
Atmospheric Modelling

T. Melvin

thomas.melvin@metoffice.gov.uk

Met Office, Exeter, Devon

c© Crown Copyright 2017 Met Office – p. 1/21



Todays Weather

c© Crown Copyright 2017 Met Office – p. 2/21



Overview

• Weather and Climate modelling: System Complexity

• Met Office approach to modelling

• Atmospheric Modelling

• Dynamical Core: Equation Sets & Approximations

• Design Factors

• Current development
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System Complexity: Physical

from: Aspen Global Change Institute. c© Crown Copyright 2017 – p. 4/21
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Met Office Approach: Unified Model (UM)

Single Model (Single numerics, Single source code) for all time and
space scales

Climate Modelling: up to 100’s Km for 1000’s Years

Weather Forecasts: 1-10 Km for 5 days

Process Studies: 10’s m for 100’s Seconds
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Met Office Approach: Unified Model (UM)
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Forecast Constraints

Need to produce a forecast in a timely manner:

• Produce a forecast out to 7 days

• Global 10 km model, 70 vertical levels

• 4 Minute timestep =⇒ 2520 timesteps

• Resolution = 2560 x 1920 x 70 = 344 million grid points per
variable

• Fixed 1 Hour time window (Including data assimilation, model
run and i/o)

Algortihmic and code efficiency is critical
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All Scales Problem
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Dynamical Modelling: Equation Sets
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Dynamical Core Modelling: 3D equations

Deep Atmosphere, nonhydrostatic equations: In spherical coordinates,
this is the set that the Unified model uses. Only the spherical geoid
approximation has been made.
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Dynamical Core Modelling: 3D equations

Shallow Atmosphere: Assume the atmosphere is a shallow shell. Re-
place height factors r with earths radius a and neglect certain parts of

the coriolis terms. Valid when (r − a) << a.
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Dynamical Core Modelling: 3D equations

Quasi-Hydrostatic: Neglect the vertical acceleration term Dw/Dt. This

is a good approximation for horizontal scales greater than about 10km.
Filters out vertical acoustic waves
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Dynamical Core Modelling: 3D equations

Hydrostatic Shallow Atmosphere: Make the shallow atmosphere and
hydrostatic approximations: Hydrostatic primitive equations. Historically
popular for climate modelling
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Dynamical Core Modelling: Scaling

• Vertical momentum equation scalings:
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• Horizontal momentum equation scalings:
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Dynamical Core Modelling: Geostrophic ap-

proximations

Geostrophic: Coriolis force (f) balances the pressure gradient (∇p)

vG =
1

ρf
k×∇hp

Valid for small Rossby numbers R0 ≡
V
fL

<< 1
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Dynamical Core Modelling: Geostrophic ap-

proximations

Geostrophic: Coriolis force (f) balances the pressure gradient (∇p)

vG =
1

ρf
k×∇hp

Valid for small Rossby numbers R0 ≡
V
fL

<< 1

Quasi-geostrophic: Assume Cartesian geometry with a constant Cori-
olis force f0 in geostrophic wind and include ageostrophic compontent:

v = va + vG, va << vG. Valid for flows with L << a and small
perturbations around reference depth
Plantary geostrophic: Retain the spherical geometry, valid for L ≈ a
Semi-geostrophic: Assume Cartesian geometry. Use the full wind

in the advection terms. Only drop the advection of the ageostropic

component: Dva/Dt = 0
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Dynamical Core Modelling: Shallow water ap-

proximations

Shallow Water Equations: Neglect variations with height, assume the

fluid is a single layer and the wavelength λ of surface waves is much

smaller than fluid depth λ << d.

Du

Dt
= −2Ω× u−∇ (Φ + Φ0) = 0,

∂Φ

∂t
+∇. (Φu) = 0.

useful for testing numerical approximations in a simplified environment.
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Dynamical Core Modelling: Shallow water ap-

proximations

Shallow Water Equations: Neglect variations with height, assume the

fluid is a single layer and the wavelength λ of surface waves is much

smaller than fluid depth λ << d.

Du

Dt
= −2Ω× u−∇ (Φ + Φ0) = 0,

∂Φ

∂t
+∇. (Φu) = 0.

useful for testing numerical approximations in a simplified environment.
Barotropic vorticity: Describes incompressible 2D flow,

Dξ

Dt
= 0,

u = ∇
⊥ψ, ∇

2ψ = ξ.
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Dynamical Core Modelling: Effects of approxi-

mations

Baroclinic wave test case. Standard test for development of mid
latitude weather systems
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Dynamical Modelling: Design Factors

Staniforth & Thuburn (QJRMS 138, 2012) identified ten
Essential and desirable properties of a dynamical core

1 Mass conservation

2 Accurate representation of balance and adjustment

3 Absence of, or well controlled, computational modes
Requires, at least, #velocity = 2x#pressure points
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Dynamical Modelling: Design Factors

Staniforth & Thuburn (QJRMS 138, 2012) identified ten
Essential and desirable properties of a dynamical core

4 Geopotential and pressure gradient should not produce unphysical
vorticity ∇× (∇p) = 0

5 Energy conserving pressure terms
u.∇p+ p∇.u = ∇. (up)

6 Energy conserving Coriolis terms
u. (Ω× u) = 0

7 No spurious fast propagation of Rossby modes

8 Axial angular momentum should be conserved

These all relate to the mimetic (compatible) properties of the
numerics
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Dynamical Modelling: Design Factors

Staniforth & Thuburn (QJRMS 138, 2012) identified ten
Essential and desirable properties of a dynamical core

9 Accuracy at least approaching second order

10 Minimal grid imprinting

These are challenging for grids with special points
...generally require higher order schemes
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Representation of fast waves

Linear shallow water model in a Cartesian domain

0 10 20 30 40 50
0

10

20

30

40

50
p

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

0 10 20 30 40 50
0

10

20

30

40

50
p

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

0 10 20 30 40 50
0

10

20

30

40

50
p

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

c© Crown Copyright 2017 – p. 16/21



Mixed finite element model

Developing a new model based suitable for future supercomputers

• Using mixed finite-element method

• Choose finite element function space to give discrete De-Rahm
complex

H1 Hcurl Hdiv L2

∇ ∇× ∇.

W0 −→ W1 −→ W2 −→ W3
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∇ ∇× ∇.
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Mixed finite element model

Developing a new model based suitable for future supercomputers

• Using mixed finite-element method

• Choose finite element function space to give discrete De-Rahm
complex

H1 Hcurl Hdiv L2

∇ ∇× ∇.

W0 −→ W1 −→ W2 −→ W3

• Accurate for arbritrary grids, (no orthogonality constraint)

• Flexibility to increase formal order of accuracy

• Builds in mimetic and conservation properties

• Generalises staggered grid finite-volume methods
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Timestepping

Two main approaches used:

• Explicit

• Semi-Implicit
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Timestepping

Explicit timestepping (e.g. Runge-Kutta) is simple and cheap per step

but restricted by speed of fast (acoustic & inertia-gravity waves

• Explicit in the vertical: U ≈ 340m/s, ∆z ≈ 10m leads to

∆t < 1/4s

• Only explicit in the horizontal: U ≈ 340m/s, ∆x ≈ 10Km leads to
∆t < 30s

• Alternatively try to filter fast waves (hydrostatic, anelsatic
approximations)
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Timestepping

Implicit timstepping is more complex and expensive per step but much
longer timestep can be taken

• UM uses ≈ 5 minutes for ∆x = 10Km

• Forming full Jacobian for Newton method is expensive

• More common to use Quasi-Newton (semi-implicit) method
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= R

• Only the terms for fast waves are retained

• Usually use Schur complement to reduce this to a single

(Helmholtz) equation

H (Π′) ≡ α1Π
′ + α2∇. (α3∇ [α4Π

′]) = RHS
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Any Questions?
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Atmospheric Model Splitting

Atmospheric model is split into two main parts

• Dynamical Core: Models all motions that are resolved on
the mesh

• Physical Parameterisations: Models subgrid processes
that are not resolved

Dynamical Core:

• Solves equations of motion

• Transport of fields

• Resolves large scale balances
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