The Langevin MCMC: Theory and Methods

Nicolas Brosse, Alain Durmus, Eric Moulines, Marcelo Pereyra

Telecom ParisTech, Ecole Polytechnique, Edinburgh University

July 31, 2017

LMS Durham Symposium, E. Moulines

イロト 不得 トイヨト イヨト

Motivation

Framework Strongly log-concave distribution Convex and Super-exponential densities Non-smooth potentials Conclusions

1 Motivation

- 2 Framework
- 3 Strongly log-concave distribution
- 4 Convex and Super-exponential densities
- 5 Non-smooth potentials
- 6 Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Motivation

Framework Strongly log-concave distribution Convex and Super-exponential densities Non-smooth potentials Conclusions

Introduction

- Sampling distribution over high-dimensional state-space has recently attracted a lot of research efforts in computational statistics and machine learning community...
- Applications (non-exhaustive)
 - 1 Bayesian inference for high-dimensional models,
 - 2 Bayesian inverse problems (e.g., image restoration and deblurring),
 - **3** Aggregation of estimators and experts,
 - 4 Bayesian non-parametrics.
- Most of the sampling techniques known so far do not scale to high-dimension... Challenges are numerous in this area...

イロト 不得 トイヨト イヨト

Logistic and probit regression

- Likelihood: Binary regression set-up in which the binary observations (responses) $\{Y_i\}_{i=1}^n$ are conditionally independent Bernoulli random variables with success probability $\{F(\boldsymbol{\beta}^T X_i)\}_{i=1}^n$, where
 - **1** X_i is a d dimensional vector of known covariates,
 - **2** β is a *d* dimensional vector of unknown regression coefficient
 - **3** F is the link function.
- Two important special cases:
 - **1** probit regression: F is the standard normal cumulative distribution function,
 - **2** logistic regression: F is the standard logistic cumulative distribution function:

 $F(t) = e^t / (1 + e^t)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Motivation

Framework Strongly log-concave distribution Convex and Super-exponential densities Non-smooth potentials Conclusions

Bayes 101

.

 Bayesian analysis requires a prior distribution for the unknown regression parameter

$$\pi(\boldsymbol{\beta}) \propto \exp\left(-\frac{1}{2}\boldsymbol{\beta}' \Sigma_{\boldsymbol{\beta}}^{-1} \boldsymbol{\beta}
ight) \quad \text{or} \quad \pi(\boldsymbol{\beta}) = \exp\left(-\sum_{i=1}^{d} \alpha_i |\beta_i|
ight)$$

• The posterior of β is up to a proportionality constant given by

$$\pi(\boldsymbol{\beta}|(Y,X)) \propto \prod_{i=1}^{n} F^{Y_i}(\beta'X_i)(1 - F(\beta'X_i))^{1-Y_i}\pi(\boldsymbol{\beta})$$

イロト 不得 トイヨト イヨト

Motivation

Framework Strongly log-concave distribution Convex and Super-exponential densities Non-smooth potentials Conclusions

New challenges

Problem the number of predictor variables d is large (10^4 and up). Examples

- text categorization,
- genomics and proteomics (gene expression analysis), ,
- other data mining tasks (recommendations, longitudinal clinical trials, ..).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Motivation Framework g-concave distribution

Strongly log-concave distribution Convex and Super-exponential densities Non-smooth potentials Conclusions

A daunting problem ?

- For Gaussian prior (ridge regression), the potential U is smooth strongly convex.
- For Laplace prior (Lasso our fused Lasso) regression, the potential *U* is non-smooth but still convex...
- A wealth of efficient optimisation algorithms are now available to solve this problem in very high-dimension...
- (long term) Objective:
 - Contribute to fill the gap between optimization and simulation. Good optimization methods are in general a good source of inspiration to design efficient sampler.
 - Develop algorithms converging to the target distribution polynomially with the dimension (more precise statements below)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2 Framework

- 3 Strongly log-concave distribution
- 4 Convex and Super-exponential densities
- 5 Non-smooth potentials
- 6 Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Framework

Denote by π a target density w.r.t. the Lebesgue measure on \mathbb{R}^d , known up to a normalisation factor

$$x \mapsto \pi(x) \stackrel{\text{\tiny def}}{=} \mathrm{e}^{-U(x)} / \int_{\mathbb{R}^d} \mathrm{e}^{-U(y)} \mathrm{d}y \; ,$$

Implicitly, $d \gg 1$.

Assumption: U is L-smooth : twice continuously differentiable and there exists a constant L such that for all $x, y \in \mathbb{R}^d$,

$$\|\nabla U(x) - \nabla U(y)\| \le L \|x - y\|.$$

(Overdamped) Langevin diffusion

Langevin SDE:

$$\mathrm{d}Y_t = -\nabla U(Y_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t \;,$$

where $(B_t)_{t\geq 0}$ is a *d*-dimensional Brownian Motion.

Notation: $(P_t)_{t\geq 0}$ the Markov semigroup associated to the Langevin diffusion:

$$P_t(x, A) = \mathbb{P}(X_t \in A | X_0 = x), \quad x \in \mathbb{R}^d, A \in \mathcal{B}(\mathbb{R}^d).$$

• $\pi(x) \propto \exp(-U(x))$ is the unique invariant probability measure.

イロト 不得 トイヨト イヨト

Discretized Langevin diffusion

Idea: Sample the diffusion paths, using the Euler-Maruyama (EM) scheme:

$$X_{k+1} = X_k - \gamma_{k+1} \nabla U(X_k) + \sqrt{2\gamma_{k+1}} Z_{k+1}$$

where

- $(Z_k)_{k\geq 1}$ is i.i.d. $\mathcal{N}(0, \mathbf{I}_d)$
- $(\gamma_k)_{k\geq 1}$ is a sequence of stepsizes, which can either be held constant or be chosen to decrease to 0 at a certain rate.
- Closely related to the (stochastic) gradient descent algorithm.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Discretized Langevin diffusion: constant stepsize

- When the stepsize is held constant, *i.e.* $\gamma_k = \gamma$, then $(X_k)_{k \ge 1}$ is an homogeneous Markov chain with Markov kernel R_{γ}
- Under some appropriate conditions, this Markov chain is irreducible, positive recurrent \rightsquigarrow unique invariant distribution π_{γ} which does not coincide with the target distribution π .
- Questions:
 - For a given precision $\epsilon > 0$, how should I choose the stepsize $\gamma > 0$ and the number of iterations n so that : $\|\delta_x R_{\gamma}^n - \pi\|_{TV} \le \epsilon$
 - Is there a way to choose the starting point x cleverly ?
 - Auxiliary question: quantify the distance between π_{γ} and π .

Discretized Langevin diffusion: decreasing stepsize

- When (γ_k)_{k≥1} is nonincreasing and non constant, (X_k)_{k≥1} is an inhomogeneous Markov chain associated with the kernels (R_{γ_k})_{k≥1}.
- **Notation**: Q^p_{γ} is the composition of Markov kernels

 $Q_{\gamma}^p = R_{\gamma_1} R_{\gamma_2} \dots R_{\gamma_p}$

With this notation, $\mathbb{E}_x[f(X_p)] = \delta_x Q^p_{\gamma} f$.

Questions:

- Convergence : is there a way to choose the step sizes so that $\|\delta_x Q_\gamma^p \pi\|_{\rm TV} \to 0$ and if yes, what is the optimal way of choosing the stepsizes ?...
- Optimal choice of simulation parameters : What is the number of iterations required to reach a neighborhood of the target: $\|\delta_x Q_2^p - \pi\|_{TV} \le \epsilon$ starting from a given point x
- Should we use fixed or decreasing step sizes ?

2 Framework

3 Strongly log-concave distribution

4 Convex and Super-exponential densities

5 Non-smooth potentials

6 Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Strongly convex potential

■ Assumption: *U* is *L*-smooth and *m*-strongly convex

$$\|\nabla U(x) - \nabla U(y)\|^{2} \le L \|x - y\|^{2}$$
$$\langle \nabla U(x) - \nabla U(y), x - y \ge m \|x - y\|^{2}$$

Outline of the proof

- **1** Control in Wasserstein distance of the laws of the Langevin diffusion and its discretized version.
- **2** Relating Wassertein distance result to total variation.
- Key technique: (Synchronous and Reflection) coupling !

イロト 不得 トイヨト イヨト

Wasserstein distance

Definition

For μ, ν two probabilities measure on \mathbb{R}^d , define

$$W_{2}\left(\mu,\nu\right) = \inf_{(X,Y)\in\Pi\left(\mu,\nu\right)} \mathbb{E}^{1/2}\left[\left\|X-Y\right\|^{2}\right],$$

where $\Pi(\mu,\nu)$ is the set of coupling of μ,ν : $(X,Y) \in \Pi(\mu,\nu)$ if and only if $X \sim \mu$ and $Y \sim \nu$.

LMS Durham Symposium, E. Moulines

Wasserstein distance convergence

Theorem

Assume that U is L-smooth and m-strongly convex. Then, for all $x, y \in \mathbb{R}^d$ and $t \ge 0$,

$$W_2\left(\delta_x P_t, \delta_y P_t\right) \le e^{-mt} \left\| x - y \right\|$$

The contraction depends only on the strong convexity constant.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Synchronous Coupling

$$\begin{cases} \mathrm{d}Y_t &= -\nabla U(Y_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t \ ,\\ \mathrm{d}\tilde{Y}_t &= -\nabla U(\tilde{Y}_t)\mathrm{d}t + \sqrt{2}\mathrm{d}B_t \ , \end{cases} \quad \text{where } (Y_0,\tilde{Y}_0) = (x,y). \end{cases}$$

This SDE has a unique strong solution $(Y_t, \tilde{Y}_t)_{t\geq 0}$. Since

$$d\{Y_t - \tilde{Y}_t\} = -\left\{\nabla U(Y_t) - \nabla U(\tilde{Y}_t)\right\} dt$$

The product rule for semimartingales imply

$$d \left\| Y_t - \tilde{Y}_t \right\|^2 = -2 \left\langle \nabla U(Y_t) - \nabla U(\tilde{Y}_t), Y_t - \tilde{Y}_t \right\rangle dt.$$

・ロト ・個ト ・ヨト ・ヨト 三日

Synchronous Coupling

$$\left\|Y_t - \tilde{Y}_t\right\|^2 = \left\|Y_0 - \tilde{Y}_0\right\|^2 - 2\int_0^t \left\langle (\nabla U(Y_s) - \nabla U(\tilde{Y}_s)), Y_s - \tilde{Y}_s \right\rangle \mathrm{d}s ,$$

Since U is strongly convex $\langle \nabla U(y) - \nabla U(y'), y-y'\rangle \geq m \left\|y-y'\right\|^2$ which implies

$$\left\|Y_t - \tilde{Y}_t\right\|^2 \le \left\|Y_0 - \tilde{Y}_0\right\|^2 - 2m \int_0^t \left\|Y_s - \tilde{Y}_s\right\|^2 \mathrm{d}s.$$

Grömwall inequality:

$$\left\|Y_t - \tilde{Y}_t\right\|^2 \le \left\|Y_0 - \tilde{Y}_0\right\|^2 e^{-2mt}$$

LMS Durham Symposium, E. Moulines

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Theorem

Assume that U is L-smooth and m-strongly convex. Then, for any $x\in \mathbb{R}^d$ and $t\geq 0$

$$\mathbb{E}_{x}\left[\|Y_{t} - x^{\star}\|^{2}\right] \leq \|x - x^{\star}\|^{2} e^{-2mt} + \frac{d}{m}(1 - e^{-2mt}).$$

where

$$x^{\star} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} U(x) \; .$$

The stationary distribution π satisfies

$$\int_{\mathbb{R}^d} \left\| x - x^\star \right\|^2 \pi(\mathrm{d}x) \le d/m.$$

The constant depends only linearly in the dimension d.

Elements of proof

• The generator \mathscr{A} associated with $(P_t)_{t\geq 0}$ is given, for all $f\in C^2(\mathbb{R}^d)$ and $x\in\mathbb{R}^d$ by:

 $\mathscr{A}f(x) = -\langle \nabla U(x), \nabla f(x) \rangle + \Delta f(x) .$

Set V(x) = ||x − x^{*}||². Since ∇U(x^{*}) = 0 and using the strong convexity,

 $\mathscr{A}V(x) = 2\left(-\left\langle \nabla U(x) - \nabla U(x^{\star}), x - x^{\star} \right\rangle + d\right) \le 2\left(-mV(x) + d\right) \;.$

化白豆 化氟医化医医医化医医

Elements of proof

Key relation

 $\mathscr{A}V(x) \le 2\left(-mV(x) + d\right) \ .$

Denote for all $t \geq 0$ and $x \in \mathbb{R}^d$ by

$$v(t,x) = P_t V(x) = \mathbb{E}_x \left[\|Y_t - x^\star\|^2 \right]$$

We have

$$\frac{\partial v(t,x)}{\partial t} = P_t \mathscr{A} V(x) \le -2m P_t V(x) + 2d = -2m v(t,x) + 2d ,$$

Grönwall inequality

$$v(t,x) = \mathbb{E}_x \left[\|Y_t - x^*\|^2 \right] \le \|x - x^*\|^2 e^{-2mt} + \frac{d}{m} (1 - e^{-2mt}).$$

LMS Durham Symposium, E. Moulines

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Elements of proof

Set $V(x) = ||x - x^{\star}||^2$. By Jensen's inequality and for all c > 0 and t > 0, we get

$$\begin{aligned} \pi(V \wedge c) &= \pi P_t(V \wedge c) \le \pi(P_t V \wedge c) \\ &= \int \pi(\mathrm{d}x) \, c \wedge \left\{ \|x - x^*\|^2 \mathrm{e}^{-2mt} + \frac{d}{m} (1 - \mathrm{e}^{-2mt}) \right\} \\ &\le \pi(V \wedge c) \mathrm{e}^{-2mt} + (1 - \mathrm{e}^{-2mt}) d/m \, . \end{aligned}$$

Taking the limit as $t \to +\infty$, we get $\pi(V \wedge c) \leq d/m$.

LMS Durham Symposium, E. Moulines

Contraction property of the discretization

Theorem

Assume that U is L-smooth and m-strongly convex. Then,

(i) Let $(\gamma_k)_{k\geq 1}$ be a nonincreasing sequence with $\gamma_1 \leq 2/(m+L)$. For all $x, y \in \mathbb{R}^d$ and $\ell \geq n \geq 1$,

$$W_2(\delta_x Q_{\gamma}^{n,\ell}, \delta_y Q_{\gamma}^{n,\ell}) \le \left\{ \prod_{k=n}^{\ell} (1 - \kappa \gamma_k) \left\| x - y \right\|^2 \right\}^{1/2}$$

where $\kappa = 2mL/(m+L)$. (ii) For any $\gamma \in (0, 2/(m+L))$, for all $x \in \mathbb{R}^d$ and $n \ge 1$,

$$W_2(\delta_x R^n_{\gamma}, \pi_{\gamma}) \le (1 - \kappa \gamma)^{n/2} \left\{ \|x - x^{\star}\|^2 + 2\kappa^{-1}d \right\}^{1/2}$$

A coupling proof (I)

- Objective compute bound for $W_2(\delta_x Q_\gamma^n,\pi)$
- Since $\pi P_t = \pi$ for all $t \ge 0$, it suffices to get bounds of the Wasserstein distance

 $W_2\left(\delta_x Q_\gamma^n, \pi P_{\Gamma_n}\right)$

where

$$\Gamma_n = \sum_{k=1}^n \gamma_k \; .$$

- $\delta_x Q_{\gamma}^n$: law of the discretized diffusion

- $\pi P_{\gamma_n} = \pi$, where $(P_t)_{t \ge 0}$ is the semi group of the diffusion

Idea ! synchronous coupling between the diffusion and the interpolation of the Euler discretization.

A coupling proof (II)

For all $n \ge 0$ and $t \in [\Gamma_n, \Gamma_{n+1})$ by

$$\begin{cases} Y_t = Y_{\Gamma_n} - \int_{\Gamma_n}^t \nabla U(Y_s) \mathrm{d}s + \sqrt{2}(B_t - B_{\Gamma_n}) \\ \bar{Y}_t = \bar{Y}_{\Gamma_n} - \int_{\Gamma_n}^t \nabla U(\bar{Y}_{\Gamma_n}) \mathrm{d}s + \sqrt{2}(B_t - B_{\Gamma_n}) \end{cases}$$

with $Y_0 \sim \pi$ and $\bar{Y}_0 = x$ For all $n \geq 0$,

$$W_2^2\left(\delta_x P_{\Gamma_n}, \pi Q_{\gamma}^n\right) \leq \mathbb{E}[\|Y_{\Gamma_n} - \bar{Y}_{\Gamma_n}\|^2],$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Explicit bound in Wasserstein distance for the Euler discretisation

Theorem

Assume that U is m-strongly convex and L-smooth. Let $(\gamma_k)_{k\geq 1}$ be a nonincreasing sequence with $\gamma_1 \leq 1/(m+L)$. Then

$$W_2^2(\delta_x Q_{\gamma}^n, \pi) \le u_n^{(1)}(\gamma) \left\{ \|x - x^{\star}\|^2 + d/m \right\} + u_n^{(2)}(\gamma) + u_n^{(2)}(\gamma) + u_n^{(2)}(\gamma) + u_n^{(2)}(\gamma) \right\}$$

where $u_n^{(1)}(\gamma) = 2 \prod_{k=1}^n (1 - \kappa \gamma_k)$ with $\kappa = mL/(m+L)$ and

$$u_n^{(2)}(\gamma) = 2\frac{dL^2}{m} \sum_{i=1}^n \left[\gamma_i^2 c(m, L, \gamma_i) \prod_{k=i+1}^n (1 - \kappa \gamma_k) \right]$$

Can be sharpened if U is three times continuously differentiable and there exists \tilde{L} such that for all $x, y \in \mathbb{R}^d$, $\|\nabla^2 U(x) - \nabla^2 U(y)\| \leq \tilde{L} \|x - y\|$.

Results

Fixed step size For any $\epsilon > 0$, one may choose γ so that

 $W_2\left(\delta_{x_*}R^p_\gamma,\pi
ight)\leq\epsilon\quad {\rm in}\ p=\mathcal{O}(\sqrt{d}\epsilon^{-1})\ {\rm iterations}$

where x_* is the unique maximum of π

Decreasing step size with $\gamma_k = \gamma_1 k^{-\alpha}$, $\alpha \in (0, 1)$,

$$W_2\left(\delta_{x_*}Q_{\gamma}^n,\pi\right) = \sqrt{d}\mathcal{O}(n^{-\alpha}) \ .$$

These results are tight (check with $U(x) = 1/2||x||^2$).

From the Wasserstein distance to the TV

Theorem

If U is strongly convex, then for all $x, y \in \mathbb{R}^d$,

$$\|P_t(x,\cdot) - P_t(y,\cdot)\|_{\mathrm{TV}} \le 1 - 2\Phi \left\{ -\frac{\|x - y\|}{\sqrt{(4/m)(\mathrm{e}^{2mt} - 1)}} \right\}$$

Use reflection coupling (Lindvall and Rogers, 1986)

LMS Durham Symposium, E. Moulines

イロト 不得 トイヨト イヨト

Hints of Proof I

$$\begin{cases} \mathrm{d}\mathbf{X}_t &= -\nabla U(\mathbf{X}_t) \mathrm{d}t + \sqrt{2} \mathrm{d}B_t^d \\ \mathrm{d}\mathbf{Y}_t &= -\nabla U(\mathbf{Y}_t) \mathrm{d}t + \sqrt{2} (\mathrm{Id} - 2\mathrm{e}_t \mathrm{e}_t^T) \mathrm{d}B_t^d , \end{cases} \quad \text{where } \mathrm{e}_t = \mathrm{e}(\mathbf{X}_t - \mathbf{Y}_t)$$

with $\mathbf{X}_0 = x$, $\mathbf{Y}_0 = y$, $\mathbf{e}(z) = z/||z||$ for $z \neq 0$ and $\mathbf{e}(0) = 0$ otherwise. Define the coupling time $T_c = \inf\{s \ge 0 \mid \mathbf{X}_s \neq \mathbf{Y}_s\}$. By construction $\mathbf{X}_t = \mathbf{Y}_t$ for $t \ge T_c$.

$$\tilde{B}_t^d = \int_0^t (\mathrm{Id} - 2\mathrm{e}_s \mathrm{e}_s^T) \mathrm{d}B_s^d$$

is a *d*-dimensional Brownian motion, therefore $(\mathbf{X}_t)_{t\geq 0}$ and $(\mathbf{Y}_t)_{t\geq 0}$ are weak solutions to Langevin diffusions started at x and y, respectively. Then by Lindvall's inequality, for all t > 0 we have

$$|P_t(x,\cdot) - P_t(y,\cdot)||_{\mathrm{TV}} \le \mathbb{P}(\mathbf{X}_t \neq \mathbf{Y}_t)$$
.

Hints of Proof II

For $t < T_c$ (before the coupling time)

$$d\{\mathbf{X}_t - \mathbf{Y}_t\} = -\{\nabla U(\mathbf{X}_t) - \nabla U(\mathbf{Y}_t)\} dt + 2\sqrt{2}e_t d\mathsf{B}_t^1.$$

Using Itô's formula

$$\|\mathbf{X}_t - \mathbf{Y}_t\| = \|x - y\| - \int_0^t \langle \nabla U(\mathbf{X}_s) - \nabla U(\mathbf{Y}_s), e_s \rangle \, \mathrm{d}s + 2\sqrt{2}\mathsf{B}_t^1$$
$$\leq \|x - y\| - m \int_0^t \|\mathbf{X}_s - \mathbf{Y}_s\| \, \mathrm{d}s + 2\sqrt{2}\mathsf{B}_t^1 \, .$$

and Grönwall's inequality implies

$$\|\mathbf{X}_t - \mathbf{Y}_t\| \le e^{-mt} \|x - y\| + 2\sqrt{2}\mathsf{B}_t^1 - m2\sqrt{2} \int_0^t \mathsf{B}_s^1 e^{-m(t-s)} \mathrm{d}s .$$

イロト 不得 トイヨト イヨト

Hint of Proof III

Therefore by integration by part, $\|\mathbf{X}_t - \mathbf{Y}_t\| \leq U_t$ where $(U_t)_{t \in (0,T_c)}$ is the one-dimensional Ornstein-Uhlenbeck process defined by

$$\mathsf{U}_{t} = \mathrm{e}^{-mt} \|x - y\| + 2\sqrt{2} \int_{0}^{t} \mathrm{e}^{m(s-t)} \mathrm{d}\mathsf{B}_{s}^{1} = \mathrm{e}^{-mt} \|x - y\| + \int_{0}^{8t} \mathrm{e}^{m(s-t)} \mathrm{d}\tilde{B}_{s}^{1}$$

Therefore, for all $x, y \in \mathbb{R}^d$ and $t \ge 0$, we get

$$\mathbb{P}(T_c > t) \le \mathbb{P}\left(\min_{0 \le s \le t} \mathsf{U}_t > 0\right) \;.$$

Finally the proof follows from the tail of the hitting time of (one-dimensional) OU (see Borodin and Salminen,2002).

イロト 不得 トイヨト イヨト

From the Wasserstein distance to the TV (II)

$$||P_t(x,\cdot) - P_t(y,\cdot)||_{\mathrm{TV}} \le \frac{||x-y||}{\sqrt{(2\pi/m)(\mathrm{e}^{2mt}-1)}}$$

Consequences:

- **1** $(P_t)_{t\geq 0}$ converges exponentially fast to π in total variation at a rate e^{-mt} .
- 2 For all $f : \mathbb{R}^d \to \mathbb{R}$, measurable and $\sup |f| \le 1$, then the function $x \mapsto P_t f(x)$ is Lipschitz with Lipshitz constant smaller than

 $1/\sqrt{(2\pi/m)(e^{2mt}-1)}$.

Explicit bound in total variation

Theorem

- Assume U is L-smooth and strongly convex. Let $(\gamma_k)_{k\geq 1}$ be a nonincreasing sequence with $\gamma_1 \leq 1/(m+L)$.
- (Optional assumption) $U \in C^3(\mathbb{R}^d)$ and there exists \tilde{L} such that for all $x, y \in \mathbb{R}^d$: $\|\nabla^2 U(x) \nabla^2 U(y)\| \leq \tilde{L} \|x y\|$.

Then there exist sequences $\{\tilde{u}_n^{(1)}(\gamma), n \in \mathbb{N}\}\$ and $\{\tilde{u}_n^{(1)}(\gamma), n \in \mathbb{N}\}\$ such that for all $x \in \mathbb{R}^d$ and $n \ge 1$,

$$\|\delta_x Q_{\gamma}^n - \pi\|_{\rm TV} \le \tilde{u}_n^{(1)}(\gamma) \left\{ \|x - x^{\star}\|^2 + d/m \right\} + \tilde{u}_n^{(2)}(\gamma) \; .$$

イロト 不得 トイヨト イヨト

Constant step sizes

For any $\epsilon > 0$, the minimal number of iterations to achieve $\|\delta_x Q^p_\gamma - \pi\|_{\mathrm{TV}} \le \epsilon$ is

 $p = \mathcal{O}(\sqrt{d}\log(d)\epsilon^{-1}|\log(\epsilon)|)$.

• For a given stepsize γ , letting $p \to +\infty$, we get:

 $\|\pi_{\gamma} - \pi\|_{\mathrm{TV}} \leq C\gamma |\log(\gamma)|$.

LMS Durham Symposium, E. Moulines

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

2 Framework

- 3 Strongly log-concave distribution
- 4 Convex and Super-exponential densities
- 5 Non-smooth potentials

6 Conclusions

・ロト ・得ト ・ヨト ・ヨト

Convergence of the Euler discretization

Assumption

There exist $\alpha > 1$, $\rho > 0$ and $M_{\rho} \ge 0$ such that for all $y \in \mathbb{R}^d$, $\|y\| \ge M_{\rho}$:

 $\langle \nabla U(y), y \rangle \ge \rho \left\| y \right\|^{\alpha}$.

■ *U* is convex.

Results¹.

• If $\lim_{\gamma_k \to +\infty} \gamma_k = 0$, and $\sum_k \gamma_k = +\infty$ then

 $\lim_{p \to +\infty} \|\delta_x Q^p_\gamma - \pi\|_{\mathrm{TV}} = 0 \; .$

• $\|\pi_{\gamma} - \pi\|_{\mathrm{TV}} \leq C\sqrt{\gamma}$ (instead of γ)

1Durmus, Moulines, Annals of Applied Probability, 2016 🗆 🕨 🕢 🕫 👘 😨 👘 🕫

Target precision ϵ : the convex case

- Setting U is convex. Constant stepsize
- Optimal stepsize γ and number of iterations p to achieve ϵ -accuracy in TV:

$$\|\delta_x Q^p_\gamma - \pi\|_{\rm TV} \le \epsilon \; .$$

$$\begin{tabular}{|c|c|c|c|c|} \hline & d & \varepsilon & L \\ \hline \hline \gamma & \mathcal{O}(d^{-3}) & \mathcal{O}(\varepsilon^2/\log(\varepsilon^{-1})) & \mathcal{O}(L^{-2}) \\ \hline p & \mathcal{O}(d^5) & \mathcal{O}(\varepsilon^{-2}\log^2(\varepsilon^{-1})) & \mathcal{O}(L^2) \\ \hline \end{tabular}$$

In the strongly convex case, \sqrt{d} !

LMS Durham Symposium, E. Moulines

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Strongly convex outside a ball potential

■ U is convex everywhere and strongly convex outside a ball, *i.e.* there exist $R \ge 0$ and m > 0, such that for all $x, y \in \mathbb{R}^d$, $||x - y|| \ge R$,

$$\langle \nabla U(x) - \nabla U(y), x - y \rangle \ge m \|x - y\|^2$$

- Eberle, 2015 established that the convergence in the Wasserstein distance does not depends on the dimension.
- Durmus, M. 2016 established that the convergence of the semi-group in TV to π does not depends on the dimension but just on $R \rightarrow$ new bounds which scale nicely in the dimension.

Dependence on the dimension

- Setting U is convex and strongly convex outside a ball. Constant stepsize
- Optimal stepsize γ and number of iterations p to achieve ε-accuracy in TV:

 $\|\delta_x Q^p_\gamma - \pi\|_{\mathrm{TV}} \le \epsilon \; .$

	d	ε	L	m	R
γ	$\mathcal{O}(d^{-1})$	$\mathcal{O}(\varepsilon^2/\log(\varepsilon^{-1}))$	$\mathcal{O}(L^{-2})$	$\mathcal{O}(m)$	$\mathcal{O}(R^{-4})$
p	$\mathcal{O}(d\log(d))$	$\mathcal{O}(\varepsilon^{-2}\log^2(\varepsilon^{-1}))$	$\mathcal{O}(L^2)$	$\mathcal{O}(m^{-2})$	$\mathcal{O}(R^8)$

LMS Durham Symposium, E. Moulines

イロト 不得 トイヨト イヨト

How it works ?

Figure: Empirical distribution comparison between the Polya-Gamma Gibbs Sampler and ULA. Left panel: constant step size $\gamma_k = \gamma_1$ for all $k \ge 1$; right panel: decreasing step size $\gamma_k = \gamma_1 k^{-1/2}$ for all $k \ge 1$

LMS Durham Symposium, E. Moulines

Data set	Observations p	Covariates d
German credit	1000	25
Heart disease	270	14
Australian credit	690	35
Musk	476	167

Table: Dimension of the data sets

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Figure: Marginal accuracy across all the dimensions. Upper left: German credit data set. Upper right: Australian credit data set. Lower left: Heart disease data set. Lower right: Musk data set

LMS Durham Symposium, E. Moulines

イロト イポト イヨト イヨト

э

1 Motivation

2 Framework

- 3 Strongly log-concave distribution
- 4 Convex and Super-exponential densities

5 Non-smooth potentials

6 Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Non-smooth potentials

The target distribution has a density π with respect to the Lebesgue measure on \mathbb{R}^d of the form $x \mapsto \mathrm{e}^{-U(x)} / \int_{\mathbb{R}^d} \mathrm{e}^{-U(y)} \mathrm{d}y$ where U = f + g, with $f : \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^d \to (-\infty, +\infty]$ are two lower bounded, convex functions satisfying:

1 f is continuously differentiable and gradient Lipschitz with Lipschitz constant L_f , *i.e.* for all $x, y \in \mathbb{R}^d$

 $\left\|\nabla f(x) - \nabla f(y)\right\| \le L_f \left\|x - y\right\| .$

2 g is lower semi-continuous and $\int_{\mathbb{R}^d} e^{-g(y)} dy \in (0, +\infty)$.

化口水 化固水 化医水 化医水

Moreau-Yosida regularization

Let h: ℝ^d → (-∞, +∞] be a l.s.c convex function and λ > 0. The λ-Moreau-Yosida envelope h^λ : ℝ^d → ℝ and the proximal operator prox_h^λ : ℝ^d → ℝ^d associated with h are defined for all x ∈ ℝ^d by

$$h^{\lambda}(x) = \inf_{y \in \mathbb{R}^d} \left\{ h(y) + (2\lambda)^{-1} \|x - y\|^2 \right\} \le h(x) .$$

For every $x \in \mathbb{R}^d$, the minimum is achieved at a unique point, $\operatorname{prox}_{\mathrm{h}}^{\lambda}(x)$, which is characterized by the inclusion

$$x - \operatorname{prox}_{\mathrm{h}}^{\lambda}(x) \in \gamma \partial \mathrm{h}(\operatorname{prox}_{\mathrm{h}}^{\lambda}(x))$$
.

■ The Moreau-Yosida envelope is a regularized version of *g*, which approximates *g* from below.

Properties of proximal operators

• As $\lambda \downarrow 0$, converges h^{λ} converges pointwise h, *i.e.* for all $x \in \mathbb{R}^d$, $h^{\lambda}(x) \uparrow h(x)$, as $\lambda \downarrow 0$.

• The function h^{λ} is convex and continuously differentiable $abla h^{\lambda}(x) = \lambda^{-1}(x - \mathrm{prox}_{h}^{\lambda}(x)) \ .$

• The proximal operator is a monotone operator, for all $x, y \in \mathbb{R}^d$,

$$\left\langle \operatorname{prox}_{\mathbf{h}}^{\lambda}(x) - \operatorname{prox}_{\mathbf{h}}^{\lambda}(y), x - y \right\rangle \ge 0$$
,

which implies that the Moreau-Yosida envelope is *L*-smooth: $\|\nabla h^{\lambda}(x) - \nabla h^{\lambda}(y)\| \leq \lambda^{-1} \|x - y\|$, for all $x, y \in \mathbb{R}^d$.

MY regularized potential

- If g is not differentiable, but the proximal operator associated with g is available, its λ-Moreau Yosida envelope g^λ can be considered.
- This leads to the approximation of the potential $U^{\lambda}: \mathbb{R}^d \to \mathbb{R}$ defined for all $x \in \mathbb{R}^d$ by

$$U^{\lambda}(x) = f(x) + g^{\lambda}(x) .$$

Theorem (Durmus, M., Pereira, 2016, SIAM J. Imaging Sciences) Under (H), for all $\lambda > 0$, $0 < \int_{\mathbb{R}^d} e^{-U^{\lambda}(y)} dy < +\infty$.

イロト 不得 トイヨト イヨト

Some approximation results

Theorem

Assume (H).

1 Then,
$$\lim_{\lambda \to 0} \|\pi^{\lambda} - \pi\|_{\mathrm{TV}} = 0$$
.

2 Assume in addition that g is Lipschitz. Then for all $\lambda > 0$,

 $\|\pi^{\lambda} - \pi\|_{\mathrm{TV}} \leq \lambda \|g\|_{\mathrm{Lip}}^2 .$

LMS Durham Symposium, E. Moulines

イロト 不得 トイヨト イヨト

The MYULA algorithm-I

Given a regularization parameter $\lambda > 0$ and a sequence of stepsizes $\{\gamma_k, k \in \mathbb{N}^*\}$, the algorithm produces the Markov chain $\{X_k^{\mathrm{M}}, k \in \mathbb{N}\}$: for all $k \ge 0$,

 $X_{k+1}^{\rm M} = X_k^{\rm M} - \gamma_{k+1} \left\{ \nabla f(X_k^{\rm M}) + \lambda^{-1} (X_k^{\rm M} - \operatorname{prox}_g^{\lambda}(X_k^{\rm M})) \right\} + \sqrt{2\gamma_{k+1}} Z_{k+1} ,$

where $\{Z_k, k \in \mathbb{N}^*\}$ is a sequence of i.i.d. *d*-dimensional standard Gaussian random variables.

- 日本 - 4 日本 - 4 日本 - 日本

The MYULA algorithm-II

- The ULA target the smoothed distribution π^{λ} .
- To compute the expectation of a function $h : \mathbb{R}^d \to \mathbb{R}$ under π from $\{X_k^M ; 0 \le k \le n\}$, an importance sampling step is used to correct the regularization.
- This step amounts to approximate $\int_{\mathbb{R}^d} h(x) \pi(x) \mathrm{d}x$ by the weighted sum

$$\mathbf{S}_n^h = \sum_{k=0}^n \omega_{k,n} h(X_k) \ , \ \text{with} \ \omega_{k,n} = \left\{ \sum_{k=0}^n \gamma_k \mathrm{e}^{\bar{g}^{\lambda}(X_k^{\mathrm{M}})} \right\}^{-1} \gamma_k \mathrm{e}^{\bar{g}^{\lambda}(X_k^{\mathrm{M}})} \ ,$$

where for all $x \in \mathbb{R}^d$

$$\bar{g}^{\lambda}(x) = g^{\lambda}(x) - g(x) = g(\operatorname{prox}_{g}^{\lambda}(x)) - g(x) + (2\lambda)^{-1} \left\| x - \operatorname{prox}_{g}^{\lambda}(x) \right\|^{2} .$$

化白豆 化硼酸 化黄色 化黄色 一声

Image deconvolution

- Objective recover an original image $x \in \mathbb{R}^n$ from a blurred and noisy observed image $y \in \mathbb{R}^n$ related to x by the linear observation model y = Hx + w, where H is a linear operator representing the blur point spread function and w is a Gaussian vector with zero-mean and covariance matrix $\sigma^2 I_n$.
- This inverse problem is usually ill-posed or ill-conditioned: exploits prior knowledge about x.
- One of the most widely used image prior for deconvolution problems is the improper total-variation norm prior, $\pi(\boldsymbol{x}) \propto \exp(-\alpha \|\nabla_d \boldsymbol{x}\|_1)$, where ∇_d denotes the discrete gradient operator that computes the vertical and horizontal differences between neighbour pixels.

$$\pi(\boldsymbol{x}|\boldsymbol{y}) \propto \exp\left[-\|\boldsymbol{y} - H\boldsymbol{x}\|^2/2\sigma^2 - \alpha \|\nabla_d \boldsymbol{x}\|_1\right].$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Figure: (a) Original Boat image (256×256 pixels), (b) Blurred image, (c) MAP estimate.

Credibility intervals

(a) (b) (c)

Figure: (a) Pixel-wise 90% credibility intervals computed with proximal MALA (computing time 35 hours), (b) Approximate intervals estimated with MYULA using $\lambda = 0.01$ (computing time 3.5 hours), (c) Approximate intervals estimated with MYULA using $\lambda = 0.1$ (computing time 20 minutes).

- 2 Framework
- 3 Strongly log-concave distribution
- 4 Convex and Super-exponential densities
- 5 Non-smooth potentials

6 Conclusions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Our goal is to avoid a Metropolis-Hastings accept-reject step We explore the efficiency and applicability of DMCMC to high-dimensional problems arising in a Bayesian framework, without performing the Metropolis-Hastings correction step.
- When classical (or adaptive) MCMC fails (for example, due to computational time restrictions or inability to select good proposals), we show that diffusion MCMC is a viable alternative which requires little input from the user and can be computationally more efficient.

Our (published) work

- Durmus, Alain; Moulines, Éric Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis adjusted Langevin algorithm. Stat. Comput. 25 (2015)
- 2 Durmus, Alain; Moulines, Éric, Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm Accepted for publication in Ann. Appl. Prob.
- 3 Durmus, Alain; Simsleki, Ümut; Moulines, Éric; Badeau, Roland, Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo, NIPS, 2016
- Sampling from a log-concave distribution with compact support with proximal Langevin Monte Carlo Brosse, N., Durmus A., Moulines E., Pereyra, M., COLT 2017 Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau, SIAM J. Imaging Sciences.
- 5 + more recent preprints (see Arxiv)

- A 🖻 🕨