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Motivation: Achlioptas processes

Achlioptas processes: generalisation of Erdős-Rényi graph
process.

A sample of possible edges are selected randomly.

One edge is chosen to be added to the graph, using some
criterion.

Some interest (papers by Malyshkin & Paquette and Krapivsky
& Redner) in similar modifications to preferential attachment
process.
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Definition of process

Fix integers r , s with r ≥ s ≥ 1.

We grow a tree, starting from the two-vertex tree at time 1.
At each time step we select an ordered r -tuple of vertices
(with replacement, so that the same vertex may appear more
than once), where each choice is independent and vertices are
selected with probability proportional to their degree.

We then add a new vertex attached to the vertex with rank s
(by degree) among the r vertices chosen, breaking ties
uniformly at random.

We will generally think of r being at least 2, since the case
r = s = 1 is standard preferential attachment.

Jonathan Jordan (joint with John Haslegrave) Preferential attachment with choice



Definition of process

Fix integers r , s with r ≥ s ≥ 1.

We grow a tree, starting from the two-vertex tree at time 1.
At each time step we select an ordered r -tuple of vertices
(with replacement, so that the same vertex may appear more
than once), where each choice is independent and vertices are
selected with probability proportional to their degree.

We then add a new vertex attached to the vertex with rank s
(by degree) among the r vertices chosen, breaking ties
uniformly at random.

We will generally think of r being at least 2, since the case
r = s = 1 is standard preferential attachment.

Jonathan Jordan (joint with John Haslegrave) Preferential attachment with choice



Definition of process

Fix integers r , s with r ≥ s ≥ 1.

We grow a tree, starting from the two-vertex tree at time 1.
At each time step we select an ordered r -tuple of vertices
(with replacement, so that the same vertex may appear more
than once), where each choice is independent and vertices are
selected with probability proportional to their degree.

We then add a new vertex attached to the vertex with rank s
(by degree) among the r vertices chosen,

breaking ties
uniformly at random.

We will generally think of r being at least 2, since the case
r = s = 1 is standard preferential attachment.

Jonathan Jordan (joint with John Haslegrave) Preferential attachment with choice



Definition of process

Fix integers r , s with r ≥ s ≥ 1.

We grow a tree, starting from the two-vertex tree at time 1.
At each time step we select an ordered r -tuple of vertices
(with replacement, so that the same vertex may appear more
than once), where each choice is independent and vertices are
selected with probability proportional to their degree.

We then add a new vertex attached to the vertex with rank s
(by degree) among the r vertices chosen, breaking ties
uniformly at random.

We will generally think of r being at least 2, since the case
r = s = 1 is standard preferential attachment.

Jonathan Jordan (joint with John Haslegrave) Preferential attachment with choice



Definition of process

Fix integers r , s with r ≥ s ≥ 1.

We grow a tree, starting from the two-vertex tree at time 1.
At each time step we select an ordered r -tuple of vertices
(with replacement, so that the same vertex may appear more
than once), where each choice is independent and vertices are
selected with probability proportional to their degree.

We then add a new vertex attached to the vertex with rank s
(by degree) among the r vertices chosen, breaking ties
uniformly at random.

We will generally think of r being at least 2, since the case
r = s = 1 is standard preferential attachment.

Jonathan Jordan (joint with John Haslegrave) Preferential attachment with choice



Pictures

200-vertex simulations, produced using igraph in R. Left to
right: r = 2, s = 2, standard preferential attachment,
r = 2, s = 1. The maximum degrees in these simulations are
are 6, 30 and 90 respectively.
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Krapivsky & Redner

Krapivsky & Redner investigated the degree distribution for
this and some similar models non-rigorously. They observed
three possibilities:

A non-degenerate limit distribution with a heavy tail
(power law or similar), similar to standard preferential
attachment.

A dominant vertex, with degree of the same order as the
size of the graph.

A non-degenerate limit distribution with a doubly
exponential tail.
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Krapivsky & Redner continued

They suggested:

When s = 1 (“greedy choice”) a dominant vertex occurs
if r ≥ 3, and a degree distribution with tail decay
(n log n)−2 if r = 2;

When s > 1 (“meek choice”) doubly exponential decay
happens whatever the values of r and s. (Even for r large
and s = 2.)
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Malyshkin & Paquette: r = 2

Malyshkin & Paquette rigorously investigated the cases
r = 2, s = 2 (“min choice”) and s = 1 (“max choice”).

Their results match Krapivsky & Redner’s in these cases:
doubly exponential decay for r = 2, s = 2, (n log n)−2 decay
for r = 2, s = 1, and a dominant vertex for r > 2, s = 1.
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Our results

We show:

The proportion of vertices with degree at most k
converges to a limit, pk , almost surely.

For a given s, there exists r(s) such that limk→∞ pk = 1
if and only if r < r(s). Note that a non-degenerate
limiting degree distribution requires limk→∞ pk = 1.

For s = 2, r(s) = 7. In particular, a non-degenerate
limiting degree distribution does not exist if r ≥ 7, s = 2.
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Convergence of degree proportions: notation

Define Br ,s(p) to be the probability that a Bin(r , p) random
variable takes a value greater than r − s.

Write Fm(k) for the sum of degrees of vertices with degree at
most k at time m.

Then Fm(k)/2m is the probability of selecting a vertex of
degree at most k with a single preferential choice.
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Evolution of Fm(k)

Write

fk(x , p) = (k + 1)Br ,s(p)− kBr ,s(x)− 2x + 1

for x , p ∈ [0, 1] and k ≥ 0.

By considering the degree of the vertex selected as neighbour

to the new vertex, we find E
(

Fm+1(k)
2(m+1)

− Fm(k)
2m
|Fm

)
is

1

2(m + 1)
fk

(
Fm(k)

2m
,

Fm(k − 1)

2m

)
.
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The pk

This suggests that if Fm(k)
2m
→ pk a.s. as m→∞, we expect

fk(pk , pk−1) = 0: ideas similar to stochastic approximation
processes.

For any p ∈ [0, 1) there is a unique x ∈ (0, 1) with
fk(x , p) = 0.

Define (pk)k≥0 by setting p0 = 0 and for each k ≥ 0 letting pk

be the unique value in (0, 1) such that fk(pk , pk−1) = 0.

Stochastic approximation intuition now suggests Fm(k)
2m
→ pk

a.s. as m→∞. More precise results in paper.
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The limit of the pk

Theorem

The sequence pk is increasing with limit p∗ ≤ 1, where p∗
is the smallest positive root of
f (p) = Br ,s(p)− 2p + 1 = 0.

There exists a function r(s) such that p∗ = 1 if and only
if r < r(s), which satisfies r(s) = 2s + o(s) but also
r(s) = 2s + ω(

√
s).

Provided s ≥ 2, if p∗ = 1 then − log(1− pk) = Ω(sk).

The only other case with r > 1 where p∗ = 1 is
r = 2, s = 1, and then 1− pk = (2 + o(1))/ log k.
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Plots of f (p)

r = 2, s = 1
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Plots of f (p)

r = 3, s = 1
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Plots of f (p)

r = 3, s = 2
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Plots of f (p)

r = 4, s = 2
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Plots of f (p)

r = 5, s = 2
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Plots of f (p)

r = 6, s = 2
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Plots of f (p)

r = 7, s = 2
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Non-degenerate limit or not

Pictures indicate r(2) = 7: no non-degenerate limiting
distribution for second largest choice if r ≥ 7.

Similarly r(3) = 10, r(4) = 13, r(5) = 16, r(6) = 19 but
r(7) = 21. . . .

In fact we can show r(s) > 2s and r(s)/s → 2 but
s−1/2(r(s)− 2s)→∞, by further analysis of the function f .
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Doubly exponential decay

When s > 1 and pk → 1, we show doubly exponential decay of
qk = 1− pk .

Step 1: If pk → 1, then for k sufficiently large qk satisfies

qk <
k + 1

2

(
r

s

)
qs
k−1 .

Step 2: Step 1 implies doubly-exponential decay provided we
can find some k0 with

qk0 <

(
2(

r
s

)
(k0 + 3)

)1/(s−1)

. (1)
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Doubly exponential decay continued

Step 3: qk → 0 implies qk = O(1/k2) (more than enough for
(1)).

For r = 2, s = 2, (1) satisfied for k0 = 4, for r = 3, s = 2 for
k0 = 18, for r = 4, s = 2 for k0 = 98, for r = 5, s = 2 for
k0 = 2416. For r = 6, s = 2 k0 > e23.

Simulations don’t easily distinguish between doubly
exponential decay above very large threshold and a dominant
vertex.
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