Balanced truncation model reduction: algorithms and applications Part III

Tatjana Stykel
Universität Augsburg

LMS-EPSRC Durham Symposium on Model Order Reduction
Durham, August 7-17, 2017

Outline

Part I (Tuesday)

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques

Part II (Wednesday)

- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems

Part III (today)

- Balanced truncation for parametric systems
- Related topics and open problems

Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- reduced basis method for parametric Lyapunov equations
- parametric balanced truncation
- Related topics and open problems

Model reduction problem

Given a large-scale parametric control system

where $E(p), A(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, D(p) \in \mathbb{R}^{q \times m}$, $p \in \mathbb{P} \subset \mathbb{R}^{d}$, find a reduced-order model

where $\widetilde{E}(p), \widetilde{A}(p) \in \mathbb{R}^{\ell \times \ell}, \widetilde{B}(p) \in \mathbb{R}^{\ell \times m}, \widetilde{C}(p) \in \mathbb{R}^{q \times \ell}, \widetilde{D}(p) \in \mathbb{R}^{q \times m}$.

Balanced truncation algorithm

1. Solve the parametric Lyapunov equations

$$
\begin{aligned}
& A(p) X(p) E^{T}(p)+E(p) X(p) A^{T}(p)=-B(p) B^{T}(p), \\
& A^{T}(p) Y(p) E(p)+E^{T}(p) Y(p) A(p)=-C^{T}(p) C(p)
\end{aligned}
$$

for $X(p) \approx \widetilde{R}(p) \widetilde{R}^{T}(p)$ and $Y(p) \approx \widetilde{L}(p) \widetilde{L}^{T}(p)$.
2. Compute the SVD

$$
\widetilde{L}^{T}(p) E(p) \widetilde{R}(p)=\left[U_{1}(p), U_{2}(p)\right]\left[\begin{array}{ll}
\Sigma_{1}(p) & \\
& \Sigma_{2}(p)
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T}(p) \\
V_{2}^{T}(p)
\end{array}\right] .
$$

3. Compute $(\widetilde{E}(p), \widetilde{A}(p), \widetilde{B}(p), \widetilde{C}(p), \widetilde{D}(p))$ with

$$
\begin{array}{ll}
\widetilde{E}(p)=W^{T}(p) E(p) T(p), & \widetilde{A}(p)=W^{T}(p) A(p) T(p), \\
\widetilde{B}(p)=W^{T}(p) B(p), & \widetilde{C}(p)=C(p) T(p), \quad \widetilde{D}(p)=D(p), \\
W(p)=\widetilde{L}(p) U_{1}(p) \Sigma_{1}^{-1 / 2}(p), & T(p)=\widetilde{R}(p) V_{1}(p) \Sigma_{1}^{-1 / 2}(p) .
\end{array}
$$

Parametric Lyapunov equations

- Lyapunov equation:

$$
-A(p) X(p) E^{T}(p)-E(p) X(p) A^{T}(p)=B(p) B^{T}(p)
$$

where $E(p), A(p), X(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}$

- Operator equation:

$$
\mathcal{L}_{p}(X(p))=B(p) B^{T}(p)
$$

where $\mathcal{L}_{p}: \mathbb{S}_{+} \longrightarrow \mathbb{S}_{+}$is a Lyapunov operator

- Linear system:

$$
\boldsymbol{L}(p) \boldsymbol{x}(p)=\boldsymbol{b}(p),
$$

where $L(p)=-E(p) \otimes A(p)-A(p) \otimes E(p) \in \mathbb{R}^{n^{2} \times n^{2}}$,

$$
\boldsymbol{x}(p)=\operatorname{vec}(X(p)), \quad \boldsymbol{b}(p)=\operatorname{vec}\left(B(p) B^{T}(p)\right) \in \mathbb{R}^{n^{2}}
$$

Reduced basis method: idea

Reduced basis method for $\quad \mathcal{L}_{p}(X(p))=B(p) B^{T}(p)$

- Snapshots collection:
construct the reduced basis matrix $V_{k}=\left[Z_{1}, \ldots, Z_{k}\right]$, where $X\left(p_{j}\right) \approx Z_{j} Z_{j}^{T}$ solves $\mathcal{L}_{p_{j}}\left(X\left(p_{j}\right)\right)=B\left(p_{j}\right) B\left(p_{j}\right)^{T}$
- Galerkin projection:
approximate the solution $X(p) \approx V_{k} \widetilde{X}(p) V_{k}^{T}$, where $\widetilde{X}(p)$ solves $-\widetilde{A}(p) \widetilde{X}(p) \widetilde{E}^{T}(p)-\widetilde{E}(p) \widetilde{X}(p) \widetilde{A}^{T}(p)=\widetilde{B}(p) \widetilde{B}^{T}(p)$ with $\widetilde{E}(p)=V_{k}^{T} E(p) V_{k}, \widetilde{A}(p)=V_{k}^{T} A(p) V_{k}, \widetilde{B}(p)=V_{k}^{T} B(p)$

Questions

- How to choose the parameters p_{1}, \ldots, p_{k} ?
- How to estimate the error $\mathcal{E}_{k}(p)=X(p)-V_{k} \widetilde{X}(p) V_{k}^{T}$?
- How to make the computations efficient?

Error estimation

Goal: estimate the error $\mathcal{E}_{k}(p)=X(p)-V_{k} \widetilde{X}(p) V_{k}^{T}$
Residual $\mathcal{R}_{k}(p):=B(p) B^{T}(p)-\mathcal{L}_{p}\left(V_{k} \widetilde{X}(p) V_{k}^{T}\right)=\mathcal{L}_{p}\left(\mathcal{E}_{k}(p)\right)$

- Error estimate

$$
\left\|\mathcal{E}_{k}(p)\right\|_{F} \leq\left\|\mathcal{L}_{p}^{-1}\right\|_{F}\left\|\mathcal{R}_{k}(p)\right\|_{F}=\frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha(p)}
$$

with $\alpha(p):=\left\|\mathcal{L}_{p}^{-1}\right\|_{F}^{-1}=\inf _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\text {min }}(\mathbf{L}(p))$

- Effectivity of the error estimator

$$
\begin{aligned}
& \quad 1 \leq \frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha(p)\left\|\mathcal{E}_{k}(p)\right\|_{F}}=\frac{\| \mathcal{L}_{p}\left(\mathcal{E}_{k}(p) \|_{F}\right.}{\alpha(p)\left\|\mathcal{E}_{k}(p)\right\|_{F}} \leq \frac{\left\|\mathcal{L}_{p}\right\|_{F}}{\alpha(p)}=\frac{\gamma(p)}{\alpha(p)} \\
& \text { with } \gamma(p):=\left\|\mathcal{L}_{p}\right\|_{F}=\sup _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\max }(\mathbf{L}(p))
\end{aligned}
$$

Error estimation

Goal: estimate the error $\mathcal{E}_{k}(p)=X(p)-V_{k} \widetilde{X}(p) V_{k}^{T}$
Residual $\mathcal{R}_{k}(p):=B(p) B^{T}(p)-\mathcal{L}_{p}\left(V_{k} \widetilde{X}(p) V_{k}^{T}\right)=\mathcal{L}_{p}\left(\mathcal{E}_{k}(p)\right)$

- Error estimate

$$
\left\|\mathcal{E}_{k}(p)\right\|_{F} \leq\left\|\mathcal{L}_{p}^{-1}\right\|_{F}\left\|\mathcal{R}_{k}(p)\right\|_{F}=\frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha(p)} \leq \frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha_{L B}(p)}=: \Delta_{k}(p)
$$

with $\alpha(p):=\left\|\mathcal{L}_{p}^{-1}\right\|_{F}^{-1}=\inf _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\text {min }}(\mathbf{L}(p)) \geq \alpha_{L B}(p)$

- Effectivity of the error estimator

$$
1 \leq \frac{\Delta_{k}(p)}{\left\|\mathcal{E}_{k}(p)\right\|_{F}}=\frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha_{\mathrm{LB}}(p)\left\|\mathcal{E}_{k}(p)\right\|_{F}} \leq \frac{\gamma(p)}{\alpha_{L B}(p)} \leq \frac{\gamma_{U B}(p)}{\alpha_{L B}(p)}
$$

with $\gamma(p):=\left\|\mathcal{L}_{p}\right\|_{F}=\sup _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\max }(\mathbf{L}(p)) \leq \gamma_{U B}(p)$

Construction of the reduced basis

Greedy algorithm

Input: tolerance tol, training set $\mathbb{P}_{\text {train }} \subset \mathbb{P}$, initial parameter $p_{1} \in \mathbb{P}$

- Solve $\mathcal{L}_{p_{1}}\left(X\left(p_{1}\right)\right)=B\left(p_{1}\right) B^{T}\left(p_{1}\right)$ for $X\left(p_{1}\right) \approx Z_{1} Z_{1}^{T}, \quad Z_{1} \in \mathbb{R}^{n \times r_{1}}$
- Set $k=2, \Delta_{1}^{\max }=1$ and $V_{1}=Z_{1}$
- while $\Delta_{k-1}^{\max } \geq$ tol

$$
\begin{aligned}
& p_{k}=\arg \max _{p \in \mathbb{P}_{\text {train }}} \Delta_{k-1}(p) \quad \% \Delta_{k-1}(p)=\frac{\left\|\mathcal{R}_{k-1}(p)\right\|_{F}}{\alpha_{L B}(p)} \\
& \qquad \Delta_{k}^{\max }=\Delta_{k-1}\left(p_{k}\right) \\
& \text { solve } \mathcal{L}_{p_{k}}\left(X\left(p_{k}\right)\right)=B\left(p_{k}\right) B^{T}\left(p_{k}\right) \text { for } X\left(p_{k}\right) \approx Z_{k} Z_{k}^{T}, Z_{k} \in \mathbb{R}^{n \times r_{k}} \\
& \quad V_{k}=\left[V_{k-1}, Z_{k}\right] \\
& k \leftarrow k+1 \\
& \text { end }
\end{aligned}
$$

Offline-online decomposition

Assumption: affine parameter dependence

$$
\begin{aligned}
& E(p)=\sum_{i=1}^{n_{E}} \theta_{i}^{E}(p) E_{i}, \quad A(p)=\sum_{i=1}^{n_{A}} \theta_{i}^{A}(p) A_{i}, \quad B(p)=\sum_{i=1}^{n_{B}} \theta_{i}^{B}(p) B_{i} \\
& \hookrightarrow \mathcal{L}_{p}(X)=\sum_{i=1}^{n_{E}} \sum_{j=1}^{n_{A}} \theta_{i}^{E}(p) \theta_{j}^{A}(p) \mathcal{L}_{i j}(X), \quad \mathcal{L}_{i j}(X)=-A_{j} X E_{i}^{T}-E_{i} X A_{j}^{T}, \\
& B(p) B^{T}(p)=\sum_{i=1}^{n_{B}} \sum_{j=1}^{n_{B}} \theta_{i}^{B}(p) \theta_{j}^{B}(p) B_{i} B_{j}^{T}
\end{aligned}
$$

Offline: compute the reduced basis matrix $V_{k}=\left[Z_{1}, \ldots, Z_{k}\right] \in \mathbb{R}^{n \times r}$.
Online: for $p \in \mathbb{P}$, compute $X(p) \approx V_{k} \widetilde{X}(p) V_{k}^{T}$, where $\widetilde{X}(p)$ solves

$$
-\widetilde{A}(p) \widetilde{X}(p) \widetilde{E}^{T}(p)-\widetilde{E}(p) \widetilde{X}(p) \widetilde{A}^{T}(p)=\widetilde{B}(p) \widetilde{B}^{T}(p)
$$

with

$$
\widetilde{E}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) V_{k}^{T} E_{j} V_{k}, \quad \widetilde{A}(p)=\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) V_{k}^{T} A_{j} V_{k}, \widetilde{B}(p)=\sum_{j=1}^{n_{B}} \theta_{j}^{B}(p) V_{k}^{T} B_{j}
$$

Computation of the residual norm

$$
\begin{aligned}
\left\|\mathcal{R}_{k}(p)\right\|_{F}^{2} & =\left\|B(p) B^{T}(p)-\mathcal{L}_{p}\left(V_{k} \widetilde{X}(p) V_{k}^{T}\right)\right\|_{F}^{2} \\
& =\sum_{i, j=1}^{n_{B}} \sum_{f, g=1}^{n_{B}} \theta_{i j f g}^{B}(p) \operatorname{trace}\left(\left(B_{i}^{T} B_{f}\right)\left(B_{g}^{T} B_{j}\right)\right) \\
& +4 \sum_{i, j=1}^{n_{B}} \sum_{f=1}^{n_{E}} \sum_{g=1}^{n_{A}} \theta_{i j f g}^{A E B}(p) \operatorname{trace}\left(B_{i}^{T}\left(E_{f} V_{k}\right) \widetilde{X}(p)\left(A_{g} V_{k}\right)^{T} B_{j}\right) \\
& +2 \sum_{i, f=1}^{n_{E}} \sum_{j, g=1}^{n_{A}} \theta_{i j f g}^{A E}(p) \operatorname{trace}\left(\left(E_{f} V_{k}\right)^{T}\left(E_{i} V_{k}\right) \widetilde{X}(p)\left(A_{j} V_{k}\right)^{T}\left(A_{g} V_{k}\right) \widetilde{X}(p)\right) \\
& +2 \sum_{i, f=1}^{n_{E}} \sum_{j, g=1}^{n_{A}} \theta_{i j f g}^{A E}(p) \operatorname{trace}\left(\left(E_{f} V_{k}\right)^{T}\left(A_{j} V_{k}\right) \widetilde{X}(p)\left(E_{i} V_{k}\right)^{T}\left(A_{g} V_{k}\right) \widetilde{X}(p)\right)
\end{aligned}
$$

with $\theta_{i j f g}^{B}(p)=\theta_{i}^{B}(p) \theta_{j}^{B}(p) \theta_{f}^{B}(p) \theta_{g}^{B}(p), \quad \theta_{i j f g}^{A E B}(p)=\theta_{i}^{B}(p) \theta_{j}^{B}(p) \theta_{f}^{E}(p) \theta_{g}^{A}(p)$,

$$
\theta_{i j f g}^{A E}(p)=\theta_{i}^{E}(p) \theta_{j}^{A}(p) \theta_{f}^{E}(p) \theta_{g}^{A}(p) .
$$

Error estimation: min- θ approach

Assumption: $E(p)=E^{T}(p)>0, \quad A(p)+A^{T}(p)<0$ for all $p \in \mathbb{P}$
(e.g., $\theta_{i}^{E}(p)>0, \quad E_{i}=E_{i}^{T} \geq 0, \bigcap \operatorname{ker}\left(E_{i}\right)=\{0\}$ and

$$
\left.\theta_{i}^{A}(p)>0, \quad A_{i}+A_{i}^{T} \leq 0, \quad \bigcap \operatorname{ker}\left(A_{i}+A_{i}^{T}\right)=\{0\}\right)
$$

Let $\hat{p} \in \mathbb{P}$ and

$$
\theta_{\min }^{\hat{p}}(p)=\min _{\substack{i=1, \ldots, n_{E} \\ j=1, \ldots, n_{A}}} \frac{\theta_{i}^{E}(p) \theta_{j}^{A}(p)}{\theta_{i}^{E}(\hat{p}) \theta_{j}^{A}(\hat{p})}, \quad \theta_{\max }^{\hat{p}}(p)=\max _{\substack{i=1, \ldots, n_{E} \\ j=1, \ldots, n_{A}}} \frac{\theta_{i}^{E}(p) \theta_{j}^{A}(p)}{\theta_{i}^{E}(\hat{p}) \theta_{j}^{A}(\hat{p})} .
$$

Then $\alpha(p) \geq \theta_{\text {min }}^{\hat{p}}(p) \lambda_{\text {min }}\left(-A(\hat{p})-A^{T}(\hat{p})\right) \lambda_{\text {min }}(E(\hat{p}))=: \alpha_{L B}(p)$,

$$
\gamma(p) \leq \theta_{\max }^{\hat{p}}(p) \lambda_{\max }\left(-A(\hat{p})-A^{T}(\hat{p})\right) \lambda_{\max }(E(\hat{p}))=: \gamma_{U B}(p)
$$

for all $p \in \mathbb{P}$.

Parametric balanced truncation

Offline phase: compute the reduced basis matrices V_{X} and V_{Y} for the controllability and observability Lyapunov equations; compute all parameter-independent matrices.

Online phase: for given $p \in \mathbb{P}$,

- solve the reduced Lyapunov equations

$$
\begin{array}{rlrl}
-\widetilde{A}_{X}(p) \widetilde{X}(p) \widetilde{E}_{X}^{T}(p)-\widetilde{E}_{X}(p) \widetilde{X}(p) \widetilde{A}_{X}^{T}(p) & =\widetilde{B}(p) \widetilde{B}^{T}(p), \\
-\widetilde{A}_{Y}^{T}(p) \widetilde{Y}(p) \widetilde{E}_{Y}(p)-\widetilde{E}_{Y}^{T}(p) \widetilde{Y}(p) \widetilde{A}_{Y}(p) & =\widetilde{C}^{T}(p) \widetilde{C}(p) \\
\text { with } \widetilde{E}_{X}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) V_{X}^{T} E_{j} V_{X}, & \widetilde{A}_{X}(p)=\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) V_{X}^{T} A_{j} V_{X}, \\
\widetilde{E}_{Y}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) V_{Y}^{T} E_{j} V_{Y}, & \widetilde{A}_{Y}(p) & =\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) V_{Y}^{T} A_{j} V_{Y}, \\
\widetilde{B}(p)=\sum_{j=1}^{n_{B}} \theta_{j}^{B}(p) V_{X}^{T} B_{j}, & \widetilde{C}(p) & =\sum_{j=1}^{n_{C}} \theta_{j}^{C}(p) C_{j} V_{Y} .
\end{array}
$$

Parametric balanced truncation

\hookrightarrow Gramians $X(p) \approx V_{X} \widetilde{X}(p) V_{X}^{T}=V_{X} Z_{X}(p) Z_{X}^{T}(p) V_{X}^{T}$

$$
Y(p) \approx V_{Y} \tilde{Y}(p) V_{Y}^{T}=V_{Y} Z_{Y}(p) Z_{Y}^{T}(p) V_{Y}^{T}
$$

- Compute the SVD

$$
\begin{aligned}
Z_{Y}^{T}(p) V_{Y}^{T} E(p) V_{X} Z_{X}(p) & =\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) Z_{Y}^{T}(p) V_{Y}^{T} E_{j} V_{X} Z_{X}(p) \\
& =\left[U_{1}(p), U_{2}(p)\right]\left[\begin{array}{cc}
\Sigma_{1}(p) & 0 \\
0 & \Sigma_{2}(p)
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T}(p) \\
V_{2}^{T}(p)
\end{array}\right] .
\end{aligned}
$$

- Compute the reduced model $(\widetilde{E}(p), \widetilde{A}(p), \widetilde{B}(p), \widetilde{C}(p), D(p))$ with

$$
\begin{aligned}
& \widetilde{E}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) W^{T}(p) V_{Y}^{T} E_{j} V_{X} T(p), \quad \widetilde{B}(p)=\sum_{j=1}^{n_{B}} \theta_{j}^{B}(p) W^{T}(p) V_{Y}^{T} B_{j}, \\
& \widetilde{A}(p)=\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) W^{T}(p) V_{Y}^{T} A_{j} V_{X} T(p), \quad \widetilde{C}(p)=\sum_{j=1}^{n_{C}} \theta_{j}^{C}(p) C_{j} V_{X} T(p), \\
& T(p)=Z_{X}(p) V_{1}(p) \Sigma_{1}(p)^{-1 / 2}, \quad W(p)=Z_{Y}(p) U_{1}(p) \Sigma_{1}(p)^{-1 / 2} .
\end{aligned}
$$

Properties

- Preservation of stability
- Computable error bounds
- Approximation does not rely on solution snapshots and is independent of the training input
- Other error estimation techniques can be used (e.g., successive constraints method)
- Reduced basis method for parametric Riccati equations
[Haasdonk/Schmidt'15]

Example: anemometer

Mathematical model:

$\rho c \frac{\partial T}{\partial t}=\nabla \cdot \kappa \nabla T-\rho c v \cdot \nabla T+\dot{q}$
boundary / initial conditions

FEM model: $\quad E(p) \dot{x}=A(p) x+B u$

$$
y=C x
$$

with $E(p)=E_{1}+p_{1} E_{2}, \quad A(p)=A_{1}+p_{2} A_{2}+p_{3} A_{3} \in \mathbb{R}^{n \times n}, \quad p=\left[\begin{array}{c}c_{f} \\ \kappa_{f} \\ c_{f} v\end{array}\right]$,

$$
B, C^{T} \in \mathbb{R}^{n}, \quad n=29008
$$

[Moosmann'07, MOR Wiki]

Example: anemometer

$\mathbb{P}_{\text {train }}=\{10000$ random points $\}, 20$ Greedy iterations $\mathbb{P}_{\text {test }}=\{50$ random points $\}$

Example: anemometer

Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- Related topics and open problems
- Balanced truncation for linear time-varying systems
- Balanced truncation for bilinear systems
- Balanced truncation for quadratic-bilinear systems
- Balanced truncation for nonlinear systems
- Balanced truncation for infinite-dimensional systems

BT for linear time-varying systems

- For linear time-varying systems

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t), \\
y(t) & =C(t) x(t)+D(t) u(t),
\end{aligned}
$$

the Gramians satisfy the Lyapunov differential equations

$$
\begin{aligned}
& \dot{X}(t)=A(t) X(t)+X(t) A^{T}(t)+B(t) B^{T}(t), X(0)=0, \\
& \dot{Y}(t)=A^{T}(t) Y(t)+Y(t) A(t)+C^{T}(t) C(t), \quad Y(T)=0
\end{aligned}
$$

[Shokoohi/Silverman/Van Dooren'83, Sandberg'02]
\hookrightarrow use the BDF or Rosenbrock method combined with the $L D L^{T}$-type ADI or Krylov subspace methods [Lang/Saak/St.'16]

- projection matrices are time-dependent
- zero initial and final conditions for the Gramians lead to zero initial and final reduced state

BT for bilinear systems

- For bilinear systems
[Benner/Damm'11, Benner/Goyal/Redmann'16]

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+\sum_{k=1}^{m} N_{k} x(t) u_{k}(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

the Gramians satisfy the generalized Lyapunov equations

$$
\begin{aligned}
& A X+X A^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=-B B^{T} \\
& A^{T} Y+Y A+\sum_{k=1}^{m} N_{k}^{T} X N_{k}=-C^{T} C
\end{aligned}
$$

\hookrightarrow use the ADI or Krylov subspace methods
$\hookrightarrow\left(W^{T} A T, W^{T} N_{1} T, \ldots, W^{T} N_{m} T, W^{T} B, C T, D\right)$

- energy functionals: $E_{c}\left(x_{0}\right) \geq x_{0}^{T} X^{-1} x_{0}, E_{o}\left(x_{0}\right) \leq x_{0}^{T} Y x_{0}, x_{0} \in \mathcal{B}(0)$
- computationally expensive \hookrightarrow use truncated Gramians
- no error bounds

BT for quadratic-bilinear systems

- For quadratic-bilinear systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+H(x(t) \otimes x(t))+\sum_{k=1}^{m} N_{k} x(t) u_{k}(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

the Gramians satisfy the generalized Lyapunov equations

$$
\begin{aligned}
& A X+X A^{T}+H(X \otimes X) H^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=-B B^{T} \\
& A^{T} Y+Y A+\left(H^{(2)}\right)^{T}(X \otimes Y) H^{(2)}+\sum_{k=1}^{m} N_{k}^{T} X N_{k}=-C^{T} C
\end{aligned}
$$

\hookrightarrow use the fix point iteration combined with the ADI method
$\hookrightarrow\left(W^{T} A T, W^{T} H(T \otimes T), W^{T} N_{1} T, \ldots, W^{T} N_{m} T, W^{T} B, C T, D\right)$

- energy functionals: $E_{c}\left(x_{0}\right) \geq x_{0}^{T} X^{-1} x_{0}, E_{o}\left(x_{0}\right) \leq x_{0}^{T} Y x_{0}, x_{0} \in \mathcal{B}(0)$
- computationally expensive \hookrightarrow use truncated Graminas
- no error bounds

BT for nonlinear systems

- For nonlinear systems
[Scherpen'94, Fujimoto/Scherpen'10]

$$
\begin{aligned}
\dot{x}(t) & =f(x(t))+g(x(t)) u(t) \\
y(t) & =h(x(t))
\end{aligned}
$$

the input and output energy functionals $E_{u}\left(x_{0}\right)$ and $E_{y}\left(x_{0}\right)$ satisfy the partial differential equations

$$
\begin{aligned}
& \frac{\partial E_{c}}{\partial x} f(x)+\frac{1}{4} \frac{\partial E_{c}}{\partial x} g(x) g^{T}(x) \frac{\partial^{T} E_{c}}{\partial x}=0, \quad E_{c}(0)=0 \\
& \frac{\partial E_{o}}{\partial x} f(x)+h(x) h^{T}(x)=0, \quad E_{o}(0)=0
\end{aligned}
$$

- computationally very expensive

BT for infinite-dimensional systems

- For infinite-dimensional systems

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

with $A: \mathcal{D}(A) \subset \mathcal{X} \rightarrow \mathcal{X}, B: \mathcal{U} \rightarrow \mathcal{D}\left(A^{*}\right)^{\prime}, C: \mathcal{X} \rightarrow \mathcal{Y}$, $D: \mathcal{U} \rightarrow \mathcal{Y}$, where \mathcal{U}, \mathcal{X} and \mathcal{Y} are Hilbert spaces, the Gramians satisfy the operator Lyapunov equations

$$
\begin{array}{ll}
2 \operatorname{Re}\left\langle X v, A^{*} v\right\rangle_{\mathcal{X}}+\left\|B^{\prime} v\right\|_{\mathcal{U}}^{2}=0 & \text { for all } v \in \mathcal{D}\left(A^{*}\right), \\
2 \operatorname{Re}\langle A v, Y v\rangle_{\mathcal{X}}+\|C v\|_{\mathcal{Y}}^{2}=0 & \text { for all } v \in \mathcal{D}(A) .
\end{array}
$$

[Glover/Curtain/Partingto'88, Guiver/Opmeer'13, Reis/Selig'14]
\hookrightarrow use the finite-rank ADI iteration
[Reis/Opmeer/Wollner'13]

- error bound $\|\boldsymbol{G}-\widetilde{\boldsymbol{G}}\|_{\mathcal{H}_{\infty}} \leq 2 \sum_{j=\ell+1}^{\infty} \xi_{j}$

Conclusion

- General framework for balanced truncation model reduction
- input and output energy functionals
- controllability and observability Gramians
- (Hankel) singular values
- balanced realization
- Properties
- preservation of physical properties
- computable error bounds
- independence of the control
- Numerical solution of Lyapunov, Riccati, Lur'e equations

