Scaling limits for randomly trapped random walks

Ben Hambly

with David Croydon and Takashi Kumagai

29th July 2017

(ロ)、(型)、(E)、(E)、 E) の(の)

Random walk in random environment

Let G = (V, E) be a graph. For each $x \in V$ we assign a random probability $p_{\omega}(x, y)$ to each edge $e(x, y) \in E$. The collection

$$\{p_{\omega}(x,.): x \in V, \sum_{y:e(x,y)\in E} p_{\omega}(x,y)=1\}$$

is called the random environment. We write \mathbf{P}, \mathbf{E} for the law and expectation with respect to the environment.

There are two natural measures for RWRE.

- Quenched: we fix the environment and consider the law $P^{x}_{\omega}(X \in \cdot)$ and study the random walker for **P**-a.e. ω .
- Annealed: We consider the law of the random walker averaged over the environments EP^x_ω(X ∈ ·)

Random Conductance Model

A reversible version of RWRE is the random conductance model.

We define a random resistor network on the graph G = (V, E). For each edge $e \in E$ we have a random variable $\mu_e = \mu_{xy}$, the conductance of the edge e between x, y. We then define

$$\mu_{\mathsf{x}} = \sum_{\mathsf{y}:(\mathsf{x},\mathsf{y})\in\mathsf{E}} \mu_{\mathsf{x}\mathsf{y}}, \ \mathsf{p}_{\omega}(\mathsf{x},\mathsf{y}) = \frac{\mu_{\mathsf{x}\mathsf{y}}}{\mu_{\mathsf{x}}}.$$

By construction these are the transition probabilities for a discrete time reversible random walk with invariant measure μ_x on G.

(日) (同) (三) (三) (三) (○) (○)

Continuous time random walks

The constant speed random walk (CSRW), X = (X_t, t ≥ 0, P^x_ω, x ∈ Z^d), with holding time 1 at each vertex; generator

$$\mathcal{L}_{C}f(x) = \mu_{x}^{-1}\sum_{y}\mu_{xy}(f(y) - f(x)).$$

► The variable speed random walk (VSRW), $Y = (Y_t, t \ge 0, P_{\omega}^x, x \in \mathbb{Z}^d)$, with holding time with mean $1/\mu_x$ at vertex x; generator

$$\mathcal{L}_V f(x) = \sum_y \mu_{xy}(f(y) - f(x)) = \mu_x \mathcal{L}_C f(x).$$

Scaling limits

$$\text{Let } X_t^{(\varepsilon)} = \varepsilon X_{t/\varepsilon^2}, \ \ Y_t^{(\varepsilon)} = \varepsilon \, Y_{t/\varepsilon^2}, \ \ t \geq 0.$$

Theorem (Andras-Barlow-Deuschel-H)

Let $d \ge 2$ and suppose that $(\mu_e, e \in E_d)$ are i.i.d., $\mu_e \ge 0 \mathbb{P}$ -a.s. and $\mathbb{P}(\mu_e > 0) > p_c$. (a) Let Y be the VSRW with $Y_0 = 0$. Then, **P**-a.s. $Y^{(\varepsilon)}$ converges (under P^0_{ω}) in law to a Brownian motion on \mathbb{R}^d with covariance matrix $\sigma_V^2 I$, where $\sigma_V > 0$ is non-random. (b) Let X be the CSRW with $X_0 = 0$. Then, **P**-a.s. $X^{(\varepsilon)}$ converges (under P^0_{ω}) in law to a Brownian motion on \mathbb{R}^d with covariance matrix $\sigma_C^2 I$, where

$$\sigma_{C}^{2} = \begin{cases} \sigma_{V}^{2}/(2d\mathbf{E}\mu_{e}), & \text{if } \mathbf{E}\mu_{e} < \infty, \\ 0, & \text{if } \mathbf{E}\mu_{e} = \infty. \end{cases}$$

(日) (同) (三) (三) (三) (○) (○)

Fractional Kinetics

In the case of \mathbb{Z}^d for $d \ge 2$ with the CSRW with $\mathbf{E}\mu_e = \infty$ there is a scaling limit - the fractional kinetics process (Barlow-Cerny).

Let *B* be a Brownian motion and *V* an independent α -stable subordinator for $0 < \alpha < 1$. Let $\tau_t = \inf\{u > 0 : V_u > t\}$ be the inverse of *V*. The fractional kinetics process is given by

$$X_t^{FK(\alpha)} = B_{\tau_t}.$$

A continuous non-Markov self-similar process; $X_t = \lambda^{-\alpha/2} X_{\lambda t}$.

Theorem

For $d \ge 3$, if $\mathbf{P}(\mu_e > u) \sim u^{-\alpha}$, then for the CSRW X_t we have that **P**-a.s. as $n \to \infty$

$$(rac{1}{n}X_{tn^{2/lpha}})_t
ightarrow (X_t^{FK(lpha)})_t,$$
 in law

Random walk in a random trapping environment

Let G = (V, E), be a graph. Traps are now just random holding times at the vertices. At each $x \in V$ we have a probability measure π_x on $(0, \infty)$; this is the random trapping environment. The randomly trapped random walk is then the simple random walk on G, which at each visit to vertex x chooses an i.i.d holding time according to π_x .

- The CSRW has $\pi_{\chi} \sim \text{Exp}(1)$.
- The VSRW has $\pi_x \sim \text{Exp}(\sum_y \mu_{xy})$.
- ► The Bouchaud trap model has π_x ~ Exp(ξ) where 1/ξ is randomly chosen from a heavy tailed distribution.

Bouchaud trap model on \mathbb{Z}^d

- For Z^d with π_x ~ Exp(ξ) where ξ_x⁻¹ for x ∈ Z^d chosen according to the distribution with P(ξ > u) ~ u^{-α} for 0 < α < 1.</p>
- X is simple random walk on Z^d with holding times given by the ξ_x; That is with generator

$$\mathcal{L}_{BTM}f(x) = \xi_x^{-1} \sum_{y} (f(y) - f(x)).$$

- In Z^d for d ≥ 2 we will see a fractional kinetics process in the scaling limit. For d ≥ 3 the transience of the random walk means we do not always revisit the same traps.
- In \mathbb{Z} the recurrence means we return to the deep traps.

The FIN diffusion

The Fontes-Isopi-Newman (FIN) diffusion is a singular diffusion on $\mathbb R.$ It is defined as follows

- Let (x_i, v_i) be an inhomogeneous Poisson process on $\mathbb{R} \times (0, \infty)$ with intensity measure $dx \alpha v^{-\alpha-1} dv$. Set $\rho = \sum_i v_i \delta_{x_i}$.
- Let B be a Brownian motion with local time process $I_t(x)$.
- Given ρ we define the FIN diffusion as a time change of Brownian motion by the additive functional

$$A_t = \int_{\mathbb{R}} I_t(x) \rho(dx).$$

• Set $\tau_t = \inf\{u > 0 : A_u > t\}$. The FIN diffusion is

$$X_t^{FIN} = B_{\tau_t}$$

Scaling limit

The FIN diffusion arises as the scaling limit of the BTM on \mathbb{Z} . Let $X_t^{\epsilon} = \epsilon X_{t\epsilon^{-1-1/\alpha}}$ and $\eta^{\epsilon}(dx) = \epsilon^{1/\alpha} \sum_{y \in \mathbb{Z}} \xi_y \delta_{\epsilon y}(dx)$.

Theorem

As $\epsilon \to 0$ the distribution of $(X_t^{\epsilon}, \eta^{\epsilon})$ converges weakly to (X_t^{FIN}, ρ) under the annealed law.

In one dimension Ben Arous et al have classified the limits of trapping models, showing that the scaling limits are Brownian motion, Fractional Kinetics, FIN and a so-called spatially subordinated Brownian motion.

Aim

The aim of our project was to

- generalize this type of result to families of recurrent graphs such as discrete trees or fractal graphs.
- Establish FIN limits for these processes by proving a general theorem about scaling limits of processes when we have Gromov-Hausdorff convergence of spaces.
- Consider the heat kernel estimates for these scaling limits.

The set up

We work in a metric space F equipped with a resistance metric R.

- One dimension the resistance is the Euclidean length
- Finitely ramified fractals such as the Sierpinski gasket
- Real trees resistance is the length along the shortest path
- The two-dimensional Sierpinski carpet

We will have a base measure μ , the 'natural' measure on F

Assumptions

Let \mathbb{F} be a collection of (F, R, μ, ρ) with ρ a distinguished point.

(UVD) There exist constants c_d, c_l, c_u and a non-decreasing function $v : (0, \infty) \rightarrow (0, \infty)$ satisfying $v(2r) \le c_d v(r)$ for all $r \in (0, R_F + 1)$ such that

 $c_l v(r) \leq \mu(B_R(x,r)) \leq c_u v(r), \quad \forall x \in F, r \in (0, R_F + 1).$

(MC) The function $d : F \times F \to \mathbb{R}$ is a metric on F such that $d \simeq R^{\beta}$ for some $\beta > 0$.

(GMC) MC holds and also d is a geodesic metric.

Convergence results

Let $(F_n, R_n, \mu_n, \rho_n)_{n \ge 1}$ in \mathbb{F} satisfies UVD, and also $(F_n, R_n, \mu_n, \rho_n) \to (F, R, \mu, \rho)$,

in the Gromov-Hausdorff-vague topology, where $(F, R, \mu, \rho) \in \mathbb{F}$.

Theorem

1. (F_n, R_n) , $n \ge 1$, and (F, R) can be isometrically embedded into a common metric space (M, d_M) in such a way that

$$(X_t^n)_{t\geq 0} o (X_t)_{t\geq 0}$$

in distribution in $D(\mathbb{R}_+, M)$.

2. Moreover, the local times of L^n are equicontinuous, and if $d_M(x_i^n, x_i) \to 0$ for i = 1, ..., k, then it simultaneously holds that

$$(L_t^n(x_i^n))_{i=1,\ldots,k,t\geq 0}\to (L_t(x_i))_{i=1,\ldots,k,t\geq 0},$$

in distribution in $C(\mathbb{R}_+, \mathbb{R}^k)$.

The Bouchaud Trap Model

For the BTM we have the following set up.

Assumption

Suppose $(G_n)_{n\geq 1}$ is a sequence of locally finite, connected graphs with vertex sets V_n , resistance metrics R_n where individual edges have unit resistance, counting measures μ_n , and distinguished vertices ρ_n .

Assume that there exist scaling factors $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ such that $(V_n, a_n R_n, b_n \mu_n, \rho_n)_{n\geq 1}$ converges to $(F, R, \mu, \rho) \in \mathbb{F}$. Finally, we suppose that each G_n is equipped with a trapping landscape $\xi^n = (\xi_x^n)_{x\in V_n}$ such that for some fixed $\alpha \in (0, 1)$,

$$\mathbf{P}\left(\xi_x^n>u\right)\sim u^{-\alpha}.$$

The FIN diffusion on F

Let

$$\nu(dx) := \sum_{i} v_i \delta_{x_i}(dx),$$

where (v_i, x_i) are the points of a Poisson process on $(0, \infty) \times F$ with intensity $\alpha v^{-1-\alpha} dv \mu(dx)$. This is a locally finite, Borel regular measure on (F, R) of full support, **P**-a.s.

• Let $I_t(x)$ denote the local times for the diffusion X on F

$$A_t = \int_{\mathbb{R}} I_t(x) \nu(dx).$$

• Set $\tau_t = \inf\{u > 0 : A_u > t\}$. The α -FIN diffusion on (F, R, μ) is $X_t^{\nu} = X_{\tau_t}$.

Proposition

Suppose the BTM assumption holds. It is then possible to isometrically embed $(V_n, a_n R_n, b_n \mu_n, \rho_n)$, $n \ge 1$, and (F, R, μ, ρ) into a common metric space (M, d_M) so that

$$\mathbb{P}_{\rho_n}^{\operatorname{BTM}_n}\left(\left(X_{t/a_nb_n^{1/\alpha}}^{n,\xi^n}\right)_{t\geq 0}\in\cdot\right)\to\mathbb{P}_{\rho}^{\operatorname{FIN}}\left((X_t^{\nu})_{t\geq 0}\in\cdot\right)$$

weakly as probability measures on $D(\mathbb{R}_+, M)$.

The random conductance model on fractal graphs with heavy tails also converges to the FIN diffusion on the limit fractal.

Heat kernels

• The classical heat kernel for Brownian motion in \mathbb{R} .

$$p_t(x,y) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{|x-y|^2}{2t}\right).$$

• For uniformly elliptic operators in \mathbb{R}^d (Aronson)

$$p_t(x,y) \sim \frac{1}{(2\pi t)^{d/2}} \exp\left(-c \frac{|x-y|^2}{2t}\right).$$

On manifolds we have (Li-Yau)

$$p_t(x,y) \sim \frac{c}{Vol_M(B_{\sqrt{t}}(x))} \exp\left(-c \frac{d(x,y)^2}{t}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Heat kernels

 On fractals such as the Sierpinski gasket we have sub-diffusivity (Barlow+Perkins)

$$p_t(x,y) \sim ct^{-d_s/2} \exp\left(-c\left(\frac{d(x,y)^{d_w}}{t}\right)^{1/(d_w-1)}\right).$$

where $1 < d_s = 2 \log 3 / \log 5 < 2$ and $d_w = \log 5 / \log 2 > 2$.

In the case of random fractals such as the CRT (Croydon): Quenched result is that P-a.s.

$$ct^{-2/3}|\log(t)|^{-eta} \leq \inf_{x} p_t(x,x) \leq \sup_{x} p_t(x,x) \leq ct^{-2/3}|\log(t)|^{eta'}.$$

Annealed case

$$\mathsf{E} p_t(\rho, \rho) \sim c t^{-2/3}$$

What happens for the FIN diffusion?

Heat kernel estimates for FIN

- ► (Kigami) For P-a.e. realisation of ν, X^ν admits a jointly continuous transition density (p^ν_t(x, y))_{x,y∈F,t>0}; the quenched heat kernel for the FIN diffusion.
- In the averaged case we consider E(p^ν_t(x, y)). The anomalous behaviour of the tail of the exit time of the FIN diffusion in ℝ is due to Cerny and Cabezas.
- Let V(ρ, r) = ν(B_R(ρ, r)) be the volume growth function of the FIN measure.

Key to the study of the heat kernel is a connection with stable subordinators.

Volume growth

Let \mathcal{L} be an α -stable subordinator. We can construct this by setting $\mathcal{L}_t = \sum_i v_i \mathbf{1}_{\{t_i \leq t\}}$, where (v_i, t_i) are the points of a Poisson process on $(0, \infty) \times \mathbb{R}_+$ with intensity $\alpha v^{-\alpha - 1} dv dt$.

Recall $v(r) \asymp \mu(B_R(\rho, r))$ - typically $v(r) = r^{d_f}$.

Lemma

It is possible to couple $(\mathcal{L}_t)_{t\geq 0}$ and $(V(\rho, r))_{r\geq 0}$ so that, **P**-a.s.,

$$\mathcal{L}_{c_l v(r)} \leq V(\rho, r) \leq \mathcal{L}_{c_u v(r)}, \qquad \forall r \in (0, R_F).$$

Stable subordinators

Upper bounds:

There is an integral test for the upper bound on the behaviour of \mathcal{L} near 0 in that, **P**-almost surely,

$$\limsup_{t\to 0} \frac{\mathcal{L}_t}{h_t} = \begin{cases} \infty, & \text{if } \int_0^1 h_t^{-\alpha} dt = \infty, \\ 0, & \text{if } \int_0^1 h_t^{-\alpha} dt < \infty. \end{cases}$$

Lower bounds:

We have smaller fluctuations in that, P-almost surely,

$$\liminf_{t\to 0} \frac{\mathcal{L}_t}{t^{1/\alpha} (\log |\log t|)^{1-1/\alpha}} = C_\alpha (= \alpha (1-\alpha)^{(1-\alpha)/\alpha}).$$

Volume growth locally

These estimates give local volume growth estimates:

Lemma

(1) For any $\varepsilon > 0$ there exists a c > 0 such that

$$V(
ho,r) \leq c v(r)^{1/lpha} |\log v(r)|^{(1+arepsilon)/lpha}, \qquad orall r < R_F, \qquad {\sf P} ext{-a.s.}$$

(2) There is a c > 0 such that

$$V(\rho, r) \ge cv(r)^{1/lpha} (\log |\log v(r)|)^{1-1/lpha}, \quad \forall r < R_F, \quad \mathsf{P}\text{-a.s.}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Volume growth globally

For the global bounds we see the atoms in the upper bound:

Lemma

There exist random constants $0 < c_1, c_2$ such that

$$c_1 \leq \sup_{x \in F} V(x, r) \leq c_2, \quad \forall r < R_F, \quad \mathbf{P}\text{-}a.s.$$

For the lower:

Lemma

There exist positive constants c_1, c_2 such that, **P**-a.s.,

$$c_1 \leq \liminf_{r \to 0} \frac{\inf_{x \in F} V(x, r)}{v(r)^{1/\alpha} |\log v(r)|^{1-1/\alpha}} \leq \limsup_{r \to 0} \frac{\inf_{x \in F} V(x, r)}{v(r)^{1/\alpha} |\log v(r)|^{1-1/\alpha}} \leq c_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quenched results - local

We can observe local and global on-diagonal results:

Suppose $v(r) = r^{d_f}$. Then the following hold. (1) We have

$$0 < \limsup_{t \to 0} \frac{p_t^{\nu}(\rho, \rho)}{t^{-d_f/(d_f + \alpha)} \left(\log |\log t|\right)^{(1-\alpha)/(d_f + \alpha)}} < \infty, \qquad \mathsf{P}\text{-a.s.}$$

(2) For any $\varepsilon > 0$, there exists a constant c_3 such that

$$\liminf_{t\to 0} \frac{p_t^{\nu}(\rho,\rho)}{t^{-d_f/(d_f+\alpha)}|\log t|^{-3(1+\varepsilon)/\alpha}} \ge c_3 \qquad \mathsf{P}\text{-a.s.}$$

(3) Also there is a constant c_4 such that

$$\liminf_{t\to 0} \frac{p_t^{\nu}(\rho,\rho)}{t^{-d_f/(d_f+\alpha)}|\log t|^{-1/(d_f+\alpha)}} \leq c_4 \qquad \mathsf{P}\text{-a.s}$$

Quenched results - global

(1) There exist random constants c_1, c_2 and a deterministic constant t_F such that

$$0 < c_1 \leq \inf_{x \in F} p_t^{\nu}(x, x) \leq c_2, \quad \forall t < t_F, \quad \mathsf{P}\text{-a.s.}$$

(2) Suppose $v(r) = r^{d_f}$. Then we have

$$0 < \limsup_{t \to 0} \frac{\sup_{x \in F} p_t^{\nu}(x, x)}{t^{-d_f/(d_f + \alpha)} |\log t|^{(1 - \alpha)/(d_f + \alpha)}} < \infty, \qquad \mathsf{P}\text{-a.s.}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Annealed case

Let $T_D := T_{B_d(\rho,D)}$ be the exit time of the ball $B_d(\rho,D)$ by X^{ν} . Theorem

Under UVD and MC there exist constants a, c_1, c_2 such that

 $\mathbf{E} P_{\rho} \left(T_D \leq T \right) \leq c_1 e^{-c_2 \mathcal{N}(\mathsf{a})}, \qquad \forall D \in (0, D_F/2), \ t \in (0, h(R_F)),$

where N(a) is defined as

$$N(a) := \inf\left\{n: \frac{at}{n} \le h\left(\left(\frac{D}{n}\right)^{1/\beta}\right)\right\}, \quad (1)$$

and $h(r) = rv(r)^{1/\alpha}$

There is a corresponding lower bound under GMC as well.

The quenched case in 1-d

Theorem

For a fixed x, **P**-a.s there exist constants such that for all $t < t_0$,

 $c_1 \exp(-c_2 N(D, t)) \le P_0^{\nu} (T_D \le t) \le c_3 \exp(-c_4 N(D, t)),$ where $N(D, t) = \inf\{n : (D/n)^{1+1/\alpha} \ge c_5 t/n\}.$ Hence

$$\mathcal{P}_0^{
u}\left(T_D \leq t
ight) \sim c \exp\left(-c \left(rac{D^{1+1/lpha}}{t}
ight)^{lpha}
ight),$$

Proof idea: We decompose the path into visits to intermediate points on scale N and use the independence of the environment within these segments. The strong law of large numbers then gives the result.

Annealed heat kernel examples

For α large enough we have an annealed heat kernel estimate. We assume that $v(r) = r^{d_f}$ and $D = d(x, y) \sim R(x, y)^{\beta}$.

 For the classical one-dimensional FIN diffusion we have d_f = 1, β = 1 and our estimate becomes, provided α > 0.618;

$$\mathsf{E}\left(p_t^{\nu}(x,y)\right) \sim c_1 t^{-1/(\alpha+1)} e^{-c_2 \left(\frac{D^{1+1/\alpha}}{t}\right)^{\alpha}}.$$

For the FIN on the SG we have $d_f = \log 3 / \log 2$, $\beta = \log 2 / \log (5/3)$ and provided $\alpha > 0.743$;

$$\mathsf{E}(p_t^{\nu}(x,y)) \sim c_1 t^{-d_f/(\alpha\beta+d_f)} e^{-c_2 \left(\frac{D^{1+d_f/\alpha}}{t^{\beta}}\right)^{1/(1+d_f/\alpha-\beta)}}$$