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Markov chain Monte Carlo

I let π be a target probability distribution on X , e.g. to evaluate

θ :=

∫
X

f (x)π(dx).

I direct sampling from π is not possible or impractical
I MCMC approach is to simulate (Xn)n≥0, an ergodic Markov chain with

transition kernel P and limiting distribution π, and take ergodic averages
as an estimate of θ.

I it is easy to design an ergodic transition kernel P, e.g. using generic
Metropolis or Gibbs recipes

I it is difficult to design a transition kernel P with good convergence
properties, especially if X is high dimesional

I Trying to find an optimal P would be a disaster problem
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Optimal Scaling of Metropolis-Hastings P

I for Metropolis chains there is a ”prescription” of how to scale proposals as
dimension d →∞.

I If σ2
d = l2d−1 then based on an elegant mathematical result (Roberts 1997)

I Consider
Z(d)

t := X(d,1)
btdc , then as d →∞,

I Z(d)
t converges to the solution Z of the SDE

dZt = h(l)1/2dBt +
1
2

h(l)∇ log f (Zt)dt

I so maximise h(l) to optimise Metropolis-Hastings.
I one-to-one correspondence between lopt and mean acceptance rate of 0.234.
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Adaptive MCMC

I Use scale γ of the proposal such that mean acceptance rate of M-H is 0.234
I one needs to learn π to apply this
I Trial run? High dimensions? Metropolis within Gibbs?
I Adaptive MCMC: update the scale on the fly.
I For adaptive scaling Metropolis-Hastings one may use

log(γn) = log(γn−1) + n.7(α(Xn−1,Yn)− 0.234)

I so Pn used for obtaining Xn|Xn−1 may depend on {X0, . . . ,Xn−1}
I however now the process is not Markovian, so the possible benefit comes at

the price of more involving theoretical analysis
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Success story of Adaptive Metropolis-Hastings

I The adaptation rule is mathematically appealing (diffusion limit)
I The adaptation rule is computationally simple (acceptance rate)
I It works in applications (seems to improve convergence significantly)
I Improves convergence even in settings that are neither high dimensional, nor

satisfy other assumptions needed for the diffusion limit
I

I Adaptive scaling beyond Metropolis-Hastings?
I YES. Similar optimal scaling results are available for MALA, HMC, etc.

Each yields an adaptive version of the algorithm!
I

I What can you optimise beyond scale?
I E.g. covariance matrix of the proposal.
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The fly in the ointment

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I Adaptive MCMC is not Markovian
I The standard MCMC theory does not apply
I Theoretical properties of adaptive MCMC have been studied using a range of

techniques, such as: coupling, martingale approximations, stability of
stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola,
Saksman, Fort, Atchade, ... )

I Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and
(even) less operational than that of standard MCMC
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Post-mortem of the fly

I Standard assumptions to validate Adaptive MCMC are e.g. as follows:
I (DA) Diminishing Adaptation:

limn→∞ Dn = 0, in probability, where
Dn = supx∈X ‖Pγn+1(x, ·)− Pγn(x, ·)‖TV .

I (C) Containment:
The sequence {Mε(Xn, γn)}∞n=0 is bounded in probability, where
Mε : X × Γ→ N is defined as
Mε(x, γ) := inf{n ≥ 1 : ‖Pn

γ(x, ·)− π(·)‖TV ≤ ε}.
I DA + C guarantee ergodicity, i.e. convergence in distribution

(Roberts + Rosenthal 2007)
I and also nondeterioration (KL + Rosenthal 2014)
I but for SLLN, you need additional conditions!

(Roberts + Rosenthal 2007; Fort + Moulines + Priouret 2011; Atchade + Fort
2010)
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Adaptive MCMC
Air MCMC

Post-mortem of the fly

I Two setting to verify containment:
I (SGE) Simultaneous Geometric Ergodicity:

PγV(x) ≤ λV(x) + bIC(x),
Pγ(x, ·) ≥ δν(·) for all x ∈ C,
same λ, b, C, δ, ν for all γ ∈ Γ

I (SPE) Simultaneous Polynomial Ergodicity:
PγV(x)− V(x) ≤ −cVα(x) + bIC,
Pγ(x, ·) ≥ δν(·) for all x ∈ C,
same c, α, b, C, δ, ν for all γ ∈ Γ

I How do you verify SGE or SPE?
I You ask Jim Hobert!
I It has been done for fairly general classes of Adaptive Metropolis under tail

decay conditions of π (Bai + Roberts + Rosenthal 2011)
I For similarly general Adaptive Metropolis within Adaptive Gibbs

(KL + Roberts + Rosenthal 2013)

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC
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Adaptive MCMC
Air MCMC

Adaptive Gibbs Sampler - a generic algorithm

I AdapRSG
1. Set pn := Rn(pn−1,Xn−1, . . . ,X0) ∈ Y ⊂ [0, 1]d

2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities pn

3. Draw Y ∼ π(·|Xn−1,−i)
4. Set Xn := (Xn−1,1, . . . ,Xn−1,i−1, Y,Xn−1,i+1, . . . ,Xn−1,d)

I Given the target distribution π, what are the optimal selection probabilities p?
I Pretend π is a Gaussian - optimal p is known for Gaussians - and it works

outside the Gaussian class.
(Chimisov + KL + Roberts 2017)

I How to verify containment?
I Simultaneous Geometric Drift will not work!!!

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC
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Adaptive MCMC
Air MCMC

AirMCMC - Adapting increasingly rarely

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.

I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC



Adaptive MCMC
Air MCMC

AirMCMC - Adapting increasingly rarely

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.

I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC



Adaptive MCMC
Air MCMC

AirMCMC - Adapting increasingly rarely

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.

I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC



Adaptive MCMC
Air MCMC

AirMCMC - Adapting increasingly rarely

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.

I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC



Adaptive MCMC
Air MCMC

AirMCMC - Adapting increasingly rarely

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.

I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC



Adaptive MCMC
Air MCMC

AirMCMC - Adapting increasingly rarely

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.

I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC



Adaptive MCMC
Air MCMC

AirMCMC - a simulation study

I π(x) = l(|x|)
|x|1+r , x ∈ R,

I Air version of RWM adaptive scaling
I The example is polynomially ergodic (not easy for the sampler)
I AirRWM

Initiate X0 ∈ R, γ ∈ [q1, q2]. k := 1, n := 0, a sequence {ck}k≥1.
(1) For i = 1, .., nk

(1.1.) sample Y ∼ N(Xn+i−1, γ), aγ :=
φ(Y)

φ(Xn+i−1)
;

(1.2.) Xn+i :=

{
Y with probability aγ ,

Xn+i−1 with probability 1− aγ ;
(1.3.) a := a + aγ .

If i = nk then
γ := exp

(
log(γ) + cn

(
a
nk
− 0.44

))
.

(2) Set n := n + nk, k := k + 1, a := 0.

Krys Latuszynski(University of Warwick, UK) Cyril Chimisov, Gareth O. Roberts (both Warwick)AirMCMC
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Figure: Autocorrelations (ACF)
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AirMCMC - a simulation study
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AirMCMC - theory - the SGE case

I Theorem 1
I Kernels SGE
I nk ≥ ckβ , β > 0
I sup |f (x)|

V1/2(x)
<∞

Then WLLN holds, and also for any δ ∈ (0, 2)

limN→∞ E
∣∣∣ 1

N

∑N−1
i=0 f (Xi)− φ(f )

∣∣∣2−δ = 0,

I Theorem 2
I Kernels SGE and reversible
I dν

dπ ∈ L2(X , π)
I nk ≥ ckβ , β > 0
I sup |f (x)|

V
β

2(β+1 −δ
(x)

<∞, for some δ > 0,

Then SLLN holds.
I Note that diminishing adaptation is not needed!
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AirMCMC - theory - the local SGE case

I Theorem 3
I Γ is compact
I Kernels are locally SGE
I nk ≥ ckβ , β > 0, and adaptation takes place if in a compact set B
I sup |f (x)|

V1/2
i (x)

<∞

Then WLLN holds, and also for any δ ∈ (0, 2)

limN→∞ E
∣∣∣ 1

N

∑N−1
i=0 f (Xi)− φ(f )

∣∣∣2−δ = 0,

I Theorem 4
I Γ is compact
I Kernels are locally SGE and reversible
I dν

dπ ∈ L2(X , π)
I nk ≥ ckβ , β > 0, and adaptation takes place if in a compact set B
I sup |f (x)|

V
β

2(β+1 −δ

i (x)

<∞, for some δ > 0,
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AirMCMC - theory - the SPE case

I Theorem 5
I Kernels SPE with α > 2/3
I β > 2α(1−α)

2α−1 if α < 3
4

β > α
4α−2 if α ≥ 3

4 .

I nk ≥ ckβ , β > 0
I sup |f (x)|

V3/2α−1(x)
<∞

Then WLLN holds.
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