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Motivation and Introduction

@ Enhance the accuracy of quantities of interests depending on reduced
order model solutions.

@ A posteriori error estimators employ the discrete solution itself to
derive estimates of the actual solution errors.

@ A posteriori error estimation results for the reduced order solution
error - Dihlmann and Haasdonk (2014). Evaluate the error in some
Qol computed via reduced order models - Carlberg (2014).

@ The mechanism makes use of adjoint models and allows us to
disentangle the Qol error contribution of each discrete space point at
every time step.
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Motivation and Introduction

@ Knowing the largest error contributions we can than in turn tune
ROMs by controling some of their features: DEIM points (nonlinear
terms) - Chaturantabut and Sorensen (2010); DEIM indexes
(Jacobians) - Wirtz and Sorensen (2014), Tonn (2011), Stefdnescu
and Sandu (2014) and POD basis (modes, dimension) - Carlberg
(2014).

@ When using the adjoint approach in combination with ROMs, the
reduced space has to be designed so that the adjoint solutions can be
approximated well in this space (online estimation).

@ Dual-weighted residuals to guide the selection of DEIM points for
approximation of ROM nonlinear terms - Peherstorfer and Willcox
(2015) - online optimal rank-one DEIM basis update with respect to
the Frobenius norm; Feng et al. (2017) - update the dimensions of the
ROM and DEIM bases using an a-posteriori error estimation result.
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Reduced Order Modeling - POD

@ The desired simulation is well approximated in the input collection
Lumley(1967).

@ Data analysis is conducted to extract basis functions, from
experimental data or detailed simulations of high-dimensional systems.

@ Galerkin and Petrov-Galerkin projections yield low dimensional
dynamical models.

@ Galerkin POD models - DEIM or QDEIM to address the efficiency of
the nonlinear reduced order terms.
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POD/DEIM justification and methodology

@ Model order reduction : Reduce the computational complexity/time
of large scale dynamical systems.

@ Construct reduced-order model for different types of discretization
method (finite difference (FD), finite element (FEM), finite volume
(FV)) of unsteady and/or parametrized nonlinear PDEs. E.g., PDE:

O (21 8) = L(x(zo ), 1) + F(x(z, 1, ), 1), £ € [0,7T)

where L is a linear function and F a nonlinear one.
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POD/DEIM justification and methodology

@ The corresponding FD scheme is a n dimensional ordinary differential
system

Ix(t) = Ax(t) + F(x(t)), A€ R™",

where x(t) = [x1(t, ), x2(t, p), .., xn(t, )] € R". F is a nonlinear
function evaluated at x(t), i.e. F = [F(x(t, 1)), .., F(xa(t, )],
F:ICcR—-R

@ A common model order reduction method involves the Galerkin
projection with basis U, € Rk obtained from Proper Orthogonal
Decomposition (POD), for k < n, i.e. x =~ X = U,X(t), X(t) € RX.
Applying an inner product to the ODE discrete system we get

d

—&(t) = U[ AU, X(t) + U,f F(U.%(t)) (1)
dt N LN/
kxk N(;()
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POD/DEIM justification and methodology

@ The efficiency of POD - Galerkin technique is limited to the linear or
bilinear terms. The projected nonlinear term still depends on the
dimension of the original system

N(%) = U] F(UX(t)).
~

kxn nx1

e To mitigate this inefficiency Chaturantabut and Sorensen (2010)
introduces " Discrete Empirical Interpolation Method (DEIM) " for
nonlinear approximation. For m < n

N(%) ~ U] V(PTV) T F(PT U&(t)) .

precomputed kxm mx1
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Problem formulation

@ We are interested in a particular aspect of the solution of the
high-fidelity model defined by the smooth scalar function

Ni

Qi)=Y ri(xirp). (2)

i=0

@ The reduced order approximation leads to an error in the computed
Qol denoted by

N N
e(p) = Q) = Q&) = rilxiyn) =Y ri(%im),  (3)
i=0 i=0

where X; = U, %;, i =0,.., N;.
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A posteriori error estimates

@ Compact form of the high-fidelity model
Xiy1 = Mjip1(x;), i=0,...,N;—1 (4)
@ Compact form of the reduced order model

Xiv1 = M1 (X), i=0,1,..., Ny —1. (5)
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A posteriori error estimates

Theorem (1)

Let x = {x0, X1,..., Xp,} be the solution of the high-fidelity model, and
X = {Xo,X1,...,Xn,} the projection of reduced order model solution onto
the high-fidelity space. Moreover, let x' = {X;, x| ilgcoo ,x’,'Vt} be the
partial trajectories obtained via the high-fidelity model using as initial
conditions the solution of reduced order model at time t; projected onto
the high fidelity space, i.e. X; = U%; and

Xp=Mp_10(xj_1), €=i+1... Ny xi=%;, i=0,....,N;—1. (6)

The partial trajectory x' contains only Ny — i + 1 time steps.
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A posteriori error estimates

Theorem (1(continuation))

Assume that the reduced order model solution X; is in a neighborhood of
the high-resolution model solution x;, i =0, ..., N; and if the high-fidelity
model is smooth, then

Nt
sz—ZXI-Ax;, (7)
i=0
where the model residuals are
Axg = xg — Xo, Ax,-:xffl—i(\,-, i=1,..., Ny, (8)

and X,-, i=0,...,N;, are the solutions of the high-fidelity adjoint models
(partial) linearized about the trajectories x', i =0,..., Ny — 1.
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A posteriori error estimates

@ First order necessary optimality conditions of the problem

Ni

rr)l(i)n Q(xo0) = Z ri (xi) (9a)

i=0
subject to the constraints posed by the high-fidelity model dynamics
Xjt+1 = M,',,LH_ (X,‘) s I = 0, ooy Nt — 1. (gb)

@ Adjoint model

An = — <arN* > T(XNt),

8th

* 8ri T .
Ai = i+1,i)‘i+1 “\ox: (xi), i=Ng—1,..,0.

° Z:I'V:to ri (xi) — Z,I'V:to fi (x?) ~ _)‘(;—AXOa xg = Xo.

Razvan Stefé‘mescu1 and Adrian Sandu®

A Goal-Oriented Adaptive Discrete Empirical Interpolation Method



A posteriori error estimates

Reduced order trajectory A .
) :
/’{’lzwa 2
Full trajectory initiated with ROM solution at time ¢;
T
A1Ax4
Full trajectory initiated with ROM solution at time ¢,
T
AoAxg

Full trajectory
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A posteriori error estimates - efficient versions

@ Discrete high fidelity explicit Euler scheme
Xit+1 :Xi+hF(Xf), i=0,.,N—1. (11)
@ One time step integration

xi, = U% +hF(U%;,), (12)
%1 = % +hUTV(PTV)IPTF(U%). (13)

e By multiplying (13) with U and subtracting the result from (12)

Axiz1 = Xiyq— Ui (14)
= h(1-UUTV(PTV)"'PT)F(x;)
= _¢f+17 i:07"7N1.‘_17

¢f+1 - ;(\H_]_ —/)Z,' - hF(/)Z,), l == O, ..y Nt - 1 (15)
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A posteriori error estimates - efficient versions

@ If accurate reduced order model is available; i.e, x =~ UX, then the
partial trajectories can be approximated by truncated trajectories
obtained using one single high-fidelity model run. Then for estimating
)\,-T, i =0,...,N; only a single high-fidelity adjoint model run is

required.

@ Unlike the Galerkin POD residual, the DEIM based residual (15) is
not orthogonal to the reduced manifold U. As such we can make use
of a reduced order adjoint model solution to estimate

@ The new error estimate requires only one reduced forward and one
adjoint model runs as well as evaluating the residuals.
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A posteriori error estimates - efficient versions

@ Discrete high fidelity implicit Euler scheme
Xi+1 :Xf+hF(Xi+1), i=0,..,Ne —1, (17)
@ The error in the quantity of interest

Ne—1
- R i - ori ..
R — [U)\o] T(xo —Xo) + g ¢iT+1 [UAi + 78;,(Uxi)]a (18)
i=0 !

where @41 is now the residual associated with the implicit full model

Gis1 = Rip1 — Xi — hF(Riq1), i =0, .., Ny — 1. (19)
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DEIM: Algorithm for Interpolation Indices
INPUT: {v;}/", C R” (linearly independent):
OUTPUT: g = [p1, .., pm] € N™

@ [|v| p1] = max|vi|,% € R and p; is the component position of the
largest absolute value of vy, with the smallest index taken in case of a
tie.

Q0 V= [V1]> P = [eP1]7 p= [Pl]-

©Q For/=2,..,mdo

Solve (PTV)c = Py, for c

r=u — Ve

[[¥] pi] = max{|r[}

UV v, P[P e, e {5 }

I

© 000

Q end for.

Razvan Stefé‘mescu1 and Adrian Sandu®

A Goal-Oriented Adaptive Discrete Empirical Interpolation Method



Adaptive DEIM

@ In Peherstorfer and Willcox (2015), the adaptivity mechanism changes
the non-linear term reduced basis via rank-one updates and points.

@ The individual contribution at each spatial location and time step to
the error in the quantity of interest can be calculated by using the
Hadamard product © instead of the scalar products in a-posteriori
error results. The Hadamard products are the dual weighted residuals.

@ For the explicit case the dual weighted residuals are defined as

Zp0 = [US\O] © (XO _;(\0); Zj = [US\I] © (Z)i: I = ]-7 ooy Nt7
@ For the implicit case these are defined as
arl 1
Ox;i_1

@ Singular vector decomposition is applied to extract the left singular
vectors of the dual weighted residuals denoted by

W ={wy, wi,...,wn}.

20 = [UXo] ® (%0 — X0); 2z = i © [UNim1 + o——(U%i_1)], i =1,.., Np.
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DEIM adaptive: Algorithm for Interpolation Indices
INPUT: {v,}, C R, . (linearly independent), {w,}7; C RN .
(linearly independent), « € [0, 1]:
OUTPUT: p = [p1,..,pm] € N7

Q {vY,py} = max|vi|; Y € R is the largest absolute value among
entries of vy, and pY is its position.

@ {y",pi'} =max|m|, ¥" €R.

@ Set p1 = py if ¥ > %, or p1 = p}’ otherwise.

Q@ V:=[wneR" P:=le,]eR", p:=[p]eN.

Q@ For/=2,...m

Solve (PTV)c" = PT v, for ¢V € R L, V, P € RNstarex(61)

r' =y, — Ve, r’ e RNt

Solve (PTV)c” = PT w, for ¢ € R, V, P € RNetarex(6-1),

" i=wp— V¥, rv e RNsate,

{1, pe} = max{alr[+ (1 —a)[r*[}. .

V= [V VZ], P:= [P epz]? P = [pT PZ]

Q end for.

©00000
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Numerical Results

@ Burgers' equation

ou ou 0%u
o tUu - =po—, x€[0,1], te(0,1].
ot ox ox
e u(0,t) =u(l,t) =0, t € (0,1]; Implicit Euler method.
3.5 0.4
2 3 » 035
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S 25 £ 03
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(a) Initial Conditions
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Numerical Results

21
_ 2 _
O(u) = ulxi, tn,)?, [xe, x1] = [0.05,0.1]. (21)
i=2
10° 107
—True —True
72 - - -Estimate - - -Estimate
10 1079
10
& § 107
Yo H
10° 107
10 -5
10 5 10 15 20 25 10 0 10 20 30 40
POD dimension Number of DEIM points

(a) Number of DEIM points = 40 (b) Dimension of POD basis = 15

Figure: A-posteriori error estimates for the same parametric configuration -
w=0.1.
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Numerical Results

@ Computed the dual weighted residuals, performed a singular value
decomposition and collected 15 singular vectors.
@ The parameter o was set to 0.5.

157 o °
14r L
13 ° o
12f© °
11 © °
£ 10 e
S o ° o
s 8r O °
5 7e e}
€ 6 © .
3 5f ° o
4r o] L 5
3r e O
2t . ¢} E
1r L]
0 0.1 0.2 0.3 0.4
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Figure: DEIM points locations.
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Numerical Results

DEIM DEIM

---DEIM adapt] 3001~ - -DEIM adapt|

Condition number

, \\‘. \ .
105 15 % 10 ]
Number of DEIM points

10
Number of DEIM points

(a) Non-linear approximation (b) Condition numbers

Figure: Comparison between traditional and adaptive DEIM strategies - Global

non-linear term error at time step t» in the Euclidian norm (left panel); Condition
number of matrix PTV (right panel).
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Numerical Results

10° i -
—DEM
_4||- - -DEIM adapt|
107 b
5 10 15
Number of DEIM points

Figure: Adaptive vs traditional DEIM errors approximation errors of the quantity
of interest.
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Numerical Results

@ SWE model using the 5-plane approximation on a rectangular domain.

@ The alternating direction fully implicit (ADI) scheme.

@ The domain is discretized using a mesh of 31 x 17 = 527 points, with
Ax = 200km and Ay = 275km. We select the integration time

window to be 24h and we use 181 time steps corresponding to
At = 480s.

@ The considered quantity of interest depends on some particular
components of the geopotential ¢ at the final time step

6 8

Q) =D > dxi,yj ta): [x1, x6] X [y2, ye] = [0,1000]km x[275,1925]km.
i=1 j=2

(22)

Razvan Sl:efe'inescu1 and Adrian Sandu®

A Goal-Oriented Adaptive Discrete Empirical Interpolation Method



Numerical Results

10" 107
—True —True
- - -Estimate - --Estimate
107
= £ 101
| |
10°
1] 0|
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40 50 60 70
POD dimension Number of DEIM points

(a) Number of DEIM points = 35 (b) Dimension of POD basis = 30

Figure: A-posteriori error estimates for the same parametric configuration.
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Numerical Results

@ The continuity equation dual weighted residuals are employed
together with the non-linear basis of the non-linear term F3;.
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Figure: Adaptive vs traditional DEIM points - F31 = ¢u, + ¢ u.
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Numerical Results
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Figure: Comparison between traditional and adaptive DEIM strategies - Global
non-linear term error at time step t; in the Euclidian norm (left panel); Condition

number of matrix PV for non-linear term F3; (right panel).
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Numerical Results
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(a) Dimension of POD basis =10 (b) Dimension of POD basis = 20

Figure: Adaptive vs traditional DEIM errors of the quantity of interest.
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Discussions and Conclusions

o Stabilization issues - condition number of the (PT V)~!; greedy
algorithm that relaxes the condition of selecting the location of the
largest absolute value of the residuals;

@ The error bounds proposed by Chaturantabut and Sorensen (2010)
are still valid;

@ Comparison with the recent proposed updated optimized rank-one
approximation -Peherstorfer and Willcox (2015) - using basis vectors
of dual weighted residuals;

@ Extension to ROM optimization and adapt on the fly the DEIM
interpolation location using aposteriori error estimates for the
sub-optimal solution.
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