roberts 1997)
 Consider

 $Z_t^{(d)} := X_{\lfloor td \rfloor}^{(d,1)}, \quad \text{then as } d \to \infty,$

• $Z_t^{(d)}$ converges to the solution Z of the SDE

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log f(Z_t) dt$$

- so maximise h(l) to optimise Metropolis-Hastings.
- one-to-one correspondence between *l_{opt}* and mean acceptance rate of 0.234.

- For Metropolis chains there is a "prescription" of how to scale proposals as dimension d → ∞.
- If σ_d² = l²d⁻¹ then based on an elegant mathematical result (Roberts 1997)
 Consider

 $Z_t^{(d)} := X_{\lfloor td \rfloor}^{(d,1)}, \quad \text{then as } d \to \infty,$

• $Z_t^{(d)}$ converges to the solution Z of the SDE

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log f(Z_t) dt$$

- so maximise h(l) to optimise Metropolis-Hastings.
- one-to-one correspondence between *l_{opt}* and mean acceptance rate of 0.234.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For Metropolis chains there is a "prescription" of how to scale proposals as dimension d → ∞.
- ► If $\sigma_d^2 = l^2 d^{-1}$ then based on an elegant mathematical result (Roberts 1997)
- Consider

 $Z_t^{(d)} := X_{\lfloor td \rfloor}^{(d,1)}, \quad \text{then as } d \to \infty,$

• $Z_t^{(d)}$ converges to the solution Z of the SDE

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log f(Z_t) dt$$

- so maximise h(l) to optimise Metropolis-Hastings.
- one-to-one correspondence between *l_{opt}* and mean acceptance rate of 0.234.

- For Metropolis chains there is a "prescription" of how to scale proposals as dimension d → ∞.
- ► If $\sigma_d^2 = l^2 d^{-1}$ then based on an elegant mathematical result (Roberts 1997)
- Consider

$$Z_t^{(d)} := X_{\lfloor td \rfloor}^{(d,1)}, \quad \text{then as } d \to \infty,$$

• $Z_t^{(d)}$ converges to the solution Z of the SDE

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log f(Z_t) dt$$

- so maximise h(l) to optimise Metropolis-Hastings.
- one-to-one correspondence between l_{opt} and mean acceptance rate of 0.234.

- For Metropolis chains there is a "prescription" of how to scale proposals as dimension d → ∞.
- ► If $\sigma_d^2 = l^2 d^{-1}$ then based on an elegant mathematical result (Roberts 1997)
- Consider

$$Z_t^{(d)} := X_{\lfloor td \rfloor}^{(d,1)}, \quad \text{then as } d \to \infty,$$

• $Z_t^{(d)}$ converges to the solution Z of the SDE

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log f(Z_t) dt$$

• so maximise h(l) to optimise Metropolis-Hastings.

one-to-one correspondence between l_{opt} and mean acceptance rate of 0.234.

- For Metropolis chains there is a "prescription" of how to scale proposals as dimension d → ∞.
- ► If $\sigma_d^2 = l^2 d^{-1}$ then based on an elegant mathematical result (Roberts 1997)
- Consider

$$Z_t^{(d)} := X_{\lfloor td \rfloor}^{(d,1)}, \quad \text{then as } d \to \infty,$$

• $Z_t^{(d)}$ converges to the solution Z of the SDE

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log f(Z_t) dt$$

- so maximise h(l) to optimise Metropolis-Hastings.
- one-to-one correspondence between l_{opt} and mean acceptance rate of 0.234.

Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234

- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale on the fly.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ▶ so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

- Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale on the fly.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ▶ so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

- Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale **on the fly**.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ▶ so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

- Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale on the fly.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ▶ so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

- Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale on the fly.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ▶ so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

- Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale on the fly.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ► so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

- Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
- one needs to learn π to apply this
- Trial run? High dimensions? Metropolis within Gibbs?
- Adaptive MCMC: update the scale on the fly.
- For adaptive scaling Metropolis-Hastings one may use

$$\log(\gamma_n) = \log(\gamma_{n-1}) + n^{.7}(\alpha(X_{n-1}, Y_n) - 0.234)$$

- ► so P_n used for obtaining $X_n | X_{n-1}$ may depend on $\{X_0, \ldots, X_{n-1}\}$
- however now the process is not Markovian, so the possible benefit comes at the price of more involving theoretical analysis

The adaptation rule is mathematically appealing (diffusion limit)

- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► **YES.** Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- ► The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► **YES.** Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► YES. Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► **YES.** Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► YES. Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► YES. Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► YES. Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► YES. Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- The adaptation rule is mathematically appealing (diffusion limit)
- The adaptation rule is computationally simple (acceptance rate)
- It works in applications (seems to improve convergence significantly)
- Improves convergence even in settings that are neither high dimensional, nor satisfy other assumptions needed for the diffusion limit
- Adaptive scaling beyond Metropolis-Hastings?
- ► YES. Similar optimal scaling results are available for MALA, HMC, etc. Each yields an adaptive version of the algorithm!
- What can you optimise beyond scale?
- ► E.g. covariance matrix of the proposal.

- P_γ, γ ∈ Γ a parametric family of π-invariant kernels;
 Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- Adaptive MCMC is not Markovian
- The standard MCMC theory does not apply
- Theoretical properties of adaptive MCMC have been studied using a range of techniques, such as: coupling, martingale approximations, stability of stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola, Saksman, Fort, Atchade, ...)
- Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and (even) less operational than that of standard MCMC

- P_γ, γ ∈ Γ a parametric family of π-invariant kernels;
 Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.

Adaptive MCMC is not Markovian

- ► The standard MCMC theory does not apply
- Theoretical properties of adaptive MCMC have been studied using a range of techniques, such as: coupling, martingale approximations, stability of stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola, Saksman, Fort, Atchade, ...)
- Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and (even) less operational than that of standard MCMC

- P_γ, γ ∈ Γ a parametric family of π-invariant kernels;
 Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- Adaptive MCMC is not Markovian
- The standard MCMC theory does not apply
- Theoretical properties of adaptive MCMC have been studied using a range of techniques, such as: coupling, martingale approximations, stability of stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola, Saksman, Fort, Atchade, ...)
- Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and (even) less operational than that of standard MCMC

- P_γ, γ ∈ Γ a parametric family of π-invariant kernels;
 Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- Adaptive MCMC is not Markovian
- The standard MCMC theory does not apply
- Theoretical properties of adaptive MCMC have been studied using a range of techniques, such as: coupling, martingale approximations, stability of stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola, Saksman, Fort, Atchade, ...)
- Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and (even) less operational than that of standard MCMC

< ロ > < 同 > < 回 > < 回 > .

- P_γ, γ ∈ Γ a parametric family of π-invariant kernels;
 Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- Adaptive MCMC is not Markovian
- The standard MCMC theory does not apply
- Theoretical properties of adaptive MCMC have been studied using a range of techniques, such as: coupling, martingale approximations, stability of stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola, Saksman, Fort, Atchade, ...)
- Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and (even) less operational than that of standard MCMC

Post-mortem of the fly

- Standard assumptions to validate Adaptive MCMC are e.g. as follows:
- (DA) Diminishing Adaptation:

 $\lim_{n\to\infty} D_n = 0$, in probability, where

 $D_n = \sup_{x \in \mathcal{X}} \|P_{\gamma_{n+1}}(x, \cdot) - P_{\gamma_n}(x, \cdot)\|_{TV}.$

- ▶ (C) Containment: The sequence $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^{\infty}$ is bounded in probability, where $M_{\varepsilon}: \mathcal{X} \times \Gamma \to \mathbb{N}$ is defined as $M_{\varepsilon}(x, \gamma) := \inf\{n \ge 1: \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\|_{TV} \le \varepsilon\}.$
- DA + C guarantee ergodicity, i.e. convergence in distribution (Roberts + Rosenthal 2007)
- and also nondeterioration (KL + Rosenthal 2014)
- but for SLLN, you need additional conditions! (Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort 2010)

< ロ > < 同 > < 回 > < 回 >

- Standard assumptions to validate Adaptive MCMC are e.g. as follows:
- (DA) Diminishing Adaptation:

 $\lim_{n\to\infty} D_n = 0, \text{ in probability, where} \\ D_n = \sup_{x\in\mathcal{X}} \|P_{\gamma_{n+1}}(x,\cdot) - P_{\gamma_n}(x,\cdot)\|_{TV}.$

- ▶ (C) Containment: The sequence $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^{\infty}$ is bounded in probability, where $M_{\varepsilon}: \mathcal{X} \times \Gamma \to \mathbb{N}$ is defined as $M_{\varepsilon}(x, \gamma) := \inf\{n \ge 1: \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\|_{TV} \le \varepsilon\}.$
- DA + C guarantee ergodicity, i.e. convergence in distribution (Roberts + Rosenthal 2007)
- and also nondeterioration (KL + Rosenthal 2014)
- but for SLLN, you need additional conditions! (Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort 2010)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Standard assumptions to validate Adaptive MCMC are e.g. as follows:
- (DA) Diminishing Adaptation:

$$\begin{split} \lim_{n\to\infty} D_n &= 0, \text{ in probability, where} \\ D_n &= \sup_{x\in\mathcal{X}} \|P_{\gamma_{n+1}}(x,\cdot) - P_{\gamma_n}(x,\cdot)\|_{TV}. \end{split}$$

(C) Containment:

The sequence $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^{\infty}$ is bounded in probability, where $M_{\varepsilon}: \mathcal{X} \times \Gamma \to \mathbb{N}$ is defined as $M_{\varepsilon}(x, \gamma) := \inf\{n \ge 1: \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\|_{TV} \le \varepsilon\}.$

- DA + C guarantee ergodicity, i.e. convergence in distribution (Roberts + Rosenthal 2007)
- and also nondeterioration (KL + Rosenthal 2014)
- but for SLLN, you need additional conditions! (Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort 2010)

- Standard assumptions to validate Adaptive MCMC are e.g. as follows:
- (DA) Diminishing Adaptation:

$$\begin{split} \lim_{n\to\infty} D_n &= 0, \text{ in probability, where} \\ D_n &= \sup_{x\in\mathcal{X}} \|P_{\gamma_{n+1}}(x,\cdot) - P_{\gamma_n}(x,\cdot)\|_{TV}. \end{split}$$

(C) Containment:

The sequence $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^{\infty}$ is bounded in probability, where $M_{\varepsilon}: \mathcal{X} \times \Gamma \to \mathbb{N}$ is defined as $M_{\varepsilon}(x, \gamma) := \inf\{n \ge 1: \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\|_{TV} \le \varepsilon\}.$

- DA + C guarantee ergodicity, i.e. convergence in distribution (Roberts + Rosenthal 2007)
- and also nondeterioration (KL + Rosenthal 2014)
- but for SLLN, you need additional conditions! (Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort 2010)

- Standard assumptions to validate Adaptive MCMC are e.g. as follows:
- (DA) Diminishing Adaptation:

$$\begin{split} \lim_{n\to\infty} D_n &= 0, \text{ in probability, where} \\ D_n &= \sup_{x\in\mathcal{X}} \|P_{\gamma_{n+1}}(x,\cdot) - P_{\gamma_n}(x,\cdot)\|_{TV}. \end{split}$$

(C) Containment:

The sequence $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^{\infty}$ is bounded in probability, where $M_{\varepsilon}: \mathcal{X} \times \Gamma \to \mathbb{N}$ is defined as $M_{\varepsilon}(x, \gamma) := \inf\{n \ge 1: \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\|_{TV} \le \varepsilon\}.$

- DA + C guarantee ergodicity, i.e. convergence in distribution (Roberts + Rosenthal 2007)
- and also nondeterioration (KL + Rosenthal 2014)
- but for SLLN, you need additional conditions! (Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort 2010)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Standard assumptions to validate Adaptive MCMC are e.g. as follows:
- (DA) Diminishing Adaptation:

$$\begin{split} \lim_{n\to\infty} D_n &= 0, \text{ in probability, where} \\ D_n &= \sup_{x\in\mathcal{X}} \|P_{\gamma_{n+1}}(x,\cdot) - P_{\gamma_n}(x,\cdot)\|_{TV}. \end{split}$$

(C) Containment:

The sequence $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^{\infty}$ is bounded in probability, where $M_{\varepsilon}: \mathcal{X} \times \Gamma \to \mathbb{N}$ is defined as $M_{\varepsilon}(x, \gamma) := \inf\{n \ge 1: \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\|_{TV} \le \varepsilon\}.$

- DA + C guarantee ergodicity, i.e. convergence in distribution (Roberts + Rosenthal 2007)
- and also nondeterioration (KL + Rosenthal 2014)
- but for SLLN, you need additional conditions! (Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort 2010)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two setting to verify containment:

▶ (SGE) Simultaneous Geometric Ergodicity: $P_{\gamma}V(x) \leq \lambda V(x) + bI_C(x),$ $P_{\gamma}(x, \cdot) \geq \delta \nu(\cdot)$ for all $x \in C$, same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

► (SPE) Simultaneous Polynomial Ergodicity:

$$\begin{split} & P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C}, \\ & P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot) \text{ for all } x \in C, \\ & \text{same } c, \ \alpha, \ b, \ C, \ \delta, \ \nu \text{ for all } \gamma \in \Gamma \end{split}$$

- ▶ How do you verify SGE or SPE?
- ▶ You ask Jim Hobert!
- It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 同 > < 回 > < 回

Two setting to verify containment:

► (SGE) Simultaneous Geometric Ergodicity: $P_{\gamma}V(x) \leq \lambda V(x) + bI_C(x),$ $P_{\gamma}(x, \cdot) \geq \delta \nu(\cdot)$ for all $x \in C$, same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

- ▶ (SPE) Simultaneous Polynomial Ergodicity: $P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C},$ $P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot)$ for all $x \in C$, same $c, \alpha, b, C, \delta, \nu$ for all $\gamma \in \Gamma$
- ▶ How do you verify SGE or SPE?
- You ask Jim Hobert!
- It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two setting to verify containment:

► (SGE) Simultaneous Geometric Ergodicity:

 $P_{\gamma}V(x) \le \lambda V(x) + bI_{C}(x),$ $P_{\gamma}(x) \ge \delta v(x) \text{ for all } x \in C$

 $P_{\gamma}(x, \cdot) \ge \delta \nu(\cdot)$ for all $x \in C$,

same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

► (SPE) Simultaneous Polynomial Ergodicity:

$$\begin{split} & P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C}, \\ & P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot) \text{ for all } x \in C, \\ & \text{same } c, \ \alpha, \ b, \ C, \ \delta, \ \nu \text{ for all } \gamma \in I \end{split}$$

- ► How do you verify SGE or SPE?
- You ask Jim Hobert!
- It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 向 > < 回 > <

Two setting to verify containment:

► (SGE) Simultaneous Geometric Ergodicity:

 $P_{\gamma}V(x) \le \lambda V(x) + bI_{C}(x),$ $P_{\gamma}(x) \ge \delta v(x) \text{ for all } x \in C$

 $P_{\gamma}(x,\cdot) \geq \delta \nu(\cdot)$ for all $x \in C$,

same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

► (SPE) Simultaneous Polynomial Ergodicity:

 $\begin{array}{l} P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C}, \\ P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot) \ \ \text{for all } x \in C, \\ \text{same } c, \ \alpha, \ b, \ C, \ \delta, \ \nu \ \ \text{for all } \ \gamma \in \Gamma \end{array}$

► How do you verify SGE or SPE?

- You ask Jim Hobert!
- It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two setting to verify containment:

► (SGE) Simultaneous Geometric Ergodicity:

 $P_{\gamma}V(x) \le \lambda V(x) + bI_{C}(x),$ $P_{\gamma}(x, \cdot) > \delta \nu(\cdot) \text{ for all } x \in C,$

same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

(SPE) Simultaneous Polynomial Ergodicity:

$$\begin{array}{l} P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C}, \\ P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot) \ \text{for all } x \in C, \\ \text{same } c, \ \alpha, \ b, \ C, \ \delta, \ \nu \ \text{for all } \gamma \in I \end{array}$$

- How do you verify SGE or SPE?
- You ask Jim Hobert!
- It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 向 > < 回 > <

Two setting to verify containment:

► (SGE) Simultaneous Geometric Ergodicity:

 $P_{\gamma}V(x) \le \lambda V(x) + bI_{C}(x),$ $P_{\gamma}(x, \cdot) > \delta \nu(\cdot) \text{ for all } x \in C,$

 $F_{\gamma}(x, \cdot) \geq \delta \nu(\cdot)$ for all $x \in \mathbb{C}$,

same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

► (SPE) Simultaneous Polynomial Ergodicity:

$$\begin{array}{l} P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C}, \\ P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot) \ \ \text{for all } x \in C, \\ \text{same } c, \ \alpha, \ b, \ C, \ \delta, \ \nu \ \ \text{for all } \ \gamma \in \Gamma \end{array}$$

- How do you verify SGE or SPE?
- You ask Jim Hobert!
- It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Two setting to verify containment:

► (SGE) Simultaneous Geometric Ergodicity:

 $P_{\gamma}V(x) \leq \lambda V(x) + bI_{C}(x),$ $P_{\gamma}(x) \geq \delta u(x) \text{ for all } x \in C$

 $P_{\gamma}(x,\cdot) \ge \delta \nu(\cdot)$ for all $x \in C$,

same $\lambda, b, C, \delta, \nu$ for all $\gamma \in \Gamma$

► (SPE) Simultaneous Polynomial Ergodicity:

$$\begin{array}{l} P_{\gamma}V(x) - V(x) \leq -cV^{\alpha}(x) + bI_{C}, \\ P_{\gamma}(x, \cdot) \geq \delta\nu(\cdot) \ \ \text{for all } x \in C, \\ \text{same } c, \ \alpha, \ b, \ C, \ \delta, \ \nu \ \ \text{for all } \ \gamma \in \Gamma \end{array}$$

- How do you verify SGE or SPE?
- You ask Jim Hobert!
- ► It has been done for fairly general classes of Adaptive Metropolis under tail decay conditions of π (Bai + Roberts + Rosenthal 2011)

< ロ > < 同 > < 回 > < 回 > < 回 > <

AdapRSG

- 1. Set $p_n := R_n(p_{n-1}, X_{n-1}, \dots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
- 2. Choose coordinate $i \in \{1, ..., d\}$ according to selection probabilities p_n
- 3. Draw $Y \sim \pi(\cdot|X_{n-1,-i})$
- 4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$

Given the target distribution π , what are the optimal selection probabilities p?

- Pretend π is a Gaussian optimal p is known for Gaussians and it works outside the Gaussian class.
 (Chimisov + KL + Roberts 2017)
- How to verify containment?
- Simultaneous Geometric Drift will not work!!!

AdapRSG

- 1. Set $p_n := R_n(p_{n-1}, X_{n-1}, \dots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
- 2. Choose coordinate $i \in \{1, ..., d\}$ according to selection probabilities p_n
- 3. Draw $Y \sim \pi(\cdot|X_{n-1,-i})$
- 4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$

• Given the target distribution π , what are the optimal selection probabilities p?

- Pretend π is a Gaussian optimal p is known for Gaussians and it works outside the Gaussian class. (Chimisov + KL + Roberts 2017)
- How to verify containment?
- Simultaneous Geometric Drift will not work!!!

AdapRSG

- 1. Set $p_n := R_n(p_{n-1}, X_{n-1}, \dots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
- 2. Choose coordinate $i \in \{1, ..., d\}$ according to selection probabilities p_n
- 3. Draw $Y \sim \pi(\cdot|X_{n-1,-i})$
- 4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$
- Given the target distribution π , what are the optimal selection probabilities p?
- Pretend π is a Gaussian optimal p is known for Gaussians and it works outside the Gaussian class. (Chimisov + KL + Roberts 2017)
- How to verify containment?
- Simultaneous Geometric Drift will not work!!!

AdapRSG

- 1. Set $p_n := R_n(p_{n-1}, X_{n-1}, \dots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
- 2. Choose coordinate $i \in \{1, ..., d\}$ according to selection probabilities p_n
- 3. Draw $Y \sim \pi(\cdot|X_{n-1,-i})$
- 4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$
- Given the target distribution π , what are the optimal selection probabilities p?
- Pretend π is a Gaussian optimal p is known for Gaussians and it works outside the Gaussian class. (Chimisov + KL + Roberts 2017)
- How to verify containment?
- Simultaneous Geometric Drift will not work!!!

AdapRSG

- 1. Set $p_n := R_n(p_{n-1}, X_{n-1}, \dots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
- 2. Choose coordinate $i \in \{1, ..., d\}$ according to selection probabilities p_n
- 3. Draw $Y \sim \pi(\cdot|X_{n-1,-i})$
- 4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$
- Given the target distribution π , what are the optimal selection probabilities p?
- Pretend π is a Gaussian optimal p is known for Gaussians and it works outside the Gaussian class. (Chimisov + KL + Roberts 2017)
- How to verify containment?
- Simultaneous Geometric Drift will not work!!!

- ► $P_{\gamma}, \gamma \in \Gamma$ a parametric family of π -invariant kernels; Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- How tweak the strategy to make theory easier?
- Do we need to adapt in every step?
- How about adapting increasingly rarely?
- AirMCMC Sampler

Initiate $X_0 \in \mathcal{X}, \, \overline{\gamma}^0 \in \Gamma. \, \overline{\gamma} := \gamma^0 \, k := 1, \, n := 0.$

(1) For $i = 1, ..., n_k$

- 1.1. sample $X_{n+i} \sim P_{\overline{\gamma}}(X_{n+i-1}, \cdot);$
 - .2. given $\{X_0, ..., X_{n+i}, \gamma_0, ..., \gamma_{n+i-1}\}$ update γ_{n+i} according to some adaptation rule.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- (2) Set $n := n + n_k$, k := k + 1. $\overline{\gamma} := \gamma_n$.
- ▶ Will such a strategy be efficient? With say $n_k = ck^\beta$
- Will it be mathematically more tractable?

- ► $P_{\gamma}, \gamma \in \Gamma$ a parametric family of π -invariant kernels; Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- How tweak the strategy to make theory easier?
- Do we need to adapt in every step?
- How about adapting increasingly rarely?
- AirMCMC Sampler

Initiate $X_0 \in \mathcal{X}, \gamma^0 \in \Gamma. \ \overline{\gamma} := \gamma^0 \ k := 1, n := 0.$

(1) For $i = 1, ..., n_k$

- 1.1. sample $X_{n+i} \sim P_{\overline{\gamma}}(X_{n+i-1}, \cdot);$
 - 2. given $\{X_0, ..., X_{n+i}, \gamma_0, ..., \gamma_{n+i-1}\}$ update γ_{n+i} according to some adaptation rule.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- (2) Set $n := n + n_k$, k := k + 1. $\overline{\gamma} := \gamma_n$.
- Will such a strategy be efficient? With say $n_k = ck^{\beta}$
- Will it be mathematically more tractable?

- ► $P_{\gamma}, \gamma \in \Gamma$ a parametric family of π -invariant kernels; Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- How tweak the strategy to make theory easier?
- Do we need to adapt in every step?
- How about adapting increasingly rarely?

AirMCMC Sampler Initiate X₀ ∈ X, γ⁰ ∈ Γ. γ̄ := γ⁰ k := 1, n := 0. (1) For i = 1,...,n_k 1.1. sample X_{n+i} ~ P_γ(X_{n+i-1},·); 1.2. given {X₀,...,X_{n+i}, γ₀,..., γ_{n+i-1}} update γ_{n+i} according to some adaptation rule. (2) Set n := n + n_k, k := k + 1. γ̄ := γ_n. Will such a strategy be efficient? With say n_k = ck^β

< ロ > < 同 > < 回 > < 回 > < 回 > <

► Will it be mathematically more tractable?

- ► $P_{\gamma}, \gamma \in \Gamma$ a parametric family of π -invariant kernels; Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- How tweak the strategy to make theory easier?
- Do we need to adapt in every step?
- How about adapting increasingly rarely?

AirMCMC Sampler Initiate X₀ ∈ X, γ⁰ ∈ Γ. γ̄ := γ⁰ k := 1, n := 0. (1) For i = 1,..., n_k 1.1. sample X_{n+i} ~ P_γ(X_{n+i-1}, ·); 1.2. given {X₀,...,X_{n+i}, γ₀,..., γ_{n+i-1}} update γ_{n+i} according to some adaptation rule. (2) Set n := n + n_k, k := k + 1. γ̄ := γ_n. Will such a strategy be efficient? With say n_k = ck^β

< ロ > < 同 > < 回 > < 回 > < 回 > <

Will it be mathematically more tractable?

- ► $P_{\gamma}, \gamma \in \Gamma$ a parametric family of π -invariant kernels; Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- How tweak the strategy to make theory easier?
- Do we need to adapt in every step?
- How about adapting increasingly rarely?

AirMCMC Sampler

Initiate $X_0 \in \mathcal{X}, \gamma^0 \in \Gamma. \ \overline{\gamma} := \gamma^0 \ k := 1, n := 0.$

(1) For $i = 1, ..., n_k$

- 1.1. sample $X_{n+i} \sim P_{\overline{\gamma}}(X_{n+i-1}, \cdot);$
- 1.2. given $\{X_0, .., X_{n+i}, \gamma_0, .., \gamma_{n+i-1}\}$ update γ_{n+i} according to some adaptation rule.

< ロ > < 同 > < 回 > < 回 > .

- (2) Set $n := n + n_k$, k := k + 1. $\overline{\gamma} := \gamma_n$.
- ▶ Will such a strategy be efficient? With say $n_k = ck^\beta$
- Will it be mathematically more tractable?

- ► $P_{\gamma}, \gamma \in \Gamma$ a parametric family of π -invariant kernels; Adaptive MCMC steps:
 - (1) Sample X_{n+1} from $P_{\gamma^n}(X_n, \cdot)$.
 - (2) Given $\{X_0, ..., X_{n+1}, \gamma^0, ..., \gamma^n\}$ update γ^{n+1} according to some adaptation rule.
- How tweak the strategy to make theory easier?
- Do we need to adapt in every step?
- How about adapting increasingly rarely?

AirMCMC Sampler

Initiate $X_0 \in \mathcal{X}, \, \overline{\gamma}^0 \in \Gamma. \, \overline{\gamma} := \gamma^0 \, k := 1, \, n := 0.$

(1) For $i = 1, ..., n_k$

- 1.1. sample $X_{n+i} \sim P_{\overline{\gamma}}(X_{n+i-1}, \cdot);$
- 1.2. given $\{X_0, ..., X_{n+i}, \gamma_0, ..., \gamma_{n+i-1}\}$ update γ_{n+i} according to some adaptation rule.

(2) Set $n := n + n_k$, k := k + 1. $\overline{\gamma} := \gamma_n$.

- Will such a strategy be efficient? With say $n_k = ck^{\beta}$
- Will it be mathematically more tractable?

AirMCMC - a simulation study

•
$$\pi(x) = \frac{l(|x|)}{|x|^{1+r}}, x \in \mathbb{R}$$

- Air version of RWM adaptive scaling
- ► The example is polynomially ergodic (not easy for the sampler)

► AirRWM

Initiate $X_0 \in \mathbb{R}, \overline{\gamma} \in [q_1, q_2]$. k := 1, n := 0, a sequence $\{c_k\}_{k \ge 1}$.

(1) For
$$i = 1, ..., n_k$$

(1.1.) sample $Y \sim N(X_{n+i-1}, \overline{\gamma}), a_{\overline{\gamma}} := \frac{\phi(Y)}{\phi(X_{n+i-1})};$
(1.2.) $X_{n+i} := \begin{cases} Y & \text{with probability} & a_{\overline{\gamma}}, \\ X_{n+i-1} & \text{with probability} & 1 - a_{\overline{\gamma}}; \end{cases}$
(1.3.) $a := a + a_{\overline{\gamma}}.$
If $i = n_k$ then
 $\overline{\gamma} := \exp\left(\log(\overline{\gamma}) + c_n\left(\frac{a}{n_k} - 0.44\right)\right).$
(2) Set $n := n + n_k, k := k + 1, a := 0.$

AirMCMC - a simulation study

►
$$\pi(x) = \frac{l(|x|)}{|x|^{1+r}}, x \in \mathbb{R},$$

- Air version of RWM adaptive scaling
- ▶ The example is polynomially ergodic (not easy for the sampler)

► AirRWM
Initiate
$$X_0 \in \mathbb{R}, \overline{\gamma} \in [q_1, q_2]$$
. $k := 1, n := 0$, a sequence $\{c_k\}_k$
(1) For $i = 1, ..., n_k$
(1.1.) sample $Y \sim N(X_{n+i-1}, \overline{\gamma}), a_{\overline{\gamma}} := \frac{\phi(Y)}{\phi(X_{n+i-1})};$
(1.2.) $X_{n+i} := \begin{cases} Y & \text{with probability } a_{\overline{\gamma}}, \\ X_{n+i-1} & \text{with probability } 1 - a_{\overline{\gamma}}; \end{cases}$
(1.3.) $a := a + a_{\overline{\gamma}}.$
If $i = n_k$ then
 $\overline{\gamma} := \exp\left(\log(\overline{\gamma}) + c_n\left(\frac{a}{n_k} - 0.44\right)\right).$
(2) Set $n := n + n_k, k := k + 1, a := 0.$

AirMCMC - a simulation study

►
$$\pi(x) = \frac{l(|x|)}{|x|^{1+r}}, x \in \mathbb{R},$$

- Air version of RWM adaptive scaling
- ► The example is polynomially ergodic (not easy for the sampler)
- AirRWM

Initiate $X_0 \in \mathbb{R}, \overline{\gamma} \in [q_1, q_2]$. k := 1, n := 0, a sequence $\{c_k\}_{k \ge 1}$.

(1) For
$$i = 1, ..., n_k$$

(1.1.) sample $Y \sim N(X_{n+i-1}, \overline{\gamma}), a_{\overline{\gamma}} := \frac{\phi(Y)}{\phi(X_{n+i-1})};$
(1.2.) $X_{n+i} := \begin{cases} Y \text{ with probability } a_{\overline{\gamma}}, \\ X_{n+i-1} \text{ with probability } 1 - a_{\overline{\gamma}};$
(1.3.) $a := a + a_{\overline{\gamma}}.$
If $i = n_k$ then
 $\overline{\gamma} := \exp\left(\log(\overline{\gamma}) + c_n\left(\frac{a}{n_k} - 0.44\right)\right).$
(2) Set $n := n + n_k, k := k + 1, a := 0.$

AirMCMC - a simulation study

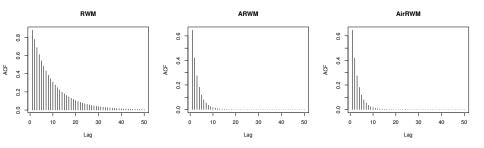
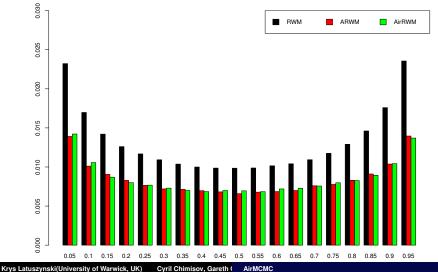


Figure: Autocorrelations (ACF)

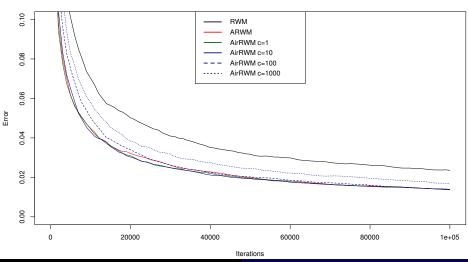
5900

AirMCMC - a simulation study



990

AirMCMC - a simulation study



Estimation of 0.95 guantile. Running error.

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth (AirMCMC

AirMCMC - theory - the SGE case

Theorem 1

Kernels SGF

$$h_k \ge ck^{\beta}, \quad \beta > 0 h \sup \frac{|f(x)|}{V^{1/2}(x)} < \infty$$

Then WLLN holds, and also for any $\delta \in (0, 2)$ $\lim_{N \to \infty} \mathbf{E} \left| \frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \phi(f) \right|^{2-\delta} = 0,$

- Theorem 2
 - Kernels SGE and reversible
 - $\blacktriangleright \quad \frac{d\nu}{d\pi} \in L_2(\mathcal{X},\pi)$

 - ► $n_k \ge ck^{\beta}, \beta > 0$ ► $\sup_{V^{\frac{|f(x)|}{2(\beta+1}-\delta}(x)} < \infty$, for some $\delta > 0$,

Note that diminishing adaptation is not needed!

AirMCMC - theory - the SGE case

Theorem 1

Kernels SGF

►
$$n_k \ge ck^{\beta}, \quad \beta > 0$$

► $\sup \frac{|f(x)|}{V^{1/2}(x)} < \infty$

Then WLLN holds, and also for any $\delta \in (0, 2)$

$$\lim_{N\to\infty} \mathbf{E} \left| \frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \phi(f) \right|^{2-\delta} = 0,$$

Theorem 2

- Kernels SGE and reversible
- $\frac{d\nu}{d\pi} \in L_2(\mathcal{X},\pi)$
- $\begin{array}{l} \bullet \quad n_k \geq ck^{\beta}, \quad \beta > 0 \\ \bullet \quad \sup \frac{|f(x)|}{v^{\frac{\beta}{2(\beta+1)} \delta}(x)} < \infty, \text{ for some } \delta > 0, \end{array}$

Then SLLN holds.

Note that diminishing adaptation is not needed!

AirMCMC - theory - the SGE case

Theorem 1

Kernels SGE

$$h_k \ge ck^{\beta}, \quad \beta > 0 \sup \frac{|f(x)|}{V^{1/2}(x)} < \infty$$

Then WLLN holds, and also for any $\delta \in (0,2)$

$$\lim_{N\to\infty} \mathbf{E} \left| \frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \phi(f) \right|^{2-\delta} = 0,$$

Theorem 2

- Kernels SGE and reversible
- $\frac{d\nu}{d\pi} \in L_2(\mathcal{X},\pi)$

•
$$n_k \geq ck^{\beta}_{\beta}, \beta > 0$$

•
$$\sup \frac{|f(x)|}{V^{\frac{\beta}{2(\beta+1}-\delta}(x)} < \infty$$
, for some $\delta > 0$,

Then SLLN holds.

Note that diminishing adaptation is not needed!

AirMCMC - theory - the local SGE case

Theorem 3

- ► Γ is compact
- Kernels are locally SGE
- ▶ $n_k \ge ck^{\beta}$, $\beta > 0$, and adaptation takes place if in a compact set *B*
- $\sup \frac{|f(x)|}{V_i^{1/2}(x)} < \infty$

Then WLLN holds, and also for any $\delta \in (0,2)$

$$\lim_{N\to\infty} \mathbf{E} \left| \frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \phi(f) \right|^{2-\delta} = 0,$$

- Theorem 4
 - Γ is compact
 - Kernels are locally SGE and reversible
 - $\blacktriangleright \quad \frac{d\nu}{d\pi} \in L_2(\mathcal{X},\pi)$
 - $n_k \ge ck^{\beta}$, $\beta > 0$, and adaptation takes place if in a compact set B
 - $\sup \frac{|f(x)|}{V_{\epsilon}^{\frac{\beta}{2(\beta+1}-\delta}(x)} < \infty$, for some $\delta > 0$,

Then SLLN holds.

AirMCMC - theory - the local SGE case

Theorem 3

- Γ is compact
- Kernels are locally SGE
- ▶ $n_k \ge ck^{\beta}$, $\beta > 0$, and adaptation takes place if in a compact set *B*
- $\sup \frac{|f(x)|}{V_i^{1/2}(x)} < \infty$

Then WLLN holds, and also for any $\delta \in (0,2)$

$$\lim_{N\to\infty} \mathbf{E} \left| \frac{1}{N} \sum_{i=0}^{N-1} f(X_i) - \phi(f) \right|^{2-\delta} = 0,$$

Theorem 4

- Γ is compact
- Kernels are locally SGE and reversible
- $\frac{d\nu}{d\pi} \in L_2(\mathcal{X},\pi)$
- $n_k \ge ck^{\beta}$, $\beta > 0$, and adaptation takes place if in a compact set *B*

►
$$\sup \frac{|f(x)|}{v_i^{\frac{\beta}{2(\beta+1}-\delta}(x)} < \infty$$
, for some $\delta > 0$,

Then SLLN holds.

AirMCMC - theory - the SPE case

Theorem 5

- Kernels SPE with $\alpha > 2/3$
- $b \beta > \frac{2\alpha(1-\alpha)}{2\alpha-1} \text{ if } \alpha < \frac{3}{4} \\ \beta > \frac{\alpha}{4\alpha-2} \text{ if } \alpha \ge \frac{3}{4}.$
- $n_k \ge ck^{\beta}, \quad \beta > 0$ • $\sup \frac{|f(x)|}{V^{3/2\alpha - 1}(x)} < \infty$

Then WLLN holds.

< ロト < 同ト < ヨト < ヨト -