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Couplings

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two probability spaces. A
coupling of µ1 and µ2 is a measure µ on (Ω1 × Ω2,F1 ×F2)
with marginals µ1 and µ2.

We will consider coupling of (the laws of) Markov processes X
and Y .

Coupling Time: τ = inf{s > 0 : Xt = Yt for all t > s}.
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Coupling and ‘closeness’ of laws of Markov processes

Aldous’ Inequality: For any t > 0,

||µ1,t − µ2,t ||TV ≤ P(τ > t),

where

µ1,t and µ2,t are distributions of Xt and Yt respectively.
|| · ||TV is the total variation distance between measures given
by

||µ1,t − µ2,t ||TV = sup
A Borel set

|µ1,t(A)− µ2,t(A)|

Aldous’ inequality can be used to estimate how ‘close’ the
laws of X and Y are after time t. If stationary distribution
exists, this gives mixing time estimates.

Maximal coupling: Equality above for all t. (Exists under
regularity assumptions, but usually hard to describe.)
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Markovian couplings

A common feature of typically used couplings is that the
coupled processes are co-adapted to the same filtration.

Intuitively, the “next move” of each of the coupled processes
depends only on the past history of both the processes.
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Markovian couplings (contd.)

A coupling of Markov processes X and Y starting from x0 and
y0 is called Markovian if

(Xt+s ,Yt+s)t≥0 | Fs

is again a coupling of the laws of X and Y starting from
(Xs ,Ys). Here Fs = σ{(Xs′ ,Ys′) : s ′ ≤ s}.

The coupling is not allowed to look into the future.

Usually easier to describe and analyze explicitly.

Example: Reflection coupling of simple random walks / Brownian
motions.
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Questions

Can we get close to the maximal rate using Markovian
couplings?

If so, what class of Markov processes admit Markovian
couplings that are “near maximal”?

When Markovian couplings fail, can we construct general
explicit ways to construct non-Markovian couplings that are
“near maximal”?

We will investigate these questions for diffusion processes.
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Coupling and diffusions

Diffusions are Markov process in Rd (d ≥ k) given by

X (t) = x +

∫ t

0
V0(X (s))ds +

k∑
i=1

∫ t

0
Vi (X (s)) ◦ dWi (s)

where x ∈ Rd and (W1, . . . ,Wk) is a standard Brownian motion
on Rk .
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Coupling and diffusions (contd.)

When k = d and (V1(x), . . . ,Vk(x)) span Rd for each
x ∈ Rd , X is called an elliptic diffusion.

In this case, Rd furnished with the Riemannian metric
G (x) = (σ(x)σ(x)T )−1 where σ(x) = [V1(x), . . . ,Vd(x)]
becomes a Riemannian manifold and X (t) becomes a
Brownian motion with drift on this new space.

When k < d , the driving Brownian motion has dimension
lower than the diffusion itself. Nevertheless, it might have a
smooth density if V0,V1, . . . ,Vk satisfy the Hörmander
condition (iterated Lie brackets span the whole tangent space.
Then X is called a hypoelliptic diffusion.
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Markovian maximal couplings for elliptic diffusions

Markovian maximal couplings are indeed rare. In fact, one can
completely characterize the elliptic diffusions which admit such
couplings.

Theorem (B. and Kendall, 2014)

If a Markovian maximal coupling exists for two copies of an elliptic
diffusion started from sufficiently many pairs of starting points,
then the Riemannian manifold obtained via the intrinsic metric
must be a sphere, Euclidean space or a hyperbolic space.

Moreover, the drift vector fields are in one-one correspondence
with generators of flows of isometries.
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Efficient couplings tend to be non-Markovian

Typically efficient couplings (coupling rates comparable to TV
distance) tend to be non-Markovian.

In the hypoelliptic setup, there are examples where Markovian
couplings do not even come close to attaining rates
comparable to TV distance.

In the existing literature, applicable couplings are usually
Markovian and the few examples of non-Markovian couplings
are either highly abstract and hence unusable, or highly
specialised to particular cases.

A schematic approach to constructing explicit non-Markovian
couplings is of utmost importance.
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Towards a general efficient non-Markovian coupling
strategy

We will outline an explicit efficient non-Markovian coupling
strategy for the Kolmogorov diffusion and see how the technique
extends to the Brownian motion on the Heisenberg group, yielding
sharp total variation bounds and also providing important
geometric information (gradient estimates).
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Some efficient non-Markovian couplings and applications

Consider the iterated Kolmogorov diffusion of order n given by

Xt =

(
Bt ,

∫ t

0
Bsds, . . . ,

∫ t

0

∫ sn−1

0
· · ·
∫ s2

0
Bs1ds2 . . . dsn−1

)

This is a Gaussian process, so we can explicitly compute total
variation distances. If the process is started from distinct
points in Rn such that the first k co-ordinates agree, then TV

distance at time t is ∼ t−k−
1
2 .

Markovian couplings couple at rate at best t−1/2 as the
‘Brownian motions have to separate before coupling’ and the
coupling time stochastically dominates the Brownian coupling
time. Thus, Markovian couplings can never be efficient.
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Outline of the efficient non-Markovian coupling
[B.-Kendall, 2015]

The coupling is based on the Karhunen-Loeve expansion of
Brownian motion on [0,T ]:

B(t) =
√
T
∞∑
i=1

Zk

√
2 sin

((
k − 1

2

)
πt/T

)(
k − 1

2

)
π

, Zk i.i.d N(0, 1).

Write Zk = Wk(1) where Wk are i.i.d. Brownian motions.

Appropriate Markovian couplings of the infinite dimensional
Brownian motions {Wk(t) : t ∈ [0,T ]}k≥1 and
{W̃k(t) : t ∈ [0,T ]}k≥1 produce non-Markovian couplings of
the respective Brownian paths {B(t) : t ∈ [0,T ]} and
{B̃(t) : t ∈ [0,T ]}.

Iterating this construction on successive intervals [2j , 2j+1]
yield an efficient non-Markovian coupling.
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Brownian Motion on Heisenberg group

Heisenberg group H3: R3 furnished with the group structure

(x1, y1, z1) ? (x2, y2, z2) = (x1+x2, y1+y2, z1+z2+(y2x1−x2y1)).

Canonical example of a sub-Riemannian space with
applications in physics, harmonic analysis, geometry and
rough paths theory (Neuenschwander, Elderidge, Baudoin,
Bakry, Bonnefont, Chafai, Lyons, Hairer, etc.)

Brownian motion on the Heisenberg group is two-dimensional
standard BM along with Levy stochastic area:

X (t) =

(
B1(t),B2(t),

∫ t

0
B1(s)dB2(s)−

∫ t

0
B2(s)dB1(s)

)
.

Sayan Banerjee Coupling, hypoellipticity and gradient estimates



Brownian Motion on Heisenberg group

Heisenberg group H3: R3 furnished with the group structure

(x1, y1, z1) ? (x2, y2, z2) = (x1+x2, y1+y2, z1+z2+(y2x1−x2y1)).

Canonical example of a sub-Riemannian space with
applications in physics, harmonic analysis, geometry and
rough paths theory (Neuenschwander, Elderidge, Baudoin,
Bakry, Bonnefont, Chafai, Lyons, Hairer, etc.)

Brownian motion on the Heisenberg group is two-dimensional
standard BM along with Levy stochastic area:

X (t) =

(
B1(t),B2(t),

∫ t

0
B1(s)dB2(s)−

∫ t

0
B2(s)dB1(s)

)
.

Sayan Banerjee Coupling, hypoellipticity and gradient estimates



Brownian Motion on Heisenberg group

Heisenberg group H3: R3 furnished with the group structure

(x1, y1, z1) ? (x2, y2, z2) = (x1+x2, y1+y2, z1+z2+(y2x1−x2y1)).

Canonical example of a sub-Riemannian space with
applications in physics, harmonic analysis, geometry and
rough paths theory (Neuenschwander, Elderidge, Baudoin,
Bakry, Bonnefont, Chafai, Lyons, Hairer, etc.)

Brownian motion on the Heisenberg group is two-dimensional
standard BM along with Levy stochastic area:

X (t) =

(
B1(t),B2(t),

∫ t

0
B1(s)dB2(s)−

∫ t

0
B2(s)dB1(s)

)
.

Sayan Banerjee Coupling, hypoellipticity and gradient estimates



Total variation bounds

Theorem (B., Gordina and Mariano, 2016)

The total variation distance between the laws L (Xt) ,L
(

X̃t

)
of

two Brownian motions on the Heisenberg group started from

(b1, b2, a) and
(
b̃1, b̃2, ã

)
respectively satisfy

dTV

(
L (Xt) ,L

(
X̃t

))
≤ C1


∣∣∣b− b̃

∣∣∣
√
t

+

∣∣∣a− ã + b1b̃2 − b2b̃1

∣∣∣
t


dTV

(
L (Xt) ,L

(
X̃t

))
≥ C2


∣∣∣b− b̃

∣∣∣
√
t

I(b 6= b̃) +
|a− ã|

t
I(b = b̃)


for t ≥ max

{∣∣∣b− b̃
∣∣∣2 , 2 ∣∣∣a− ã + b1b̃2 − b2b̃1

∣∣∣}.
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Gradient estimates

The sub-Laplacian on the Heisenberg group is given by

∆H = X 2 + Y2

where

X = ∂x − y∂z

Y = ∂y + x∂z

are the left-invariant vector fields.

u is said to be harmonic in a domain D if ∆Hu = 0 on D and u is
continuous on D.
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Gradient estimates (contd.)

Theorem (B., Gordina and Mariano, 2016)

Suppose u is non-negative and harmonic on a domain D. There
exists a constant C > 0 that does not depend on u such that for
each x ∈ D,

|∇Hu(x)| 6 C

(
1 +

1

δx
+

1

δ4x
+

(1 + δx)3

δ4x

)
u(x).

where δx = dCC (x ,Dc) (Carnot-Caretheodory distance).

Similar theorems were obtained by Cranston (’91, ’92) for some
elliptic diffusions using Markovian couplings (which fail in our
case).
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Conclusions and Remarks (Markovian couplings)

Unlike the elliptic setup, very little is known about existence
of Markovian couplings for general hypoelliptic diffusions.

Challenging problem as we have to successfully couple
Brownian motions along with a collection of their path
functionals simultaneously.

[B.-Kendall, 2017] construct successful Markovian couplings
for hypoelliptic diffusions driven by a two-dimensional
Brownian motion (W1,W2) and polynomial vector fields.
Coupling achieved by simultaneously coupling (W1,W2) along
with the set of Brownian integrals {

∫
W i

1W
j
2 ◦ dW2}i+j≤n

using a multi-scale technique.

The technique is extendable to nilpotent diffusions.
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Conclusions and Remarks (non-Markovian couplings)

How much of the existing analytic results in sub-Riemannian
geometry can we recover via couplings (Poincare inequalities,
gradient bounds on heat kernel, etc.)?

An important ingredient in this direction is the Kuwada
duality, which establishes the equivalence of Lp-heat kernel
gradient bounds and Lq-Wasserstein distance bounds
(p−1 + q−1 = 1).

Total variation distance for Kolmogorov diffusion and BM on
Heisenberg group decays faster if the driving Brownian
motions start from the same point. Is this phenomenon more
general?

How robust is the developed non-Markovian coupling scheme?
Can similar schemes be applied to other hypoelliptic
diffusions?
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Thank You!
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