Exact Bayesian Inference (for Big Data)

Single- and Multi- Core Approaches

Murray Pollock
H Dai, P Fearnhead, AM Johansen, GO Roberts
m.pollock@warwick.ac.uk
www.warwick.ac.uk/mpollock

Cartoon

Problem

■ Big Data challenge?
■ Algorithmic ‘Scalability’

Problem

■ Big Data challenge?
■ Algorithmic 'Scalability'
■ Target of interest:

$$
\pi(x) \propto \prod_{i=0}^{N} f_{i}(x)
$$

Problem

■ Big Data challenge?
■ Algorithmic 'Scalability’
■ Target of interest:

$$
\pi(x) \propto \prod_{i=0}^{N} f_{i}(x)
$$

■ Want to use [MCMC].

Problem

■ Big Data challenge?
■ Algorithmic 'Scalability’
■ Target of interest:

$$
\pi(x) \propto \prod_{i=0}^{N} f_{i}(x)
$$

■ Want to use [MCMC].
■ Approaches:

Problem

■ Big Data challenge?
■ Algorithmic 'Scalability’
■ Target of interest:

$$
\pi(x) \propto \prod_{i=0}^{N} f_{i}(x)
$$

■ Want to use [MCMC].
■ Approaches:
■ Single-Core

Problem

■ Big Data challenge?
■ Algorithmic 'Scalability’
■ Target of interest:

$$
\pi(x) \propto \prod_{i=0}^{N} f_{i}(x)
$$

■ Want to use [MCMC].

- Approaches:
- Single-Core

■ Multi-Core

Single-Core

■ Single-Core
Vetropolis move from $\theta \rightarrow \phi$ is accepted w.p.

- Goal: Scalability of iterative cost.
- Lots of work!: Pseudo-Marginal; Stochastic gradient schemes. - 11 The Scalahle I ancevin Fxact Aloorithm: Bavesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Single-Core

■ Single-Core
■ Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$
\min \left\{1, \frac{\pi(\phi)}{\pi(\theta)}\right\}
$$

Single-Core

■ Single-Core
■ Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$
\min \left\{1, \frac{\pi(\phi)}{\pi(\theta)}\right\}
$$

■ Goal: Scalability of iterative cost.

Single-Core

■ Single-Core
■ Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$
\min \left\{1, \frac{\pi(\phi)}{\pi(\theta)}\right\}
$$

- Goal: Scalability of iterative cost.

■ Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...

Single-Core

■ Single-Core
■ Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$
\min \left\{1, \frac{\pi(\phi)}{\pi(\theta)}\right\}
$$

■ Goal: Scalability of iterative cost.
■ Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...
■ [1] The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Multi-Core

■ Multi-Core

1 Break data into S 'shards' (of size N/S)
2 Separate inferences [MCMC]

- 'Recombine' on 'mother-core
- Problem: Recombining - How do you do it?

Lots of work!: Consensus; Averaging; Kernel m thods

- Constraints / Assumptions
[2] Bayesian Fusion: An exact and parallelisable consensus approach to unifyina distributed analyses

Multi-Core

■ Multi-Core

- Solution to Single-Core:

1 Break data into S 'shards' (of size N / S)
2 Separate inferences [MCMC]
3 'Recombine' on 'mother-core’

Multi-Core

■ Multi-Core
■ Solution to Single-Core:
1 Break data into S 'shards' (of size N / S)
2 Separate inferences [MCMC]
3 'Recombine' on 'mother-core'
■ Problem: Recombining - How do you do it?

Multi-Core

■ Multi-Core
■ Solution to Single-Core:
1 Break data into S 'shards' (of size N / S)
2 Separate inferences [MCMC]
3 'Recombine' on 'mother-core’
■ Problem: Recombining - How do you do it?
■ Lots of work!: Consensus; Averaging; Kernel methods. . .

Multi-Core

■ Multi-Core
■ Solution to Single-Core:
1 Break data into S 'shards' (of size N / S)
2 Separate inferences [MCMC]
3 'Recombine' on 'mother-core'

- Problem: Recombining - How do you do it?

■ Lots of work!: Consensus; Averaging; Kernel methods. . .

- Constraints / Assumptions

Multi-Core

■ Multi-Core

- Solution to Single-Core:

1 Break data into S 'shards' (of size N / S)
2 Separate inferences [MCMC]
3 'Recombine' on 'mother-core'
■ Problem: Recombining - How do you do it?
■ Lots of work!: Consensus; Averaging; Kernel methods. . .

- Constraints / Assumptions

■ [2] Bayesian Fusion: An exact and parallelisable consensus approach to unifying distributed analyses

0 - Retrospective Trust / Tricks

Brownian Motion

Brownian Motion

Time

Path-space Rejection Sampling

Path-space Rejection Sampling:

■ We want $X \sim \mathbb{Q}$ where:

$$
\mathbb{Q}: \mathrm{d} X_{t}=\alpha\left(X_{t}\right) \mathrm{d} t+\Lambda^{1 / 2} \mathrm{~d} B_{t}, \quad X_{0}=x \in \mathbb{R}^{d}, t \in[0, T]
$$

Path-space Rejection Sampling

Path-space Rejection Sampling:

■ We want $X \sim \mathbb{Q}$ where:

$$
\mathbb{Q}: \mathrm{d} X_{t}=\alpha\left(X_{t}\right) \mathrm{d} t+\Lambda^{1 / 2} \mathrm{~d} B_{t}, \quad X_{0}=x \in \mathbb{R}^{d}, t \in[0, T]
$$

■ Discretisation Free Approach!: Path-space Rejection Sampler (PRS) (see arXiv 1302.6964 for details)
$1 X_{T} \sim h_{T}\left(X_{0}\right)$
$2 X^{\text {tin }} \sim \mathbb{P} \mid X_{T^{*}}($ eg \mathbb{W} or $\mathbb{C})$
3 (Accept / Reject)** / Assign Weight**

Path-space Rejection Sampling

Time

Path-space Rejection Sampling

Path-space Rejection Sampling

Langevin Diffusion

Langevin Diffusion:

Langevin Diffusion

Langevin Diffusion:

■ In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \Lambda \nabla \log v\left(X_{t}\right)$

Langevin Diffusion

Langevin Diffusion:

■ In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \Lambda \nabla \log v\left(X_{t}\right)$
■ Invariant distribution v

Langevin Diffusion

Langevin Diffusion:

- In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \Lambda \nabla \log v\left(X_{t}\right)$
- Invariant distribution v

■ Direct statistical exploitation... $v \equiv \pi(\mathbb{L})$

Langevin Diffusion

Langevin Diffusion:

■ In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \wedge \nabla \log v\left(X_{t}\right)$

- Invariant distribution v

■ Direct statistical exploitation... $v \equiv \pi(\mathbb{L})$
■ Langevin $+v \equiv \pi+$ Discretisation + Correction \Longrightarrow MALA

Langevin Diffusion

Langevin Diffusion:

- In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \Lambda \nabla \log v\left(X_{t}\right)$

■ Invariant distribution v
■ Direct statistical exploitation... $v \equiv \pi(\mathbb{L})$
■ Langevin $+v \equiv \pi+$ Discretisation + Correction \Longrightarrow MALA
■ PRS Class (however [1] $y:=X_{T} \sim h \equiv v^{1 / 2} \ldots$)

Langevin Diffusion

Langevin Diffusion:

■ In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \Lambda \nabla \log v\left(X_{t}\right)$
■ Invariant distribution v
■ Direct statistical exploitation... $v \equiv \pi(\mathbb{L})$
■ Langevin $+v \equiv \pi+$ Discretisation + Correction \Longrightarrow MALA
■ PRS Class (however [1] $y:=X_{T} \sim h \equiv v^{1 / 2} \ldots$)
■ $\lim _{T \rightarrow \infty} p_{T}(x, y)=\underbrace{w_{T}(x, y) \cdot v^{1 / 2}(y)}_{\alpha h} \cdot \underbrace{P(X)}_{\in[0,1]} \rightarrow v$

Langevin Diffusion

Langevin Diffusion:

■ In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \wedge \nabla \log v\left(X_{t}\right)$
■ Invariant distribution v
■ Direct statistical exploitation... $v \equiv \pi(\mathbb{L})$
■ Langevin $+v \equiv \pi+$ Discretisation + Correction \Longrightarrow MALA
■ PRS Class (however [1] $y:=X_{T} \sim h \equiv v^{1 / 2} \ldots$)
■ $\lim _{T \rightarrow \infty} p_{T}(x, y)=\underbrace{w_{T}(x, y) \cdot v^{1 / 2}(y)}_{\alpha h} \cdot \underbrace{P(X)}_{\in[0,1]} \rightarrow v$

$$
v \equiv \pi^{2}(\mathbb{D} \mathbb{L})
$$

Langevin Diffusion

Langevin Diffusion:

■ In \mathbb{Q} set $\alpha\left(X_{t}\right):=\frac{1}{2} \Lambda \nabla \log v\left(X_{t}\right)$
■ Invariant distribution v
■ Direct statistical exploitation... $v \equiv \pi(\mathbb{L})$
■ Langevin $+v \equiv \pi+$ Discretisation + Correction \Longrightarrow MALA
■ PRS Class (however [1] $y:=X_{T} \sim h \equiv v^{1 / 2} \ldots$)
■ $\lim _{T \rightarrow \infty} p_{T}(x, y)=\underbrace{w_{T}(x, y) \cdot v^{1 / 2}(y)}_{\alpha h} \cdot \underbrace{P(X)}_{\in[0,1]} \rightarrow v$

- $v \equiv \pi^{2}(\mathbb{D} \mathbb{L})$

■ If $X_{0} \sim v$, then $\forall t>0, X_{t} \sim v$

1 - Single Core: Quasi-Stationary Monte Carlo

Quasi-Stationary Monte Carlo

■ Consider Brownian motion, killed at τ with intensity

$$
\kappa(x)=\frac{\|\nabla \log \pi(x)\|^{2}+\Delta \log \pi(x)}{2}-\ell \in \mathbb{R}_{\geq 0}
$$

and the quasi-limiting distribution

$$
\lim _{t \rightarrow \infty} \mathcal{L}\left(X_{t} \mid \tau>t\right) .
$$

Quasi-Stationary Monte Carlo

■ Consider Brownian motion, killed at τ with intensity

$$
\kappa(x)=\frac{\|\nabla \log \pi(x)\|^{2}+\Delta \log \pi(x)}{2}-\ell \in \mathbb{R}_{\geq 0}
$$

and the quasi-limiting distribution

$$
\lim _{t \rightarrow \infty} \mathcal{L}\left(X_{t} \mid \tau>t\right) .
$$

■ Under weak regularity conditions has quasi-stationary distribution π.

Quasi-Stationary Monte Carlo

■ Consider Brownian motion, killed at τ with intensity

$$
\kappa(x)=\frac{\|\nabla \log \pi(x)\|^{2}+\Delta \log \pi(x)}{2}-\ell \in \mathbb{R}_{\geq 0}
$$

and the quasi-limiting distribution

$$
\lim _{t \rightarrow \infty} \mathcal{L}\left(X_{t} \mid \tau>t\right) .
$$

■ Under weak regularity conditions has quasi-stationary distribution π.
■ Statistical Interpretation:

Quasi-Stationary Monte Carlo

■ Consider Brownian motion, killed at τ with intensity

$$
\kappa(x)=\frac{\|\nabla \log \pi(x)\|^{2}+\Delta \log \pi(x)}{2}-\ell \in \mathbb{R}_{\geq 0}
$$

and the quasi-limiting distribution

$$
\lim _{t \rightarrow \infty} \mathcal{L}\left(X_{t} \mid \tau>t\right) .
$$

■ Under weak regularity conditions has quasi-stationary distribution π.
■ Statistical Interpretation:

- Big Data? \rightarrow Subsampling

Quasi-Stationary Monte Carlo

■ Consider Brownian motion, killed at τ with intensity

$$
\kappa(x)=\frac{\|\nabla \log \pi(x)\|^{2}+\Delta \log \pi(x)}{2}-\ell \in \mathbb{R}_{\geq 0}
$$

and the quasi-limiting distribution

$$
\lim _{t \rightarrow \infty} \mathcal{L}\left(X_{t} \mid \tau>t\right) .
$$

■ Under weak regularity conditions has quasi-stationary distribution π.
■ Statistical Interpretation:

- Big Data? \rightarrow Subsampling
- Implementation? \rightarrow ScaLE

1.2 - Subsampling

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is $O(N)$.

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ
■ Evaluating κ is $O(N)$.
■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is $O(N)$.

■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
■ Simulating $P P(\kappa(x)) \equiv$ Simulating $P P(K)$ and accepting w.p. $\kappa\left(X_{t}\right) / K$.

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is $O(N)$.

■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
■ Simulating $P P(\kappa(x)) \equiv$ Simulating $P P(K)$ and accepting w.p. $\kappa\left(X_{t}\right) / K$.
■ We can make our algorithm worse (!) by choosing $\tilde{K} \geq K \ldots$

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is $O(N)$.

■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
■ Simulating $P P(\kappa(x)) \equiv$ Simulating $P P(K)$ and accepting w.p. $\kappa\left(X_{t}\right) / K$.
■ We can make our algorithm worse (!) by choosing $\tilde{K} \geq K \ldots$
■ Remark on coins

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is $O(N)$.

■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
■ Simulating $P P(\kappa(x)) \equiv$ Simulating $P P(K)$ and accepting w.p. $\kappa\left(X_{t}\right) / K$.
■ We can make our algorithm worse (!) by choosing $\tilde{K} \geq K \ldots$

- Remark on coins

■ Suppose $\exists A \sim \mathcal{A}, \tilde{\kappa_{A}}(\cdot) \in[0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}\left[\tilde{\kappa_{A}}(x) / \tilde{K}\right]=\kappa(x) / \tilde{K}$ then:

Subsampling

■ QSMC \equiv Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is $O(N)$.

■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
■ Simulating $P P(\kappa(x)) \equiv$ Simulating $P P(K)$ and accepting w.p. $\kappa\left(X_{t}\right) / K$.
■ We can make our algorithm worse (!) by choosing $\tilde{K} \geq K \ldots$
■ Remark on coins
■ Suppose $\exists A \sim \mathcal{A}, \tilde{\kappa_{A}}(\cdot) \in[0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}\left[\tilde{\mathcal{K}_{A}}(x) / \tilde{K}\right]=\kappa(x) / \tilde{K}$ then:

■ Simulating $A \sim \mathcal{A} P P(\tilde{K})$ and accepting w.p. $\tilde{\kappa}_{A}\left(X_{t}\right) / \tilde{K} \equiv$ *.

Subsampling

■ Scalability \equiv Finding $A \sim \mathcal{A}$ and $\tilde{\kappa}_{A}(\cdot)$ which are $O(1)$ (trivial), such that $\tilde{K} / K \geq 1$ scales well...

Subsampling

■ Scalability \equiv Finding $A \sim \mathcal{A}$ and $\tilde{\kappa}_{A}(\cdot)$ which are $O(1)$ (trivial), such that $\tilde{K} / K \geq 1$ scales well...
■ Intuition is the diffusion drift is a sum:

$$
\nabla \log \pi(x)=\sum_{i=0}^{N} \nabla \log f_{i}(x)
$$

Subsampling

■ Scalability \equiv Finding $A \sim \mathcal{A}$ and $\tilde{\kappa}_{A}(\cdot)$ which are $O(1)$ (trivial), such that $\tilde{K} / K \geq 1$ scales well...
■ Intuition is the diffusion drift is a sum:

$$
\nabla \log \pi(x)=\sum_{i=0}^{N} \nabla \log f_{i}(x)
$$

- We require control variates for good scaling of $\tilde{K} / K \ldots$ (omitted)

1.3 - Single-Core: ScaLE

ScaLE

■ Implementational Problem: Trajectory death!

ScaLE

■ Implementational Problem: Trajectory death!
■ First Approach: Scalable Langevin Exact Algorithm (ScaLE)

ScaLE

■ Implementational Problem: Trajectory death!
■ First Approach: Scalable Langevin Exact Algorithm (ScaLE)

- Continuous time multi-level splitting / Importance sampling QSMC + SMC + Resampling

ScaLE

1.4 - Summary

Summary

■ Summary...:

- QSMC: 'Exact' Bayesian Inference
- No intrinsic cost for exactness.
- ScaLE's well!
- Missing Bits.
- Localisation
- Thenrv: OSMC (SMC-) ScaLE:Re-ScaLE - Scaling: Dimensionality; Control-Variate

■ Summary...:
■ QSMC: ‘Exact’ Bayesian Inference

Summary

■ Summary...:
■ QSMC: ‘Exact’ Bayesian Inference
■ No intrinsic cost for exactness.
■ ScaLE's well!

Summary

■ Summary...:
■ QSMC: ‘Exact’ Bayesian Inference
■ No intrinsic cost for exactness.
■ ScaLE's well!
■ Missing Bits. . . :

Summary

■ Summary...:
■ QSMC: ‘Exact’ Bayesian Inference
■ No intrinsic cost for exactness.

- ScaLE's well!

■ Missing Bits. . . :

- Localisation

■ Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.

- Scaling: Dimensionality; Control-Variate...

■ Implementational Details

Example

2^{27} dataset, contaminated regression model

2 - Multi-Core: Bayesian Fusion

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{C} f_{c}(x)
$$

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x)
$$

■ C - Number of cores / experts / 'views' ... ; f_{c} - Sub-posterior.

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x)
$$

■ C - Number of cores / experts / 'views' ...; f_{c} - Sub-posterior.

- Simple Approach. . . [Think (A)BC]

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x)
$$

■ C - Number of cores / experts / 'views' ...; f_{c} - Sub-posterior.

- Simple Approach. . . [Think (A)BC]

1 Simulate $X^{(1)} \sim f_{1}, X^{(2)} \sim f_{2}, \ldots, X^{(C)} \sim f_{C}$.

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x)
$$

■ C - Number of cores / experts / 'views' ...; f_{C} - Sub-posterior.

- Simple Approach. . . [Think (A)BC]

1 Simulate $X^{(1)} \sim f_{1}, X^{(2)} \sim f_{2}, \ldots, X^{(C)} \sim f_{C}$.
2 Accept if $X^{(1)}=X^{(2)}=\ldots=X^{(C)}$, else go to $1 /$.

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x) .
$$

■ C - Number of cores / experts / 'views' ...; f_{C} - Sub-posterior.

- Simple Approach... [Think (A)BC]

1 Simulate $X^{(1)} \sim f_{1}, X^{(2)} \sim f_{2}, \ldots, X^{(C)} \sim f_{C}$.
2 Accept if $X^{(1)}=X^{(2)}=\ldots=X^{(C)}$, else go to $1 /$.
3 Return $X:=X^{(1)}\left(\sim \prod_{i=0}^{C} f_{i} \propto \pi\right)$.

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x) .
$$

■ C - Number of cores / experts / 'views' ... ; f_{C} - Sub-posterior.

- Simple Approach. . . [Think (A)BC]

1 Simulate $X^{(1)} \sim f_{1}, X^{(2)} \sim f_{2}, \ldots, X^{(C)} \sim f_{C}$.
2 Accept if $X^{(1)}=X^{(2)}=\ldots=X^{(C)}$, else go to $1 /$.
3 Return $X:=X^{(1)}\left(\sim \prod_{i=0}^{C} f_{i} \propto \pi\right)$.
■ Recall Langevin: If $X_{0} \sim v$, then $\forall t>0, X_{t} \sim v$:

Problem

■ Recall Target:

$$
\pi(x) \propto \prod_{c=1}^{c} f_{c}(x) .
$$

■ C - Number of cores / experts / 'views' ... ; f_{C} - Sub-posterior.

- Simple Approach. . . [Think (A)BC]

1 Simulate $X^{(1)} \sim f_{1}, X^{(2)} \sim f_{2}, \ldots, X^{(C)} \sim f_{C}$.
2 Accept if $X^{(1)}=X^{(2)}=\ldots=X^{(C)}$, else go to $1 /$.
3 Return $X:=X^{(1)}\left(\sim \prod_{i=0}^{C} f_{i} \propto \pi\right)$.
\square Recall Langevin: If $X_{0} \sim v$, then $\forall t>0, X_{t} \sim v$:
■ $\mathbb{L}_{1}, \ldots, \mathbb{L}_{C}, \mathbb{D}_{1}, \ldots, \mathbb{D}_{C} \ldots$

Fusion Idea

Fusion Actual

Some Details

■ Fusion Measure ($\mathfrak{X} \in \boldsymbol{\Omega}_{\mathbf{0}}$)

$$
\mathrm{dF}(\mathfrak{X}) \propto \mathrm{d}\left(\times_{c=1}^{c} \mathbb{D}_{c}^{\boldsymbol{X}_{0}^{(c)}, \boldsymbol{y}_{T}}\right)(\mathfrak{X}) \cdot \prod_{c=1}^{c}\left[f_{c}^{2}\left(\boldsymbol{X}_{0}^{(c)}\right) p_{T, c}^{\mathrm{dl}}\left(\boldsymbol{y}_{T} \mid \boldsymbol{X}_{0}^{(c)}\right) \cdot \frac{1}{f_{c}\left(\boldsymbol{y}_{T}\right)}\right],
$$

Some Details

■ Fusion Measure ($\mathfrak{X} \in \boldsymbol{\Omega}_{\mathbf{0}}$)

$$
\mathrm{d} \mathbb{F}(\mathfrak{X}) \propto \mathrm{d}\left(\times_{c=1}^{c} \mathbb{D}_{c}^{\boldsymbol{X}_{0}^{(c)}, \boldsymbol{y}_{T}}\right)(\mathfrak{X}) \cdot \prod_{c=1}^{c}\left[f_{c}^{2}\left(\boldsymbol{X}_{0}^{(c)}\right) p_{T, c}^{\mathrm{dl}}\left(\boldsymbol{y}_{T} \mid \boldsymbol{X}_{0}^{(c)}\right) \cdot \frac{1}{f_{c}\left(\boldsymbol{y}_{T}\right)}\right],
$$

■ Key Idea: If $\mathfrak{X} \sim \mathbb{F}$, then $\mathfrak{X}_{T} \sim \prod_{c=1}^{C} f_{c} \propto \pi(!)$

Some Details

Some Details

■ 'Standard’ Multi-Core Problem ‘ \equiv ’ $\mathfrak{X} \sim \mathbb{F}$ (with practical constraints)

Some Details

■ 'Standard’ Multi-Core Problem ‘ \equiv ’ $\mathfrak{X} \sim \mathbb{F}$ (with practical constraints)
■ Rejection Sampling! Possible proposals $\mathfrak{X} \sim \mathbb{P}$, w.p. $P(\mathfrak{X})$:

Some Details

■ 'Standard’ Multi-Core Problem ‘ \equiv ’ $\mathfrak{X} \sim \mathbb{F}$ (with practical constraints)
■ Rejection Sampling! Possible proposals $\mathfrak{X} \sim \mathbb{P}$, w.p. $P(\mathfrak{X})$:
■ 'Brownian':

$$
\operatorname{dP} \mathbb{P}^{\mathrm{bm}}(\mathfrak{X}) \propto \mathrm{d}\left(\times_{c=1}^{C} \mathbb{W}_{c}^{\boldsymbol{X}_{0}^{(c)}, \boldsymbol{y}_{T}}\right)(\mathfrak{X}) \cdot h_{T}^{\mathrm{bm}}\left(\boldsymbol{X}_{0}^{(1: C)}, \boldsymbol{y}_{T}\right), \mathfrak{X} \in \boldsymbol{\Omega}_{0}
$$

Some Details

■ Simple ‘Brownian’ Case:

- Exact ('Talking') vs. Approximate ('Silent' / 'Lecture') Fusion

Some Details

■ Simple 'Brownian’ Case:

- 'Optimal' $h_{T}^{\text {bm }}(\cdot, \cdot)$:

$$
h_{T}^{\mathrm{bm}}\left(\boldsymbol{X}_{0}^{(1: C)}, \boldsymbol{y}_{T}\right) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}\left(\boldsymbol{X}_{0}^{(c)}\right)\right]}_{\text {initial core draws }} \underbrace{\exp \left(-\frac{C \cdot\left\|\boldsymbol{y}_{T}-\overline{\boldsymbol{X}}_{0}\right\|^{2}}{2 T}\right) \cdot \exp \left(-\frac{C \sigma^{2}}{2 T}\right)}_{\text {end point draw }}
$$

Some Details

■ Simple 'Brownian’ Case:

- 'Optimal' $h_{T}^{\text {bm }}(\cdot, \cdot)$:

$$
h_{T}^{\mathrm{bm}}\left(\boldsymbol{X}_{0}^{(1: C)}, \boldsymbol{y}_{T}\right) \propto \underbrace{\left[\prod_{c=1}^{c} f_{c}\left(\boldsymbol{X}_{0}^{(c)}\right)\right]}_{\text {initial core draws }} \underbrace{\exp \left(-\frac{C \cdot\left\|\boldsymbol{y}_{T}-\overline{\boldsymbol{X}}_{0}\right\|^{2}}{2 T}\right) \cdot \exp \left(-\frac{C \sigma^{2}}{2 T}\right)}_{\text {end point draw }}
$$

- Need RS for $h_{T}^{\mathrm{bm}}(\cdot, \cdot)$ end point.

Some Details

■ Simple ‘Brownian’ Case:

- 'Optimal' $h_{T}^{\mathrm{bm}}(\cdot, \cdot)$:

$$
h_{T}^{\mathrm{bm}}\left(\boldsymbol{X}_{0}^{(1: C)}, \boldsymbol{y}_{T}\right) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}\left(\boldsymbol{X}_{0}^{(c)}\right)\right]}_{\text {initial core draws }} \underbrace{\exp \left(-\frac{C \cdot\left\|\boldsymbol{y}_{T}-\overline{\boldsymbol{X}}_{0}\right\|^{2}}{2 T}\right) \cdot \exp \left(-\frac{C \sigma^{2}}{2 T}\right)}_{\text {end point draw }}
$$

- Need RS for $h_{T}^{\mathrm{bm}}(\cdot, \cdot)$ end point.
- Accept with probability

$$
P(\mathfrak{X}):=\exp \left[-\sum_{c=1}^{c} \int_{0}^{T} \kappa_{c}\left(\boldsymbol{X}_{t}^{(c)}\right) \mathrm{d} t\right] \in[0,1]
$$

Some Details

■ Simple ‘Brownian’ Case:

- 'Optimal' $h_{T}^{\mathrm{bm}}(\cdot, \cdot)$:

$$
h_{T}^{\mathrm{bm}}\left(\boldsymbol{X}_{0}^{(1: C)}, \boldsymbol{y}_{T}\right) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}\left(\boldsymbol{X}_{0}^{(c)}\right)\right]}_{\text {initial core draws }} \underbrace{\exp \left(-\frac{C \cdot\left\|\boldsymbol{y}_{T}-\overline{\boldsymbol{X}}_{0}\right\|^{2}}{2 T}\right) \cdot \exp \left(-\frac{C \sigma^{2}}{2 T}\right)}_{\text {end point draw }}
$$

- Need RS for $h_{T}^{\text {bm }}(\cdot, \cdot)$ end point.
- Accept with probability

$$
P(\mathfrak{X}):=\exp \left[-\sum_{c=1}^{c} \int_{0}^{T} \kappa_{c}\left(\boldsymbol{X}_{t}^{(c)}\right) \mathrm{d} t\right] \in[0,1]
$$

■ Exact ('Talking’) vs. Approximate ('Silent' / 'Lecture’) Fusion

Some Details

■ Simple ‘Brownian’ Case:

- 'Optimal' $h_{T}^{\mathrm{bm}}(\cdot, \cdot)$:

$$
h_{T}^{\mathrm{bm}}\left(\boldsymbol{X}_{0}^{(1: C)}, \boldsymbol{y}_{T}\right) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}\left(\boldsymbol{X}_{0}^{(c)}\right)\right]}_{\text {initial core draws }} \underbrace{\exp \left(-\frac{C \cdot\left\|\boldsymbol{y}_{T}-\overline{\boldsymbol{X}}_{0}\right\|^{2}}{2 T}\right) \cdot \exp \left(-\frac{C \sigma^{2}}{2 T}\right)}_{\text {end point draw }}
$$

- Need RS for $h_{T}^{\mathrm{bm}}(\cdot, \cdot)$ end point.
- Accept with probability

$$
P(\mathfrak{X}):=\exp \left[-\sum_{c=1}^{c} \int_{0}^{T} \kappa_{c}\left(\boldsymbol{X}_{t}^{(c)}\right) \mathrm{d} t\right] \in[0,1]
$$

■ Exact ('Talking') vs. Approximate ('Silent' / 'Lecture') Fusion
■ Remark: ‘Ornstein-Uhlenbeck’ special case

Some Details

Example

Beta(5,5) density

Questions?

