Exact Bayesian Inference (for Big Data)

Single- and Multi- Core Approaches

Murray Pollock

H Dai, P Fearnhead, AM Johansen, GO Roberts

m.pollock@warwick.ac.uk

www.warwick.ac.uk/mpollock

© marketoonist.com

Problem

- Big Data challenge?Algorithmic 'Scalability'
- Target of interest:

- Want to use [MCMC].
- Approaches:
 - Single-Core
 - Multi-Core

- Big Data challenge?
 Algorithmic 'Scalability'
- Target of interest:



- Want to use [MCMC].
- Approaches:
 - Single-Core
 - Multi-Core

- Big Data challenge?
 Algorithmic 'Scalability'
- Target of interest:

$$\pi(x) \propto \prod_{i=0}^{N} f_i(x).$$

- Want to use [MCMC].
- Approaches:
 Single-Core
 - Multi-Core

- Big Data challenge?Algorithmic 'Scalability'
- Target of interest:

$$\pi(x) \propto \prod_{i=0}^{N} f_i(x).$$

- Want to use [MCMC].
- Approaches:
 - Single-Core
 - Multi-Core

- Big Data challenge?Algorithmic 'Scalability'
- Target of interest:

$$\pi(x) \propto \prod_{i=0}^{N} f_i(x).$$

- Want to use [MCMC].
- Approaches:
 Single-Core
 Multi-Core

- Big Data challenge?Algorithmic 'Scalability'
- Target of interest:

$$\pi(x) \propto \prod_{i=0}^{N} f_i(x).$$

- Want to use [MCMC].
- Approaches:Single-Core
 - Multi-Core

Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$\min\left\{1,\frac{\pi(\phi)}{\pi(\theta)}\right\}$$

- Goal: Scalability of iterative cost.
- Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...
- [1] The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$\min\left\{1,\frac{\pi(\phi)}{\pi(\theta)}\right\}$$

Goal: Scalability of iterative cost.

Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...

[1] The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$\min\left\{1,\frac{\pi(\phi)}{\pi(\theta)}\right\}$$

Goal: Scalability of iterative cost.

- Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...
- [1] The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$\min\left\{1,\frac{\pi(\phi)}{\pi(\theta)}\right\}$$

- Goal: Scalability of iterative cost.
- Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...

[1] The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Problem: Metropolis move from $\theta \rightarrow \phi$ is accepted w.p.,

$$\min\left\{1,\frac{\pi(\phi)}{\pi(\theta)}\right\}$$

■ Goal: Scalability of iterative cost.

Lots of work!: Pseudo-Marginal; Stochastic gradient schemes...

[1] The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data available at: https://arxiv.org/abs/1609.03436

Multi-Core

- Solution to Single-Core:
 - 1 Break data into S 'shards' (of size N/S)
 - 2 Separate inferences [MCMC]
 - 3 'Recombine' on 'mother-core'
- Problem: Recombining How do you do it?
- Lots of work!: Consensus; Averaging; Kernel methods...
- Constraints / Assumptions

Multi-Core

- Solution to Single-Core:
 - 1 Break data into S 'shards' (of size N/S)
 - 2 Separate inferences [MCMC]
 - 3 'Recombine' on 'mother-core'
- Problem: Recombining How do you do it?
- Lots of work!: Consensus; Averaging; Kernel methods...
- Constraints / Assumptions

Multi-Core

- Solution to Single-Core:
 - 1 Break data into S 'shards' (of size N/S)
 - 2 Separate inferences [MCMC]
 - 3 'Recombine' on 'mother-core'
- Problem: Recombining How do you do it?
- Lots of work!: Consensus; Averaging; Kernel methods...
- Constraints / Assumptions

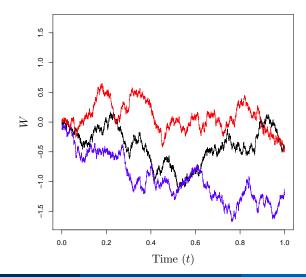
- Solution to Single-Core:
 - 1 Break data into S 'shards' (of size N/S)
 - 2 Separate inferences [MCMC]
 - 3 'Recombine' on 'mother-core'
- Problem: Recombining How do you do it?
- Lots of work!: Consensus; Averaging; Kernel methods...
- Constraints / Assumptions

- Solution to Single-Core:
 - 1 Break data into S 'shards' (of size N/S)
 - 2 Separate inferences [MCMC]
 - 3 'Recombine' on 'mother-core'
- Problem: Recombining How do you do it?
- Lots of work!: Consensus; Averaging; Kernel methods...
- Constraints / Assumptions

- Solution to Single-Core:
 - 1 Break data into S 'shards' (of size N/S)
 - 2 Separate inferences [MCMC]
 - 3 'Recombine' on 'mother-core'
- Problem: Recombining How do you do it?
- Lots of work!: Consensus; Averaging; Kernel methods...
- Constraints / Assumptions

0 - Retrospective Trust / Tricks

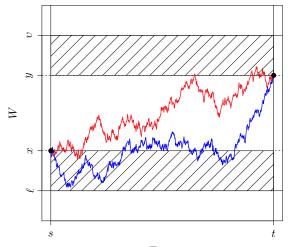
Brownian Motion



Murray Pollock (Warwick)

July 31st, 2017 7 / 35

Brownian Motion



Path-space Rejection Sampling:

• We want $X \sim \mathbb{Q}$ where:

 $\mathbb{Q}: dX_t = \alpha(X_t) dt + \Lambda^{1/2} dB_t, \quad X_0 = x \in \mathbb{R}^d, t \in [0, T]$

 Discretisation Free Approach!: Path-space Rejection Sampler (PRS) (see <u>arXiv 1302.6964</u> for details)

- $1 \quad X_T \sim h_T(X_0)$
- 2 $X^{\text{fin}} \sim \mathbb{P}|X_T^* \text{ (eg W or } \mathbb{O}))$
- 3 (Accept / Reject)** / Assign Weight**

Path-space Rejection Sampling:

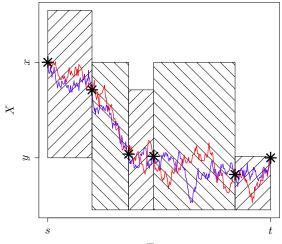
• We want $X \sim \mathbb{Q}$ where:

 $\mathbb{Q}: dX_t = \alpha(X_t) dt + \Lambda^{1/2} dB_t, \quad X_0 = x \in \mathbb{R}^d, t \in [0, T]$

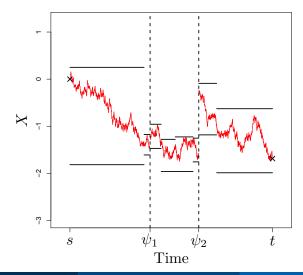
 Discretisation Free Approach!: Path-space Rejection Sampler (PRS) (see <u>arXiv 1302.6964</u> for details)

- $1 X_T \sim h_T(X_0)$
- 2 $X^{\text{fin}} \sim \mathbb{P}|X_T^* \text{ (eg } \mathbb{W} \text{ or } \mathbb{O})$
- 3 (Accept / Reject)** / Assign Weight**

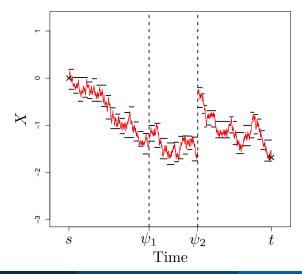
Path-space Rejection Sampling



Path-space Rejection Sampling



Path-space Rejection Sampling



■ In Q set
$$\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$$

■ Invariant distribution ν
■ Direct statistical exploitation... $\nu \equiv \pi$ (L)
■ Langevin + $\nu \equiv \pi$ + Discretisation + Correction + Correction + Correction + Correction + Correction + $\nu \equiv \pi + D$
■ PRS Class (however [1] $y := X_T \sim h \equiv \nu^1$
■ $\lim_{T \to \infty} p_T(x, y) = \underbrace{w_T(x, y) \cdot \nu^{1/2}(y)}_{T} \cdot P(x)$

 $\nu \equiv \pi^2 \; (DL)$

Langevin Diffusion:

In
$$\mathbb{Q}$$
 set $\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$

Invariant distribution ν

Direct statistical exploitation... $v \equiv \pi$ (L)

Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA

PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\blacksquare \lim_{T\to\infty} p_T(x,y) = w_T(x,y) \cdot v^{1/2}(y) \cdot P(X) \to v$$

• $v \equiv \pi^2$ (DL)

In Q set
$$\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$$

- Invariant distribution v
 - Direct statistical exploitation... $\nu \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA
- PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\blacksquare \lim_{T\to\infty} p_T(x,y) = w_T(x,y) \cdot v^{1/2}(y) \cdot P(X) \to v$$

 $\nu \equiv \pi^2 (DL)$

In
$$\mathbb{Q}$$
 set $\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$

- Invariant distribution v
 - Direct statistical exploitation... $\nu \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA
- PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\blacksquare \lim_{T\to\infty} p_T(x,y) = w_T(x,y) \cdot v^{1/2}(y) \cdot P(X) \to v$$

 $\nu \equiv \pi^2 (DL)$

In
$$\mathbb{Q}$$
 set $\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$

- Invariant distribution γ
 - Direct statistical exploitation... $\nu \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA
- PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\blacksquare \lim_{T \to \infty} p_T(x, y) = w_T(x, y) \cdot v^{1/2}(y) \cdot P(X) \to v$$

 $\nu \equiv \pi^2$ (DL)

$$\square \ \ln \mathbb{Q} \ \text{set} \ \alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$$

- Invariant distribution γ
 - Direct statistical exploitation... $\nu \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA
- PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\lim_{T \to \infty} p_T(x, y) = \underbrace{w_T(x, y) \cdot v^{1/2}(y)}_{\alpha h} \cdot \underbrace{P(X)}_{\in [0, 1]} \to v$$
$$= v \equiv \pi^2 (\mathbb{DL})$$

In
$$\mathbb{Q}$$
 set $\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$

- Invariant distribution γ
 - Direct statistical exploitation... $\nu \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA

PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\lim_{T\to\infty} p_T(x,y) = \underbrace{w_T(x,y) \cdot v^{1/2}(y)}_{\propto h} \cdot \underbrace{P(X)}_{\in [0,1]} \to v$$

• $v \equiv \pi^2$ (DL)

In
$$\mathbb{Q}$$
 set $\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$

- Invariant distribution γ
 - Direct statistical exploitation... $v \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA
- PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\lim_{T \to \infty} p_T(x, y) = \underbrace{w_T(x, y) \cdot v^{1/2}(y)}_{\sim h} \cdot \underbrace{P(X)}_{\in [0, 1]} \to v$$

 $v \equiv \pi^2 \; (\mathbb{DL})$

In
$$\mathbb{Q}$$
 set $\alpha(X_t) := \frac{1}{2} \Lambda \nabla \log \nu(X_t)$

- Invariant distribution γ
 - Direct statistical exploitation... $\nu \equiv \pi$ (L)
 - Langevin + $\nu \equiv \pi$ + Discretisation + Correction \implies MALA

PRS Class (however [1] $y := X_T \sim h \equiv v^{1/2}...$)

$$\lim_{T \to \infty} p_T(x, y) = \underbrace{w_T(x, y) \cdot v^{1/2}(y)}_{\propto h} \cdot \underbrace{P(X)}_{\in [0, 1]} \to v$$
$$v \equiv \pi^2 (\mathbb{DL})$$

1 - Single Core: Quasi-Stationary Monte Carlo

Murray Pollock (Warwick)

$$\kappa(x) = rac{\|
abla \log \pi(x)\|^2 + \Delta \log \pi(x)}{2} - \ell \in \mathbb{R}_{\geq 0},$$

and the quasi-limiting distribution

 $\lim_{t\to\infty}\mathcal{L}(X_t|\tau>t).$

• Under weak regularity conditions has quasi-stationary distribution π .

Statistical Interpretation:

- Big Data? → Subsampling
- Implementation? \rightarrow ScaLE

$$\kappa(x) = rac{\|
abla \log \pi(x)\|^2 + \Delta \log \pi(x)}{2} - \ell \in \mathbb{R}_{\geq 0},$$

and the quasi-limiting distribution

 $\lim_{t\to\infty}\mathcal{L}(X_t|\tau>t).$

Under weak regularity conditions has quasi-stationary distribution π .

Statistical Interpretation:

- Big Data? → Subsampling
- Implementation? → ScaLE

$$\kappa(x) = rac{\|
abla \log \pi(x)\|^2 + \Delta \log \pi(x)}{2} - \ell \in \mathbb{R}_{\geq 0},$$

and the quasi-limiting distribution

 $\lim_{t\to\infty}\mathcal{L}(X_t|\tau>t).$

Under weak regularity conditions has quasi-stationary distribution π.
 Statistical Interpretation:

- **Big Data?** \rightarrow Subsampling
- Implementation? → ScaLE

$$\kappa(x) = rac{\|
abla \log \pi(x)\|^2 + \Delta \log \pi(x)}{2} - \ell \in \mathbb{R}_{\geq 0},$$

and the quasi-limiting distribution

 $\lim_{t\to\infty}\mathcal{L}(X_t|\tau>t).$

Under weak regularity conditions has quasi-stationary distribution π .

- Statistical Interpretation:
 - Big Data? → Subsampling
 - Implementation? → ScaLE

$$\kappa(x) = rac{\|
abla \log \pi(x)\|^2 + \Delta \log \pi(x)}{2} - \ell \in \mathbb{R}_{\geq 0},$$

and the quasi-limiting distribution

 $\lim_{t\to\infty}\mathcal{L}(X_t|\tau>t).$

Under weak regularity conditions has quasi-stationary distribution π.

- Statistical Interpretation:
 - Big Data? → Subsampling
 - Implementation? → ScaLE

1.2 - Subsampling

QSMC = Simulating BM + inhomogeneous Poisson Process κ

- Evaluating κ is O(N).
- * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
 - Simulating $PP(\kappa(x)) \equiv$ Simulating PP(K) and accepting w.p. $\kappa(X_t)/K$.
- We can make our algorithm worse (!) by choosing $\tilde{K} \ge K \dots$
- Remark on coins
- Suppose $\exists A \sim \mathcal{A}, \kappa_{A}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\kappa_{A}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

■ QSMC = Simulating BM + inhomogeneous Poisson Process κ ■ Evaluating κ is O(N).

■ * If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:

Simulating $PP(\kappa(x)) \equiv$ Simulating PP(K) and accepting w.p. $\kappa(X_t)/K$.

• We can make our algorithm worse (!) by choosing $ilde{K} \geq K \dots$

Remark on coins

Suppose $\exists A \sim \mathcal{A}, \kappa_{A}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\kappa_{A}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

- QSMC = Simulating BM + inhomogeneous Poisson Process κ
- Evaluating κ is O(N).
- If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
 - Simulating $PP(\kappa(x)) \equiv$ Simulating PP(K) and accepting w.p. $\kappa(X_t)/K$.
- We can make our algorithm worse (!) by choosing $\tilde{K} \ge K \dots$
- Remark on coins
- Suppose $\exists A \sim \mathcal{A}, \kappa_{A}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\kappa_{A}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

- QSMC = Simulating BM + inhomogeneous Poisson Process κ
- Evaluating κ is O(N).
- If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:

• We can make our algorithm worse (!) by choosing $\tilde{K} \ge K \dots$

- Remark on coins
- Suppose $\exists A \sim \mathcal{A}, \kappa_{A}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\kappa_{A}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

- QSMC = Simulating BM + inhomogeneous Poisson Process κ
- Evaluating κ is O(N).
- If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:
 - Simulating $PP(\kappa(x)) \equiv$ Simulating PP(K) and accepting w.p. $\kappa(X_t)/K$.
- We can make our algorithm worse (!) by choosing $\tilde{K} \ge K \dots$
- Remark on coins
- Suppose $\exists A \sim \mathcal{A}, \kappa_{\tilde{A}}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\kappa_{\tilde{A}}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

- QSMC = Simulating BM + inhomogeneous Poisson Process κ
- Evaluating κ is O(N).
- If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:

- We can make our algorithm worse (!) by choosing $\tilde{K} \geq K...$
- Remark on coins

Suppose $\exists A \sim \mathcal{A}, \kappa_{\tilde{A}}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\kappa_{\tilde{A}}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

- QSMC = Simulating BM + inhomogeneous Poisson Process κ
- Evaluating κ is O(N).
- If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:

- We can make our algorithm worse (!) by choosing $\tilde{K} \geq K...$
- Remark on coins

Suppose $\exists A \sim \mathcal{A}, \tilde{\kappa_A}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\tilde{\kappa_A}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

- QSMC = Simulating BM + inhomogeneous Poisson Process κ
- Evaluating κ is O(N).
- If $\forall x, \kappa(x) \leq K$ (requires localisation argument) then:

- We can make our algorithm worse (!) by choosing $\tilde{K} \geq K...$
- Remark on coins
- Suppose $\exists A \sim \mathcal{A}, \tilde{\kappa_A}(\cdot) \in [0, \tilde{K}]$ such that $\mathbb{E}_{\mathcal{A}}[\tilde{\kappa_A}(x)/\tilde{K}] = \kappa(x)/\tilde{K}$ then:

Scalability \equiv Finding $A \sim \mathcal{A}$ and $\tilde{\kappa}_A(\cdot)$ which are O(1) (trivial), such that $\tilde{K}/K \geq 1$ scales well...

Intuition is the diffusion drift is a sum:

$$\nabla \log \pi(x) = \sum_{i=0}^{N} \nabla \log f_i(x)$$

• We require control variates for good scaling of $\tilde{K}/K...$ (omitted)

- Scalability \equiv Finding $A \sim \mathcal{A}$ and $\tilde{\kappa}_A(\cdot)$ which are O(1) (trivial), such that $\tilde{K}/K \geq 1$ scales well...
- Intuition is the diffusion drift is a sum:

$$\nabla \log \pi(x) = \sum_{i=0}^{N} \nabla \log f_i(x)$$

• We require control variates for good scaling of $\tilde{K}/K...$ (omitted)

- Scalability \equiv Finding $A \sim \mathcal{A}$ and $\tilde{\kappa}_A(\cdot)$ which are O(1) (trivial), such that $\tilde{K}/K \geq 1$ scales well...
- Intuition is the diffusion drift is a sum:

$$\nabla \log \pi(x) = \sum_{i=0}^{N} \nabla \log f_i(x)$$

• We require control variates for good scaling of $\tilde{K}/K...$ (omitted)

1.3 - Single-Core: ScaLE

Implementational Problem: Trajectory death!

First Approach: Scalable Langevin Exact Algorithm (ScaLE)

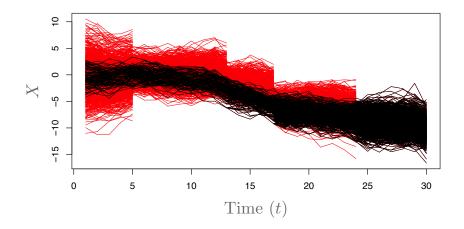
 Continuous time multi-level splitting / Importance sampling QSMC + SMC + Resampling

Implementational Problem: Trajectory death!

First Approach: Scalable Langevin Exact Algorithm (ScaLE)

 Continuous time multi-level splitting / Importance sampling QSMC + SMC + Resampling

- Implementational Problem: Trajectory death!
- First Approach: Scalable Langevin Exact Algorithm (ScaLE)
 - Continuous time multi-level splitting / Importance sampling QSMC + SMC + Resampling



1.4 - Summary

■ Summary...:

- QSMC: 'Exact' Bayesian Inference
- No intrinsic cost for exactness.
- ScaLE's well!

- Localisation
- Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.
- Scaling: Dimensionality; Control-Variate...
- Implementational Details

■ Summary...:

QSMC: 'Exact' Bayesian Inference

- No intrinsic cost for exactness.
- ScaLE's well!

- Localisation
- Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.
- Scaling: Dimensionality; Control-Variate...
- Implementational Details

Summary...:

- QSMC: 'Exact' Bayesian Inference
- No intrinsic cost for exactness.
- ScaLE's well!

- Localisation
- Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.
- Scaling: Dimensionality; Control-Variate...
- Implementational Details

Summary...:

- QSMC: 'Exact' Bayesian Inference
- No intrinsic cost for exactness.
- ScaLE's well!

- Localisation
- Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.
- Scaling: Dimensionality; Control-Variate...
- Implementational Details

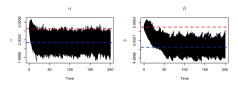
Summary...:

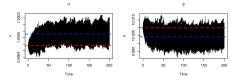
- QSMC: 'Exact' Bayesian Inference
- No intrinsic cost for exactness.
- ScaLE's well!

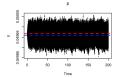
- Localisation
- Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.
- Scaling: Dimensionality; Control-Variate...
- Implementational Details

Example

2²⁷ dataset, contaminated regression model







Murray Pollock (Warwick)

Durham Symposium

2 - Multi-Core: Bayesian Fusion

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

Simple Approach... [Think (A)BC]

- 1 Simulate $X^{(1)} \sim f_1, X^{(2)} \sim f_2, \dots, X^{(C)} \sim f_C.$
- 2 Accept if $X^{(1)} = X^{(2)} = \ldots = X^{(C)}$, else go to 1/.
- 3 Return $X := X^{(1)}$ (~ $\prod_{i=0}^{C} f_i \propto \pi$).
- Recall Langevin: If $X_0 \sim v$, then $\forall t > 0, X_t \sim v$:
 - \blacksquare L₁,...,L_C,DL₁,...,DL_C...

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

■ Simple Approach... [Think (A)BC]

- **1** Simulate $X^{(1)} \sim f_1, X^{(2)} \sim f_2, \dots, X^{(C)} \sim f_C$.
- 2 Accept if $X^{(1)} = X^{(2)} = \ldots = X^{(C)}$, else go to 1/.
- 3 Return $X := X^{(1)}$ (~ $\prod_{i=0}^{C} f_i \propto \pi$).
- Recall Langevin: If $X_0 \sim \nu$, then $\forall t > 0, X_t \sim \nu$:
 - \blacksquare L₁,...,L_C,DL₁,...,DL_C...

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

Simple Approach... [Think (A)BC]

- 1 Simulate $X^{(1)} \sim f_1, X^{(2)} \sim f_2, \dots, X^{(C)} \sim f_C.$
- 2 Accept if $X^{(1)} = X^{(2)} = \ldots = X^{(C)}$, else go to 1/.
- 3 Return $X := X^{(1)}$ (~ $\prod_{i=0}^{C} f_i \propto \pi$).
- **Recall Langevin:** If $X_0 \sim v$, then $\forall t > 0, X_t \sim v$:
 - \blacksquare L₁,...,L_C,DL₁,...,DL_C...

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

Simple Approach... [Think (A)BC]
 Simulate X⁽¹⁾ ~ f₁, X⁽²⁾ ~ f₂,..., X^(C) ~ f_C.
 Accept if X⁽¹⁾ = X⁽²⁾ = ... = X^(C), else go to 1/.
 Return X := X⁽¹⁾ (~ Π^C_{i=0} f_i ∝ π).
 Recall Langevin: If X₀ ~ ν, then ∀t > 0, X_t ~ ν:
 L₁..., L_C.DL₁..., DL_C...

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

Simple Approach... [Think (A)BC]
 Simulate X⁽¹⁾ ~ f₁, X⁽²⁾ ~ f₂,..., X^(C) ~ f_C.
 Accept if X⁽¹⁾ = X⁽²⁾ = ... = X^(C), else go to 1/.
 Return X := X⁽¹⁾ (~ Π^C_{t=0} f_t ∝ π).
 Recall Langevin: If X₀ ~ ν, then ∀t > 0, X_t ~ ν:
 L₁,...,L_C, DL₁,..., DL_C...

Recall Target:

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

Simple Approach... [Think (A)BC] Simulate X⁽¹⁾ ~ f₁, X⁽²⁾ ~ f₂,..., X^(C) ~ f_C. Accept if X⁽¹⁾ = X⁽²⁾ = ... = X^(C), else go to 1/. Return X := X⁽¹⁾ (~ Π^C_{i=0} f_i ∝ π). Recall Langevin: If X₀ ~ y, then V_i > 0, X_i ~ y.

 $\blacksquare L_1, \ldots, L_C, DL_1, \ldots, DL_C \ldots$

Recall Target:

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

Simple Approach... [Think (A)BC] Simulate $X^{(1)} \sim f_1, X^{(2)} \sim f_2, ..., X^{(C)} \sim f_C$. Accept if $X^{(1)} = X^{(2)} = ... = X^{(C)}$, else go to 1/. Return $X := X^{(1)} (\sim \prod_{i=0}^{C} f_i \propto \pi)$.

Recall Langevin: If $X_0 \sim v$, then $\forall t > 0, X_t \sim v$:

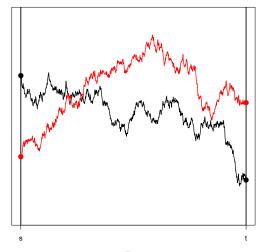
 $\blacksquare L_1, \ldots, L_C, DL_1, \ldots, DL_C \ldots$

Recall Target:

$$\pi(x) \propto \prod_{c=1}^{C} f_c(x).$$

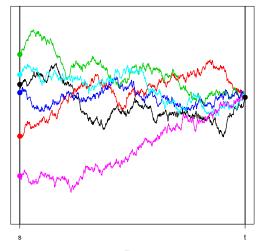
C - Number of cores / experts / 'views' ...; f_c - Sub-posterior.

$$\blacksquare L_1, \ldots, L_C, DL_1, \ldots, DL_C \ldots$$



Murray Pollock (Warwick)

×



×

Fusion Measure $(\mathfrak{X} \in \Omega_0)$

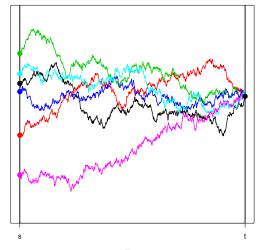
$$\mathrm{d}\mathbb{F}(\mathfrak{X}) \propto \mathrm{d}\left(\times_{c=1}^{C} \mathbb{D}\mathbb{L}_{c}^{\boldsymbol{X}_{0}^{(c)},\boldsymbol{y}_{T}}\right)(\mathfrak{X}) \cdot \prod_{c=1}^{C} \left[f_{c}^{2}\left(\boldsymbol{X}_{0}^{(c)}\right) \rho_{T,c}^{\mathsf{dl}}\left(\boldsymbol{y}_{T} \mid \boldsymbol{X}_{0}^{(c)}\right) \cdot \frac{1}{f_{c}(\boldsymbol{y}_{T})}\right],$$

• Key Idea: If $\mathfrak{X} \sim \mathbb{F}$, then $\mathfrak{X}_T \sim \prod_{c=1}^C f_c \propto \pi$ (!)

Fusion Measure $(\mathfrak{X} \in \Omega_0)$

$$\mathrm{d}\mathbb{F}(\mathfrak{X}) \propto \mathrm{d}\left(\times_{c=1}^{C} \mathbb{D}\mathbb{L}_{c}^{\boldsymbol{X}_{0}^{(c)},\boldsymbol{y}_{T}}\right)(\mathfrak{X}) \cdot \prod_{c=1}^{C} \left[f_{c}^{2}\left(\boldsymbol{X}_{0}^{(c)}\right) \rho_{T,c}^{\mathsf{dl}}\left(\boldsymbol{y}_{T} \mid \boldsymbol{X}_{0}^{(c)}\right) \cdot \frac{1}{f_{c}(\boldsymbol{y}_{T})}\right],$$

• Key Idea: If $\mathfrak{X} \sim \mathbb{F}$, then $\mathfrak{X}_T \sim \prod_{c=1}^C f_c \propto \pi$ (!)



Murray Pollock (Warwick)

×

• Standard' Multi-Core Problem ' \equiv ' $\mathfrak{X} \sim \mathbb{P}$ (with practical constraints)

$$\mathrm{d}\mathbb{P}^{\mathrm{bm}}\left(\mathfrak{X}
ight) \propto \,\mathrm{d}\!\left(\!\! imes_{c=1}^{C} \mathbb{W}_{c}^{\mathbf{X}_{0}^{(c)}, oldsymbol{y}_{T}}
ight)\!\left(\mathfrak{X}
ight) \cdot h_{T}^{\mathrm{bm}}\!\left(oldsymbol{X}_{0}^{(1:C)}, oldsymbol{y}_{T}
ight), \hspace{0.2cm} \mathfrak{X} \in oldsymbol{\Omega}_{\mathbf{0}}$$

Standard' Multi-Core Problem '≡' X ~ F (with practical constraints) Rejection Sampling! Possible proposals X ~ P, w.p. P(X):

Brownian':

$$\mathrm{d}\mathbb{P}^{\mathsf{bm}}\left(\mathfrak{X}\right) \propto \mathrm{d}\!\left(\!\times_{c=1}^{C} \mathbb{W}_{c}^{\boldsymbol{\chi}_{0}^{(c)},\boldsymbol{y}_{T}}\right)\!\left(\mathfrak{X}\right) \cdot \boldsymbol{h}_{T}^{\mathsf{bm}}\!\left(\boldsymbol{X}_{0}^{(1:C)},\boldsymbol{y}_{T}\right), \hspace{0.2cm} \mathfrak{X} \in \boldsymbol{\Omega}_{\boldsymbol{0}}$$

• 'Standard' Multi-Core Problem ' \equiv ' $\mathfrak{X} \sim \mathbb{F}$ (with practical constraints)

■ Rejection Sampling! Possible proposals $\mathfrak{X} \sim \mathbb{P}^{\cdot}$, w.p. $P(\mathfrak{X})$:

'Brownian':

$$\mathrm{d}\mathbb{P}^{\mathrm{bm}}\left(\mathfrak{X}\right) \propto \mathrm{d}\left(\times_{c=1}^{C} \mathbb{W}_{c}^{\mathbf{X}_{0}^{(c)}, \mathbf{y}_{T}}\right)(\mathfrak{X}) \cdot h_{T}^{\mathrm{bm}}\left(\mathbf{X}_{0}^{(1:C)}, \mathbf{y}_{T}\right), \ \mathfrak{X} \in \mathbf{\Omega}_{\mathbf{0}}$$

Simple 'Brownian' Case:

• 'Optimal' $h_T^{bm}(\cdot, \cdot)$:

$$h_T^{\text{bm}}(\boldsymbol{X}_0^{(1:C)}, \boldsymbol{y}_T) \propto \underbrace{\left[\prod_{c=1}^C f_c(\boldsymbol{X}_0^{(c)})\right]}_{\text{initial case drawn}} \underbrace{\exp\left(-\frac{C \cdot ||\boldsymbol{y}_T - \bar{\boldsymbol{X}}_0||^2}{2T}\right) \cdot \exp\left(-\frac{C\sigma^2}{2T}\right)}_{\text{end point draw}}$$

• Need RS for $h_T^{bm}(\cdot, \cdot)$ end point.

Accept with probability

$$P(\mathfrak{X}) := \exp\left[-\sum_{c=1}^{C}\int_{0}^{T}\kappa_{c}(\boldsymbol{X}_{t}^{(c)})\,\mathrm{d}t\right] \in [0,1]$$

Exact ('Talking') vs. Approximate ('Silent' / 'Lecture') Fusion Remark: 'Ornstein-Uhlenbeck' special case

- Simple 'Brownian' Case:
 - 'Optimal' $h_T^{bm}(\cdot, \cdot)$:

$$h_{T}^{\text{bm}}(\boldsymbol{X}_{0}^{(1:C)}, \boldsymbol{y}_{T}) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}(\boldsymbol{X}_{0}^{(c)})\right]}_{\text{initial core draws}} \underbrace{\exp\left(-\frac{C \cdot ||\boldsymbol{y}_{T} - \bar{\boldsymbol{X}}_{0}||^{2}}{2T}\right) \cdot \exp\left(-\frac{C\sigma^{2}}{2T}\right)}_{\text{end point draw}}$$

- Need RS for $h_T^{bm}(\cdot, \cdot)$ end point.
- Accept with probability

$$\mathsf{P}(\mathfrak{X}) := \exp\left[-\sum_{c=1}^{C}\int_{0}^{T}\kappa_{c}(\boldsymbol{X}_{t}^{(c)})\,\mathrm{d}t\right] \in [0,1]$$

- Simple 'Brownian' Case:
 - 'Optimal' $h_T^{bm}(\cdot, \cdot)$:

$$h_{T}^{\text{bm}}(\boldsymbol{X}_{0}^{(1:C)}, \boldsymbol{y}_{T}) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}(\boldsymbol{X}_{0}^{(c)})\right]}_{\text{initial core draws}} \underbrace{\exp\left(-\frac{C \cdot \|\boldsymbol{y}_{T} - \bar{\boldsymbol{X}}_{0}\|^{2}}{2T}\right) \cdot \exp\left(-\frac{C\sigma^{2}}{2T}\right)}_{\text{end point draw}}$$

• Need RS for $h_T^{bm}(\cdot, \cdot)$ end point.

Accept with probability

$$P(\mathfrak{X}) := \exp\left[-\sum_{c=1}^{C}\int_{0}^{T}\kappa_{c}(\boldsymbol{X}_{t}^{(c)})\,\mathrm{d}t\right] \in [0,1]$$

- Simple 'Brownian' Case:
 'Optimal' h^{bm}_T(·, ·):
 - Optimal $h_T^{\text{sm}}(\cdot, \cdot)$:

$$h_{T}^{\text{bm}}(\boldsymbol{X}_{0}^{(1:C)}, \boldsymbol{y}_{T}) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}(\boldsymbol{X}_{0}^{(c)})\right]}_{\text{initial core draws}} \underbrace{\exp\left(-\frac{C \cdot \|\boldsymbol{y}_{T} - \bar{\boldsymbol{X}}_{0}\|^{2}}{2T}\right) \cdot \exp\left(-\frac{C\sigma^{2}}{2T}\right)}_{\text{end point draw}}$$

- Need RS for $h_T^{bm}(\cdot, \cdot)$ end point.
- Accept with probability

$$\boldsymbol{P}(\mathfrak{X}) := \exp\left[-\sum_{c=1}^{C}\int_{0}^{T}\boldsymbol{\kappa}_{c}(\boldsymbol{X}_{t}^{(c)})\,\mathrm{d}t\right] \in [0,1]$$

- Simple 'Brownian' Case:
 'Optimal' h^{bm}_T(·, ·):
 - Optimal $h_T^{\text{off}}(\cdot, \cdot)$:

$$h_{T}^{\text{bm}}(\boldsymbol{X}_{0}^{(1:C)}, \boldsymbol{y}_{T}) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}(\boldsymbol{X}_{0}^{(c)})\right]}_{\text{initial core draws}} \underbrace{\exp\left(-\frac{C \cdot \|\boldsymbol{y}_{T} - \bar{\boldsymbol{X}}_{0}\|^{2}}{2T}\right) \cdot \exp\left(-\frac{C\sigma^{2}}{2T}\right)}_{\text{end point draw}}$$

- Need RS for $h_T^{bm}(\cdot, \cdot)$ end point.
- Accept with probability

$$\boldsymbol{P}(\mathfrak{X}) := \exp\left[-\sum_{c=1}^{C}\int_{0}^{T}\boldsymbol{\kappa}_{c}(\boldsymbol{X}_{t}^{(c)})\,\mathrm{d}t\right] \in [0,1]$$

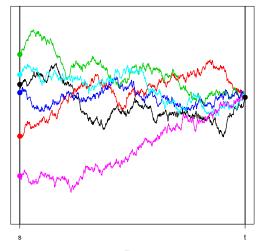
- Simple 'Brownian' Case:
 'Optimal' h^{bm}_T(·, ·):
 - Optimal $h_T^{\text{one}}(\cdot, \cdot)$:

$$h_{T}^{\text{bm}}(\boldsymbol{X}_{0}^{(1:C)}, \boldsymbol{y}_{T}) \propto \underbrace{\left[\prod_{c=1}^{C} f_{c}(\boldsymbol{X}_{0}^{(c)})\right]}_{\text{initial core draws}} \underbrace{\exp\left(-\frac{C \cdot \|\boldsymbol{y}_{T} - \bar{\boldsymbol{X}}_{0}\|^{2}}{2T}\right) \cdot \exp\left(-\frac{C\sigma^{2}}{2T}\right)}_{\text{end point draw}}$$

- Need RS for $h_T^{bm}(\cdot, \cdot)$ end point.
- Accept with probability

$$\boldsymbol{P}(\mathfrak{X}) := \exp\left[-\sum_{c=1}^{C}\int_{0}^{T}\boldsymbol{\kappa}_{c}(\boldsymbol{X}_{t}^{(c)})\,\mathrm{d}t\right] \in [0,1]$$

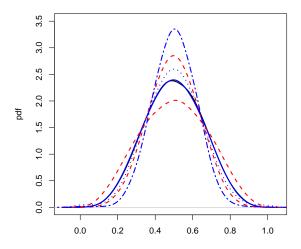
Exact ('Talking') vs. Approximate ('Silent' / 'Lecture') Fusion
 Remark: 'Ornstein-Uhlenbeck' special case



×

Example

Beta(5,5) density



u

Questions?