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Motivation and Introduction

Enhance the accuracy of quantities of interests depending on reduced
order model solutions.

A posteriori error estimators employ the discrete solution itself to
derive estimates of the actual solution errors.

A posteriori error estimation results for the reduced order solution
error - Dihlmann and Haasdonk (2014). Evaluate the error in some
QoI computed via reduced order models - Carlberg (2014).

The mechanism makes use of adjoint models and allows us to
disentangle the QoI error contribution of each discrete space point at
every time step.
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Motivation and Introduction
Knowing the largest error contributions we can than in turn tune
ROMs by controling some of their features: DEIM points (nonlinear
terms) - Chaturantabut and Sorensen (2010); DEIM indexes
(Jacobians) - Wirtz and Sorensen (2014), Tonn (2011), Ştefănescu
and Sandu (2014) and POD basis (modes, dimension) - Carlberg
(2014).

When using the adjoint approach in combination with ROMs, the
reduced space has to be designed so that the adjoint solutions can be
approximated well in this space (online estimation).

Dual-weighted residuals to guide the selection of DEIM points for
approximation of ROM nonlinear terms - Peherstorfer and Willcox
(2015) - online optimal rank-one DEIM basis update with respect to
the Frobenius norm; Feng et al. (2017) - update the dimensions of the
ROM and DEIM bases using an a-posteriori error estimation result.
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Reduced Order Modeling - POD

The desired simulation is well approximated in the input collection
Lumley(1967).

Data analysis is conducted to extract basis functions, from
experimental data or detailed simulations of high-dimensional systems.

Galerkin and Petrov-Galerkin projections yield low dimensional
dynamical models.

Galerkin POD models - DEIM or QDEIM to address the efficiency of
the nonlinear reduced order terms.
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POD/DEIM justification and methodology

Model order reduction : Reduce the computational complexity/time
of large scale dynamical systems.

Construct reduced-order model for different types of discretization
method (finite difference (FD), finite element (FEM), finite volume
(FV)) of unsteady and/or parametrized nonlinear PDEs. E.g., PDE:

∂x

∂t
(z , µ, t) = L(x(z , µ, t), µ) + F(x(z , µ, t), µ), t ∈ [0,T ]

where L is a linear function and F a nonlinear one.
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POD/DEIM justification and methodology

The corresponding FD scheme is a n dimensional ordinary differential
system

d

dt
x(t) = Ax(t) + F(x(t)), A ∈ Rn×n,

where x(t) = [x1(t, µ), x2(t, µ), .., xn(t, µ)] ∈ Rn. F is a nonlinear
function evaluated at x(t), i.e. F = [F(x1(t, µ)), ..,F(xn(t, µ))]T ,
F : I ⊂ R→ R.

A common model order reduction method involves the Galerkin
projection with basis Uµ ∈ Rn×k obtained from Proper Orthogonal
Decomposition (POD), for k � n, i.e. x ≈ x̂ = Uµx̃(t), x̃(t) ∈ Rk .
Applying an inner product to the ODE discrete system we get

d

dt
x̃(t) = UT

µ AUµ︸ ︷︷ ︸
k×k

x̃(t) + UT
µ F(Uµx̃(t))︸ ︷︷ ︸

Ñ(x̃)

(1)
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POD/DEIM justification and methodology

The efficiency of POD - Galerkin technique is limited to the linear or
bilinear terms. The projected nonlinear term still depends on the
dimension of the original system

Ñ(x̃) = UT
µ︸︷︷︸

k×n

F(Uµx̃(t))︸ ︷︷ ︸
n×1

.

To mitigate this inefficiency Chaturantabut and Sorensen (2010)
introduces ”Discrete Empirical Interpolation Method (DEIM) ” for
nonlinear approximation. For m� n

Ñ(x̃) ≈ UT
µ V (PTV )−1︸ ︷︷ ︸

precomputed k×m

F(PTUµx̃(t))︸ ︷︷ ︸
m×1

.
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Problem formulation

We are interested in a particular aspect of the solution of the
high-fidelity model defined by the smooth scalar function

Q (x, µ) =
Nt∑
i=0

ri (xi , µ) . (2)

The reduced order approximation leads to an error in the computed
QoI denoted by

ε(µ) = Q (x, µ)−Q (x̂, µ) =
Nt∑
i=0

ri (xi , µ)−
Nt∑
i=0

ri (x̂i , µ) , (3)

where x̂i = Uµ x̃i, i = 0, ..,Nt .
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A posteriori error estimates

Compact form of the high-fidelity model

xi+1 = Mi ,i+1(xi ), i = 0, . . . ,Nt − 1. (4)

Compact form of the reduced order model

x̂i+1 = M̂i ,i+1(x̂i ), i = 0, 1, . . . ,Nt − 1. (5)
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A posteriori error estimates

Theorem (1)

Let x = {x0, x1, . . . , xNt} be the solution of the high-fidelity model, and
x̂ = {x̂0, x̂1, . . . , x̂Nt} the projection of reduced order model solution onto
the high-fidelity space. Moreover, let xi = {x̂i , xii+1, . . . , x

i
Nt
} be the

partial trajectories obtained via the high-fidelity model using as initial
conditions the solution of reduced order model at time ti projected onto
the high fidelity space, i.e. x̂i = U x̃i and

xi` =M`−1,`

(
xi`−1

)
, ` = i+1, . . . ,Nt , xii = x̂i , i = 0, . . . ,Nt−1. (6)

The partial trajectory xi contains only Nt − i + 1 time steps.
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A posteriori error estimates

Theorem (1(continuation))

Assume that the reduced order model solution x̂i is in a neighborhood of
the high-resolution model solution xi , i = 0, . . . ,Nt and if the high-fidelity
model is smooth, then

ε ≈ −
Nt∑
i=0

λ̂Ti ·∆xi , (7)

where the model residuals are

∆x0 = x0 − x̂0, ∆xi = xi−1
i − x̂i , i = 1, . . . ,Nt , (8)

and λ̂i , i = 0, . . . ,Nt , are the solutions of the high-fidelity adjoint models
(partial) linearized about the trajectories xi , i = 0, . . . ,Nt − 1.
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A posteriori error estimates

First order necessary optimality conditions of the problem

min
x0
Q (x0) =

Nt∑
i=0

ri (xi ) , (9a)

subject to the constraints posed by the high-fidelity model dynamics

xi+1 =Mi ,i+1 (xi ) , i = 0, ..,Nt − 1. (9b)

Adjoint model

λN = −
(
∂rNt

∂xNt

)T

(xNt ),

λi = M∗
i+1,iλi+1 −

(
∂ri
∂xi

)T

(xi ), i = Nt − 1, .., 0.

(10)

∑Nt
i=0 ri (xi )−

∑Nt
i=0 ri

(
x0i
)
≈ −λT0 ∆x0, x00 = x̂0.
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A posteriori error estimates

Full trajectory 
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Figure: Geometrical Interpretation of aposteriori error estimates
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A posteriori error estimates - efficient versions

Discrete high fidelity explicit Euler scheme

xi+1 = xi + h F(xi ), i = 0, ..,Nt − 1. (11)

One time step integration

xii+1 = U x̃i + h F(U x̃i , ), (12)

x̃i+1 = x̃i + h UT V (PTV )−1 PT F(U x̃i ). (13)

By multiplying (13) with U and subtracting the result from (12)

∆xi+1 = xii+1 − U x̃i+1 (14)

= h
(
I− UUTV (PTV )−1 PT

)
F(x̂i )

= −φi+1, i = 0, ..,Nt − 1,

φi+1 = x̂i+1 − x̂i − hF(x̂i ), i = 0, ..,Nt − 1. (15)
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A posteriori error estimates - efficient versions

If accurate reduced order model is available; i.e, x ≈ U x̃, then the
partial trajectories can be approximated by truncated trajectories
obtained using one single high-fidelity model run. Then for estimating
λ̂Ti , i = 0, . . . ,Nt only a single high-fidelity adjoint model run is
required.

Unlike the Galerkin POD residual, the DEIM based residual (15) is
not orthogonal to the reduced manifold U. As such we can make use
of a reduced order adjoint model solution to estimate

ε ≈ −
[
Uλ̃0

]T
(x0 − x̂0) +

Nt∑
i=1

[
Uλ̃i

]T
φi . (16)

The new error estimate requires only one reduced forward and one
adjoint model runs as well as evaluating the residuals.
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A posteriori error estimates - efficient versions

Discrete high fidelity implicit Euler scheme

xi+1 = xi + h F(xi+1), i = 0, ..,Nt − 1, (17)

The error in the quantity of interest

ε ≈ −
[
Uλ̃0

]T
(x0 − x̂0) +

Nt−1∑
i=0

φTi+1

[
Uλ̃i +

∂ri
∂xi

(U x̃i)
]
, (18)

where φi+1 is now the residual associated with the implicit full model

φi+1 = x̂i+1 − x̂i − hF(x̂i+1), i = 0, ..,Nt − 1. (19)
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DEIM: Algorithm for Interpolation Indices
INPUT: {vl}ml=1 ⊂ Rn (linearly independent):

OUTPUT: ~ρ = [ρ1, .., ρm] ∈ Nm

1 [|ψ| ρ1] = max |v1|, ψ ∈ R and ρ1 is the component position of the
largest absolute value of v1, with the smallest index taken in case of a
tie.

2 V = [v1], P = [eρ1 ], ~ρ = [ρ1].

3 For l = 2, ..,m do

a Solve (PTV )c = PT vl for c

b r = ul − Vc

c [|ψ| ρl ] = max{|r |}

d U ← [V vl ], P ← [P eρl ], ~ρ←
[
~ρ
ρl

]
4 end for.
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Adaptive DEIM

In Peherstorfer and Willcox (2015), the adaptivity mechanism changes
the non-linear term reduced basis via rank-one updates and points.

The individual contribution at each spatial location and time step to
the error in the quantity of interest can be calculated by using the
Hadamard product � instead of the scalar products in a-posteriori
error results. The Hadamard products are the dual weighted residuals.

For the explicit case the dual weighted residuals are defined as

z0 = [Uλ̃0
]
� (x0 − x̂0); zi = [Uλ̃i

]
� φi , i = 1, ..,Nt ,

For the implicit case these are defined as

z0 = [Uλ̃0
]
� (x0 − x̂0); zi = φi � [Uλ̃i−1 +

∂ri−1

∂xi−1
(U x̃i−1)

]
, i = 1, ..,Nt .

Singular vector decomposition is applied to extract the left singular
vectors of the dual weighted residuals denoted by

W = {w0, w1, . . . ,wm}.
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DEIM adaptive: Algorithm for Interpolation Indices
INPUT: {v`}m`=1 ⊂ RN

state (linearly independent), {w`}m`=1 ⊂ RN
state

(linearly independent), α ∈ [0, 1]:
OUTPUT: ρ = [ρ1, .., ρm] ∈ Nm

1 {ψv , ρv1} = max |v1|; ψv ∈ R is the largest absolute value among
entries of v1, and ρv1 is its position.

2 {ψw , ρw1 } = max |w1|, ψw ∈ R.
3 Set ρ1 = ρv1 if ψv ≥ ψw , or ρ1 = ρw1 otherwise.
4 V := [v1] ∈ Rn, P := [eρ1 ] ∈ Rn, ρ := [ρ1] ∈ N.
5 For ` = 2, ..,m

a Solve (PTV ) cv = PT v` for c
v ∈ R`−1; V ,P ∈ RNstate×(`−1).

b r v := v` − Vcv , r v ∈ RNstate .
c Solve (PTV ) cw = PT w` for c

w ∈ R`−1; V ,P ∈ RNstate×(`−1).
d rw := w` − V cw , rw ∈ RNstate .
e {ψ, ρ`} = max {α|r v |+ (1− α)|rw |}.
f V := [V v`], P := [P eρ` ], ρ :=

[
ρT ρ`

]T
.

6 end for.
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Numerical Results
Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
, x ∈ [0, 1], t ∈ (0, 1]. (20)

u(0, t) = u(1, t) = 0, t ∈ (0, 1]; Implicit Euler method.
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(a) Initial Conditions

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Space Discretization

1D
 B

ur
ge

rs
 F

in
al

 S
ol

ut
io

ns

(b) Final time solutions

Figure: µ = 0.1
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Numerical Results

Q(u) =
21∑
i=2

u(xi , tNt )
2, [x2, x21] = [0.05, 0.1]. (21)
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Figure: A-posteriori error estimates for the same parametric configuration -
µ = 0.1.
Răzvan Ştefănescu1 and Adrian Sandu2

A Goal-Oriented Adaptive Discrete Empirical Interpolation Method 22/31



Numerical Results
Computed the dual weighted residuals, performed a singular value
decomposition and collected 15 singular vectors.
The parameter α was set to 0.5.
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Figure: DEIM points locations.
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Numerical Results
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(b) Condition numbers

Figure: Comparison between traditional and adaptive DEIM strategies - Global
non-linear term error at time step t2 in the Euclidian norm (left panel); Condition
number of matrix PTV (right panel).

Răzvan Ştefănescu1 and Adrian Sandu2

A Goal-Oriented Adaptive Discrete Empirical Interpolation Method 24/31



Numerical Results
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Figure: Adaptive vs traditional DEIM errors approximation errors of the quantity
of interest.
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Numerical Results

SWE model using the β-plane approximation on a rectangular domain.

The alternating direction fully implicit (ADI) scheme.

The domain is discretized using a mesh of 31× 17 = 527 points, with
∆x = 200km and ∆y = 275km. We select the integration time
window to be 24h and we use 181 time steps corresponding to
∆t = 480s.

The considered quantity of interest depends on some particular
components of the geopotential φ at the final time step

Q(φ) =
6∑

i=1

8∑
j=2

φ(xi , yj , tNt ), [x1, x6]×[y2, y8] = [0, 1000]km ×[275, 1925]km.

(22)
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Numerical Results
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Figure: A-posteriori error estimates for the same parametric configuration.
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Numerical Results

The continuity equation dual weighted residuals are employed
together with the non-linear basis of the non-linear term F31.
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Figure: Adaptive vs traditional DEIM points - F31 = φux + φxu.
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Numerical Results
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(a) Non-linear approximation
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(b) Condition numbers

Figure: Comparison between traditional and adaptive DEIM strategies - Global
non-linear term error at time step t2 in the Euclidian norm (left panel); Condition
number of matrix PTV for non-linear term F31 (right panel).
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Numerical Results
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(a) Dimension of POD basis = 10
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(b) Dimension of POD basis = 20

Figure: Adaptive vs traditional DEIM errors of the quantity of interest.
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Discussions and Conclusions

Stabilization issues - condition number of the (PTV )−1; greedy
algorithm that relaxes the condition of selecting the location of the
largest absolute value of the residuals;

The error bounds proposed by Chaturantabut and Sorensen (2010)
are still valid;

Comparison with the recent proposed updated optimized rank-one
approximation -Peherstorfer and Willcox (2015) - using basis vectors
of dual weighted residuals;

Extension to ROM optimization and adapt on the fly the DEIM
interpolation location using aposteriori error estimates for the
sub-optimal solution.
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