
Scaling limits for randomly trapped random walks

Ben Hambly

with David Croydon and Takashi Kumagai

29th July 2017



Random walk in random environment

Let G = (V ,E ) be a graph. For each x ∈ V we assign a random
probability pω(x , y) to each edge e(x , y) ∈ E . The collection

{pω(x , .) : x ∈ V ,
∑

y :e(x ,y)∈E
pω(x , y) = 1}

is called the random environment. We write P,E for the law and
expectation with respect to the environment.

There are two natural measures for RWRE.

◮ Quenched: we fix the environment and consider the law
Px
ω(X ∈ ·) and study the random walker for P-a.e. ω.

◮ Annealed: We consider the law of the random walker
averaged over the environments EPx

ω(X ∈ ·)



Random Conductance Model

A reversible version of RWRE is the random conductance model.

We define a random resistor network on the graph G = (V ,E ).
For each edge e ∈ E we have a random variable µe = µxy , the
conductance of the edge e between x , y . We then define

µx =
∑

y :(x ,y)∈E
µxy , pω(x , y) =

µxy

µx

.

By construction these are the transition probabilities for a discrete
time reversible random walk with invariant measure µx on G .



Continuous time random walks

◮ The constant speed random walk (CSRW),
X = (Xt , t ≥ 0,Px

ω, x ∈ Z
d ), with holding time 1 at each

vertex; generator

LC f (x) = µ−1
x

∑

y

µxy (f (y)− f (x)).

◮ The variable speed random walk (VSRW),
Y = (Yt , t ≥ 0,Px

ω, x ∈ Z
d ), with holding time with mean

1/µx at vertex x ; generator

LV f (x) =
∑

y

µxy (f (y)− f (x)) = µxLC f (x).



Scaling limits

Let X
(ε)
t = εXt/ε2 , Y

(ε)
t = εYt/ε2 , t ≥ 0.

Theorem (Andras-Barlow-Deuschel-H)

Let d ≥ 2 and suppose that (µe , e ∈ Ed ) are i.i.d., µe ≥ 0 P-a.s.
and P(µe > 0) > pc .
(a) Let Y be the VSRW with Y0 = 0. Then, P-a.s. Y (ε)

converges (under P0
ω) in law to a Brownian motion on R

d with
covariance matrix σ2

V I , where σV > 0 is non-random.
(b) Let X be the CSRW with X0 = 0. Then, P-a.s. X (ε) converges
(under P0

ω) in law to a Brownian motion on R
d with covariance

matrix σ2
C I , where

σ2
C =

{

σ2
V /(2dEµe), if Eµe < ∞,

0, if Eµe = ∞.



Fractional Kinetics

In the case of Zd for d ≥ 2 with the CSRW with Eµe = ∞ there is
a scaling limit - the fractional kinetics process (Barlow-Cerny).

Let B be a Brownian motion and V an independent α-stable
subordinator for 0 < α < 1. Let τt = inf{u > 0 : Vu > t} be the
inverse of V . The fractional kinetics process is given by

X
FK(α)
t = Bτt .

A continuous non-Markov self-similar process; Xt = λ−α/2Xλt .

Theorem

For d ≥ 3, if P(µe > u) ∼ u−α, then for the CSRW Xt we have
that P-a.s. as n → ∞

(
1

n
Xtn2/α)t → (X

FK(α)
t )t , in law



Random walk in a random trapping environment

Let G = (V ,E ), be a graph. Traps are now just random holding
times at the vertices. At each x ∈ V we have a probability
measure πx on (0,∞); this is the random trapping environment.
The randomly trapped random walk is then the simple random
walk on G , which at each visit to vertex x chooses an i.i.d holding
time according to πx .

◮ The CSRW has πx ∼ Exp(1).

◮ The VSRW has πx ∼ Exp(
∑

y µxy ).

◮ The Bouchaud trap model has πx ∼ Exp(ξ) where 1/ξ is
randomly chosen from a heavy tailed distribution.



Bouchaud trap model on Z
d

◮ For Zd with πx ∼ Exp(ξ) where ξ−1
x for x ∈ Z

d chosen
according to the distribution with P(ξ > u) ∼ u−α for
0 < α < 1.

◮ X is simple random walk on Z
d with holding times given by

the ξx ; That is with generator

LBTM f (x) = ξ−1
x

∑

y

(f (y)− f (x)).

◮ In Z
d for d ≥ 2 we will see a fractional kinetics process in the

scaling limit. For d ≥ 3 the transience of the random walk
means we do not always revisit the same traps.

◮ In Z the recurrence means we return to the deep traps.



The FIN diffusion

The Fontes-Isopi-Newman (FIN) diffusion is a singular diffusion on
R. It is defined as follows

◮ Let (xi , vi ) be an inhomogeneous Poisson process on
R× (0,∞) with intensity measure dxαv−α−1dv . Set
ρ =

∑

i viδxi .

◮ Let B be a Brownian motion with local time process lt(x).

◮ Given ρ we define the FIN diffusion as a time change of
Brownian motion by the additive functional

At =

∫

R

lt(x)ρ(dx).

◮ Set τt = inf{u > 0 : Au > t}. The FIN diffusion is

XFIN
t = Bτt .



Scaling limit

The FIN diffusion arises as the scaling limit of the BTM on Z. Let
X ǫ
t = ǫXtǫ−1−1/α and ηǫ(dx) = ǫ1/α

∑

y∈Z ξyδǫy (dx).

Theorem

As ǫ → 0 the distribution of (X ǫ
t , η

ǫ) converges weakly to (XFIN
t , ρ)

under the annealed law.

In one dimension Ben Arous et al have classified the limits of
trapping models, showing that the scaling limits are Brownian
motion, Fractional Kinetics, FIN and a so-called spatially
subordinated Brownian motion.



Aim

The aim of our project was to

◮ generalize this type of result to families of recurrent graphs
such as discrete trees or fractal graphs.

◮ Establish FIN limits for these processes by proving a general
theorem about scaling limits of processes when we have
Gromov-Hausdorff convergence of spaces.

◮ Consider the heat kernel estimates for these scaling limits.



The set up

We work in a metric space F equipped with a resistance metric R.

◮ One dimension - the resistance is the Euclidean length

◮ Finitely ramified fractals such as the Sierpinski gasket

◮ Real trees - resistance is the length along the shortest path

◮ The two-dimensional Sierpinski carpet

We will have a base measure µ, the ‘natural’ measure on F



Assumptions

Let F be a collection of (F ,R, µ, ρ) with ρ a distinguished point.

(UVD) There exist constants cd , cl , cu and a non-decreasing function
v : (0,∞) → (0,∞) satisfying v(2r) ≤ cdv(r) for all
r ∈ (0,RF + 1) such that

clv(r) ≤ µ(BR(x , r)) ≤ cuv(r), ∀x ∈ F , r ∈ (0,RF + 1).

(MC) The function d : F × F → R is a metric on F such that
d ≍ Rβ for some β > 0.

(GMC) MC holds and also d is a geodesic metric.



Convergence results
Let (Fn,Rn, µn, ρn)n≥1 in F satisfies UVD, and also

(Fn,Rn, µn, ρn) → (F ,R, µ, ρ) ,

in the Gromov-Hausdorff-vague topology, where (F ,R, µ, ρ) ∈ F.

Theorem

1. (Fn,Rn), n ≥ 1, and (F ,R) can be isometrically embedded into
a common metric space (M, dM) in such a way that

(X n
t )t≥0 → (Xt)t≥0

in distribution in D(R+,M).

2. Moreover, the local times of Ln are equicontinuous, and if
dM(xni , xi ) → 0 for i = 1, .., k, then it simultaneously holds that

(Lnt (x
n
i ))i=1,...,k,t≥0 → (Lt (xi ))i=1,...,k,t≥0 ,

in distribution in C (R+,R
k).



The Bouchaud Trap Model

For the BTM we have the following set up.

Assumption

Suppose (Gn)n≥1 is a sequence of locally finite, connected graphs
with vertex sets Vn, resistance metrics Rn where individual edges
have unit resistance, counting measures µn, and distinguished
vertices ρn.

Assume that there exist scaling factors (an)n≥1, (bn)n≥1 such that
(Vn, anRn, bnµn, ρn)n≥1 converges to (F ,R, µ, ρ) ∈ F. Finally, we
suppose that each Gn is equipped with a trapping landscape
ξn = (ξnx )x∈Vn

such that for some fixed α ∈ (0, 1),

P (ξnx > u) ∼ u−α.



The FIN diffusion on F

◮ Let
ν(dx) :=

∑

i

viδxi (dx),

where (vi , xi ) are the points of a Poisson process on
(0,∞)× F with intensity αv−1−αdvµ(dx). This is a locally
finite, Borel regular measure on (F ,R) of full support, P-a.s.

◮ Let lt(x) denote the local times for the diffusion X on F

At =

∫

R

lt(x)ν(dx).

◮ Set τt = inf{u > 0 : Au > t}. The α-FIN diffusion on
(F ,R, µ) is

X ν
t = Xτt .



The convergence result

Proposition

Suppose the BTM assumption holds. It is then possible to
isometrically embed (Vn, anRn, bnµn, ρn), n ≥ 1, and (F ,R, µ, ρ)
into a common metric space (M, dM) so that

P
BTMn
ρn

(

(

X n,ξn

t/anb
1/α
n

)

t≥0

∈ ·
)

→ P
FIN

ρ

(

(X ν
t )t≥0 ∈ ·

)

weakly as probability measures on D(R+,M).

The random conductance model on fractal graphs with heavy tails
also converges to the FIN diffusion on the limit fractal.



Heat kernels

◮ The classical heat kernel for Brownian motion in R.

pt(x , y) =
1√
2πt

exp

(

−|x − y |2
2t

)

.

◮ For uniformly elliptic operators in R
d (Aronson)

pt(x , y) ∼
1

(2πt)d/2
exp

(

−c
|x − y |2

2t

)

.

◮ On manifolds we have (Li-Yau)

pt(x , y) ∼
c

VolM(B√
t(x))

exp

(

−c
d(x , y)2

t

)

.



Heat kernels

◮ On fractals such as the Sierpinski gasket we have
sub-diffusivity (Barlow+Perkins)

pt(x , y) ∼ ct−ds/2 exp

(

−c

(

d(x , y)dw

t

)1/(dw−1)
)

.

where 1 < ds = 2 log 3/ log 5 < 2 and dw = log 5/ log 2 > 2.

◮ In the case of random fractals such as the CRT (Croydon):
Quenched result is that P-a.s.

ct−2/3| log(t)|−β ≤ inf
x
pt(x , x) ≤ sup

x
pt(x , x) ≤ ct−2/3| log(t)|β′

.

◮ Annealed case
Ept(ρ, ρ) ∼ ct−2/3.

◮ What happens for the FIN diffusion?



Heat kernel estimates for FIN

◮ (Kigami) For P-a.e. realisation of ν, X ν admits a jointly
continuous transition density (pνt (x , y))x ,y∈F ,t>0; the
quenched heat kernel for the FIN diffusion.

◮ In the averaged case we consider E(pνt (x , y)). The anomalous
behaviour of the tail of the exit time of the FIN diffusion in R

is due to Cerny and Cabezas.

◮ Let V (ρ, r) = ν(BR(ρ, r)) be the volume growth function of
the FIN measure.
Key to the study of the heat kernel is a connection with stable
subordinators.



Volume growth

Let L be an α-stable subordinator. We can construct this by
setting Lt =

∑

i vi1{ti≤t}, where (vi , ti) are the points of a Poisson
process on (0,∞)× R+ with intensity αv−α−1dvdt.

Recall v(r) ≍ µ(BR(ρ, r)) - typically v(r) = rdf .

Lemma

It is possible to couple (Lt)t≥0 and (V (ρ, r))r≥0 so that, P-a.s.,

Lclv(r) ≤ V (ρ, r) ≤ Lcuv(r), ∀r ∈ (0,RF ).



Stable subordinators

◮ Upper bounds:
There is an integral test for the upper bound on the behaviour
of L near 0 in that, P-almost surely,

lim sup
t→0

Lt

ht
=

{

∞, if
∫ 1
0 h−α

t dt = ∞,

0, if
∫ 1
0 h−α

t dt < ∞.

◮ Lower bounds:
We have smaller fluctuations in that, P-almost surely,

lim inf
t→0

Lt

t1/α(log | log t|)1−1/α
= Cα(= α(1− α)(1−α)/α).



Volume growth locally

These estimates give local volume growth estimates:

Lemma

(1) For any ε > 0 there exists a c > 0 such that

V (ρ, r) ≤ cv(r)1/α| log v(r)|(1+ε)/α, ∀r < RF , P-a.s.

(2) There is a c > 0 such that

V (ρ, r) ≥ cv(r)1/α(log | log v(r)|)1−1/α, ∀r < RF , P-a.s.



Volume growth globally

For the global bounds we see the atoms in the upper bound:

Lemma

There exist random constants 0 < c1, c2 such that

c1 ≤ sup
x∈F

V (x , r) ≤ c2, ∀r < RF , P-a.s.

For the lower:

Lemma

There exist positive constants c1, c2 such that, P-a.s.,

c1 ≤ lim inf
r→0

infx∈F V (x , r)

v(r)1/α| log v(r)|1−1/α
≤ lim sup

r→0

infx∈F V (x , r)

v(r)1/α| log v(r)|1−1/α
≤ c2



Quenched results - local

We can observe local and global on-diagonal results:

Suppose v(r) = rdf . Then the following hold.
(1) We have

0 < lim sup
t→0

pνt (ρ, ρ)

t−df /(df +α) (log | log t|)(1−α)/(df+α)
< ∞, P-a.s.

(2) For any ε > 0, there exists a constant c3 such that

lim inf
t→0

pνt (ρ, ρ)

t−df /(df +α)| log t|−3(1+ε)/α
≥ c3 P-a.s.

(3) Also there is a constant c4 such that

lim inf
t→0

pνt (ρ, ρ)

t−df /(df +α)| log t|−1/(df+α)
≤ c4 P-a.s.



Quenched results - global

(1) There exist random constants c1, c2 and a deterministic
constant tF such that

0 < c1 ≤ inf
x∈F

pνt (x , x) ≤ c2, ∀t < tF , P-a.s.

(2) Suppose v(r) = rdf . Then we have

0 < lim sup
t→0

supx∈F pνt (x , x)

t−df /(df +α) |log t|(1−α)/(df+α)
< ∞, P-a.s.



Annealed case

Let TD := TBd (ρ,D) be the exit time of the ball Bd (ρ,D) by X ν .

Theorem

Under UVD and MC there exist constants a, c1, c2 such that

EPρ (TD ≤ T ) ≤ c1e
−c2N(a), ∀D ∈ (0,DF/2), t ∈ (0, h(RF )),

where N(a) is defined as

N(a) := inf

{

n :
at

n
≤ h

(

(

D

n

)1/β
)}

, (1)

and h(r) = rv(r)1/α

There is a corresponding lower bound under GMC as well.



The quenched case in 1-d

Theorem

For a fixed x, P-a.s there exist constants such that for all t < t0,

c1 exp(−c2N(D, t)) ≤ Pν
0 (TD ≤ t) ≤ c3 exp(−c4N(D, t)),

where N(D, t) = inf{n : (D/n)1+1/α ≥ c5t/n}. Hence

Pν
0 (TD ≤ t) ∼ c exp

(

−c

(

D1+1/α

t

)α)

,

Proof idea: We decompose the path into visits to intermediate
points on scale N and use the independence of the environment
within these segments. The strong law of large numbers then gives
the result.



Annealed heat kernel examples

For α large enough we have an annealed heat kernel estimate.

We assume that v(r) = rdf and D = d(x , y) ∼ R(x , y)β.

◮ For the classical one-dimensional FIN diffusion we have
df = 1, β = 1 and our estimate becomes, provided α > 0.618;

E (pνt (x , y)) ∼ c1t
−1/(α+1)e

−c2

(

D1+1/α

t

)α

.

◮ For the FIN on the SG we have df = log 3/ log 2,
β = log 2/ log (5/3) and provided α > 0.743;

E (pνt (x , y)) ∼ c1t
−df /(αβ+df )e

−c2

(

D
1+df /α

tβ

)1/(1+df /α−β)

.


