Multiscale Model Reduction to High-contrast Heterogeneous Flow Problems

Guanglian Li

Hausdorff Center for Mathematics & Institute for Numerical Simulation University of Bonn

11. 08. 2017, LMS Durham Symposium

向下 イヨト イヨト

Background

- Applications, e.g., subsurface flows, heat and mass transfer and filtration process, contain multiple scales and physical properties that vary over orders of magnitude and exhibit uncertainties
- Classical numerical approaches are infeasible or computationally inefficient due to scale disparity!

https://www.sintef.no/projectweb/geoscale

Firoozabadi et al, computational geosciences, 2009

イロン イヨン イヨン イヨン

Motivation

Strategy

Solve the problem on the coarse-scale (affordable computational cost) with a certain accuracy.

No free lunch!

Obtain the coarse-scale basis functions with fine-scale approximation properties, i.e., identify appropriate local problems.

Brief literature on multiscale methods

- 1. Homogenization theory Sanchez-Plencia 80 periodic scale separable
- 2. Partition of Unity method (PUM) Babuska, Caloz & Osborn, 94
 - Generalized Finite Element Method (GFEM) *Strouboulis, Babuska & Copps 00* low contrast
- 3. Multiscale Finite Element methods (MsFEM) Hou & Wu 97 scale separable, low contrast
- 4. Variational Multiscale methods (VMS) Hughes 98 low contrast, expensive
 - Localized Orthogonal Decomposition (LOD) Målqvist & Peterseim 13
- 5. Heterogeneous Multiscale Methods (HMM) *E & Engquist 03* scale separable macroscale
- 6. Flux norm approach Berlyand & Owhadi 10 low contrast, expensive
 Localized version Owhadi & Zhang 11
- Generalized Multiscale Finite Element methods (GMsFEM) *Efendiev, Galvis & Hou 13*

イロト イポト イヨト イヨト

GMsFEM

Efendiev, Galvis & Hou 13 Efendiev, IL15.3, ICM 14

Offline computations:

- Step 1 Coarse grid generation.
- Step 2 Construction of snapshot space that will be used to compute an offline space.
- Step 3 Construction of a small dimensional offline space by performing dimension reduction in the space of local snapshots.

Online computations: for parameter-dependent problems only!

- Step 1 For each input parameter, compute multiscale basis functions. (for parameter-dependent cases only)
- Step 2 Solution of a coarse-grid problem for any force term and boundary condition.

▶ < 문 > < E > ...

Background and motivation GMsFEM Eigenvalue decay rate in a global domain Conclusion and future work

Local snapshot bases construction

Local spectral bases

$$\begin{cases} -\nabla \cdot (\kappa \nabla \psi_{\ell}^{\mathsf{snap}}) = \tilde{\kappa} \lambda_{\ell}^{-1} \psi_{\ell}^{\mathsf{snap}} & \text{in } \omega_i \\ \\ \frac{\partial}{\partial n} \psi_{\ell}^{\mathsf{snap}} = 0 & \text{on } \partial \omega_i \end{cases}$$

Pros: Good approximation property \bullet Cons: expensive, not available for every problem

Harmonic extension bases

$$\begin{cases} -\nabla \cdot (\kappa \nabla \psi_{\ell}^{\text{snap}}) = 0 & \text{in } \omega_i \\ \psi_{\ell}^{\text{snap}} = \delta_{\ell}^k & \text{on } \partial \omega_i \end{cases}$$

Pros: very general and available for every problem • Cons: expensive

Randomized snapshots

Carlo, Efendiev, Galvis & GL, Multiscale Modeling & simulation 16

- Motivation: In many applications, the solution lives in a very low-dimensional manifold
- ► Technique: Randomized algorithm Martinsen, Rockhlin & Tygert 06
- Randomized snapshots

$$\begin{cases} -\nabla \cdot (\kappa \nabla \psi_{\ell}^{\text{rsnap}}) = 0 & \text{in } \omega_i \\ \psi_{\ell,\omega_i}^{\text{rsnap}} = r_{\ell} & \text{on } \partial \omega_i \end{cases}$$

 r_ℓ are i.i.d. standard Gaussian random vectors on the fine-grid nodes of the boundary

$$\int_D \kappa |\nabla (u-u_H)|^2 \preceq \left(\Lambda_* + (\Lambda_*)^2 \left(\left\|\mathcal{H}^{(-1)}\mathcal{S}\right\| + 1\right)^2\right) \int_D \kappa |\nabla u|^2 + H^2 \int_D f^2$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

$\dim(V_{\rm off})$	snapshot ratio (%)	all snapshots (%)		using the randomized snapshots (%)	
		$L^2_{\kappa}(D)$	$H^1_{\kappa}(D)$	$L^2_{\kappa}(D)$	$H^1_{\kappa}(D)$
526	8.65(15.38)	0.71	20.98	1.33(0.80)	33.76(24.14)
931	13.46	0.51	17.33	0.66	21.67
1336	18.27	0.45	15.83	0.53	18.26
1741	23.08	0.40	14.66	0.48	17.13
2146	23.88	-	-	0.43	15.39

æ

Adaptive GMsFEM

illustration of neighborhoods and elements subordinated to the coarse discretization.

i—the i-th coarse node.

 $-\operatorname{div}(\kappa(x)\nabla u) = f$ in D,

 $\kappa(x)$ -multiple scales and high contrast. H^{-1} - based residual for each coarse node *i*.

$$R_i(\mathbf{v}) = \int_{\omega_i} f\mathbf{v} - \int_{\omega_i} a \nabla u_{\mathsf{ms}} \cdot \nabla \mathbf{v}.$$

According to the Riez representation theorem, $||R_i||_{V_i^*} = ||z_i||_{V_i}$, where z_i is defined

$$\int_{\omega_i} a \nabla z_i \cdot \nabla v = R_i(v), \quad \text{for all } v \in V_i.$$

イロン イヨン イヨン イヨン

æ

$$V_i = H_0^1(\omega_i) \text{ and } \|v\|_{V_i} = \left(\int_{\omega_i} \kappa(x) \nabla v \cdot \nabla v \, dx\right)^{\frac{1}{2}}.$$

Multiscale Model Reduction

Chung, Efendiev & GL, J. Comput. Phys., 2014.

$\mathsf{SOLVE} \to \mathsf{ESTIMATE} \to \mathsf{MARK} \to \mathsf{ENRICH}$

Choose $0 < \theta < 1$. For each $m = 1, 2, \cdots$,

Step 1: Find the solution in the current space. That is, find $u_{ms}^m \in V_{off}^m$ such that

$$a(u_{\mathsf{ms}}^m, v) = (f, v) \hspace{1em} ext{for all} \hspace{1em} v \in V_{\mathsf{off}}^m$$

Step 2: Compute the local residual. For each coarse region ω_i , we compute

$$\eta_i^2 = \|R_i\|_{V_i^*}^2 \lambda_{l_i^m + 1}^{\omega_i},$$

and we re-enumerate them in the decreasing order, that is, $\eta_1^2 \ge \eta_2^2 \ge \cdots \ge \eta_N^2$. Step 3: Find the coarse region where enrichment is needed. We choose the smallest integer k such that

$$\theta \sum_{i=1}^{N} \eta_i^2 \le \sum_{i=1}^{k} \eta_i^2.$$

Step 4: Enrich the space.

(ロ) (同) (E) (E) (E)

Let V be the fine scale space. We recall that the fine scale solution u satisfies

$$a(u,v)=(f,v)$$
 for all $v\in V$

and the multiscale solution u_{ms} satisfies

$$\mathsf{a}(u_{\mathsf{ms}}, \mathsf{v}) = (f, \mathsf{v}) \hspace{1em} ext{for all} \hspace{1em} \mathsf{v} \in V_{\mathsf{off}}$$

$$\begin{split} \|u - u_{\rm ms}\|_{V}^{2} &\leq C_{\rm err} \sum_{i=1}^{N} \|R_{i}\|_{V_{i}^{*}}^{2} \lambda_{\ell_{i}+1}^{\omega_{i}} \\ \|u - u_{\rm ms}^{m+1}\|_{V}^{2} + \frac{\tau}{1 + \tau \delta L_{2}} \sum_{i=1}^{N} S_{m+1}(\omega_{i})^{2} &\leq \varepsilon \Big(\|u - u_{\rm ms}^{m}\|_{V}^{2} + \frac{\tau}{1 + \tau \delta L_{2}} \sum_{i=1}^{N} S_{m}(\omega_{i})^{2} \Big) \\ \varepsilon &= \max (1 - \frac{\theta^{2}}{L_{1}(1 + \tau \delta L_{2})}, \frac{2C_{\rm err}}{\tau L_{1}} + \rho) \end{split}$$

æ.

Comparison with exact error indicator

Comparison and relative errors

$\dim(V_{\alpha})$	$ u - u_0 $	off∥ (%)	$\ u_{snap} - u_{off}\ $ (%)	
	$L^2_{\kappa}(D)$	$H^1_{\kappa}(D)$	$L^2_{\kappa}(D)$	$H^1_{\kappa}(D)$
802	0.87	20.15	0.87	19.94
868	0.83	16.51	0.83	16.26
979	0.33	12.62	0.33	12.30
1106	0.32	10.44	0.32	10.05
1410	0.10	7.43	0.10	6.87

Table: history for spectral basis with $\theta = 0.7$ and 5 iterations. The snapshot space has dimension 3690 giving 0.01% and 2.84% weighted L^2 and weighted energy errors. When using 5 basis per interior coarse node, the weighted L^2 and the weighted energy errors will be 0.09% and 7.40%, respectively, and the dimension of offline space is 1885.

Applications

- 1. Homogenization of high-contrast Brinkman flow Brown, Efendiev, GL& Savatorova, Multiscale Modeling & Simulation, 2015.
- 2. Nonlinear heterogeneous high-contrast elliptic flows *Efendiev*, *Galvis*, <u>GL</u>& Presho, Commun. Comput. Phys., 2014.
- 3. High-contrast heterogeneous Brinkman flow Galvis, GL& Shi, J. Comput. Appl. Math. 2015.
- 4. Hierarchical multiscale modeling for flows in fractured media Efendiev, Lee, <u>CL</u>, Yao, Zhang, GEM, 2015.
- 5. Heterogeneous perforated media *Chung, Efendiev, GL& Vasilyeva, Applicable Analysis, 2015.*
- 6. Sparse GMsFEM Chung, Efendiev, Leung & <u>GL</u>, INT J MULTISCALE COM, 2016.

・ロン ・回と ・ヨン・

45 c4 0 0.4

		velocity error	pressure error				
N_b^p	dim	L ²	L ²				
number of velocity basis, $N_b^{\mu} = 12$							
1	2190	0.25	0.36				
2	2340	0.18	0.24				
4	2640	0.11	0.13				
8	3240	0.08	0.09				
number of velocity basis, $N_b^u = 16$							
1	2870	0.22	0.45				
2	3020	0.16	0.32				
4	3320	0.09	0.19				
8	3920	0.05	0.11				
12	4520	0.05	0.11				

Fundamental issue

Question: How to construct the local problems, and why the corresponding local solutions are capable of characterizing the local solution space?

• <u>local solvers</u>: highest order operator coupled with all possible boundary data *Efendiev*, *Galvis*, <u>GL</u>& *Presho* 14 randomized snapshots *Carlo*, *Efendiev*, *Galvis* & <u>GL</u>16 local spectral bases, etc.

$$\begin{cases} -\nabla \cdot (\kappa \nabla \psi_{\ell}^{\mathsf{snap}}) = 0 & \text{in } \omega_i \\ \psi_{\ell}^{\mathsf{snap}} = \delta_{\ell}^k & \text{on } \partial \omega_i \end{cases}$$

Consequently, the local snapshot space is generated.

A (1) > A (2) > A

• <u>approximation property</u>: measured by **Komolgrov n-width** *Pinkus* 1985, *Pietsch* 1987, *Bebedorf & Hackbusch* 03 — 'worst case optimal approximation space' *Wozniakowiski*, 85

Given a tolerance $\delta > 0$, we aim at finding a linear subspace $X_N \subset V := H_0^1(D)$ of dimension N, dependent of δ , satisfying

$$d_{\mathcal{N}}(\mathcal{S}(W); V) := \sup_{u \in \mathcal{U}} \inf_{v \in X_{\mathcal{N}}} \|u - v\|_{H^{1}_{\kappa}(D)} \leq C\delta,$$

where C denotes a constant independent of N, $S := L^{-1}$ and $W = L^2(D)$.

• $d_N(\mathcal{S}(W); V) = \sqrt{\lambda_{N+1}}$

・ロン ・回 と ・ ヨ と ・ ヨ と

Rayleigh quotient estimate

univers

model

<u>GL</u>, 2017: submitted Let $\mathcal{L} : H_0^1(D) \to L^2(D)$ be defined by $\mathcal{L}u := -\nabla \cdot (\kappa \nabla u) = f \quad \text{in } D$ $u = 0 \quad \text{on } \partial D.$

▶ κ low-contrast, then $\lambda_n = O(n^{-\frac{2}{d}})$ —algebraic decay rate Li &

Yau, Acta Math 1986

contrast increases, then the estimate above will become inaccurate!

Rayleigh quotient estimate

Motivation

Proposition (<u>GL</u>, 2017)

Let $D_i := B(O_i, \epsilon_i)$ and $v \in V$. If $v = \sin k_i \theta$ on the interface Γ_i , where $k_i \in \mathbb{N}_+$ and $i = 1, \dots, m$, then

$$R(\mathbf{v}) := \frac{\int_{D} \mathbf{v}^{2} \mathrm{d}x}{\int_{D} \kappa |\nabla \mathbf{v}|^{2} \mathrm{d}x} \leq \frac{1}{\pi \sum_{i=1}^{m} k_{i} \eta_{min}}$$
$$V := V_{m} \oplus V^{h} \oplus V^{b} \oplus V_{0}^{b}$$

 $V_m = \operatorname{span} \{ w_1, w_2, \cdots, w_m \}$ $V^h = \{ v \in V : -\Delta v = 0 \text{ in } D_i \text{ and } \int_{\Gamma_i} \frac{\partial}{\partial n_i^+} v = 0, \text{ for } i = 1, 2, \cdots, m \}$ $V^b = \{ v \in V : v = 0 \text{ in } \overline{D_0} \}$ $V_0^b = \{ v \in V : v = 0 \text{ in } \overline{D_i} \text{ for } i = 1, 2, \cdots, m \}$

イロト イポト イヨト イヨト

Rayleigh quotient estimate

Lower bound in V_m

$$\begin{cases} -\Delta w_i = 0 & \text{in } D_0 \\ w_i = \delta_{ik} & \text{on } \Gamma_k, k = 1, 2, \cdots, m \\ w_i = 0 & \text{on } \partial D \end{cases}$$

Theorem (<u>GL</u> 2017) For $i = 1, 2, \dots, m$, there holds

$$R(w_i) \geq \begin{cases} [\pi(1+2\frac{\epsilon_i}{\delta_i})]^{-1}|D_i| & \text{if } d=2\\ [\frac{4}{3}\pi(\delta_i+3\epsilon_i+3\frac{\epsilon_i^2}{\delta_i})]^{-1}|D_i| & \text{if } d=3 \end{cases}$$

・ロン ・回と ・ヨン・

æ

Rayleigh quotient estimate

Upper bounds in V^b and V^h

Poincaré inequality in each inclusion and the asymptotic extension yield

$$egin{aligned} & R(v) \leq \max_i \{\eta_i^{-1} C_{\mathsf{poin}}(D_i)\} & ext{for } v \in V^b \ & R(v) \leq rac{1}{\pi \sum\limits_{i=1}^m k_i \eta_{\mathsf{min}}} & ext{for } v \in V^h \end{aligned}$$

However, little is known for R(v) with $v \in V_0^b$! Cioranescu & Murat 82; Tartar, 09

▶
$$\epsilon_i \ll \delta_i$$
 and $\epsilon_i o 0$, then $C_{\mathsf{poin}}(D_0) pprox C_{\mathsf{poin}}(D)$ algebraic decay rate

▶ Periodic case and $\epsilon_i \rightarrow 0$, then $C_{poin}(D_0) \lesssim \epsilon_i^2$ spectral gap!

Rayleigh quotient estimate

Spectral gap under certain assumption

$$C_{poin}(D_0) \ll \min\{R(w_i)\}.$$

Then it holds

$$d_i(\mathcal{S}(W); V) \begin{cases} \geq \sqrt{\frac{|D_{i+1}|}{\pi}} & i \leq m-1 \\ \lesssim \eta_{\min}^{-\frac{1}{2}}(C_{poin}(D) + \max\{C_{poin}(D_j)\}) & i = m. \end{cases}$$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Future work

- Extend the classical homogenization theory to scale non-separable problems; seek for a more general assumption and a sharp convergence rate
- ► Derive the eigenvalue decay rate of the elliptic operators with L[∞] coefficient

向下 イヨト イヨト

Questions

Thank you for your attention!

イロト イヨト イヨト イヨト

æ