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Bayesian Inverse Problems
Mathematical Formulation [Stuart '10] [Kaipio, Somersalo '04]

We are given

@ a model F of a physical process depending on parameters
u € U C R% for some d,, € N and compact U,

- evaluation of F typically involves the solution of a PDE

e observations/data y = O(F(u)) + 1, with y € R% and 7 a realisation
of a /\/’(0,07271) random variable

We are interested in the inverse problem of finding u given y.
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Bayesian Inverse Problems
Mathematical Formulation [Stuart '10] [Kaipio, Somersalo '04]

We are given

@ a model F of a physical process depending on parameters
ue U C R%™ for some dy € N and compact U,

- evaluation of F typically involves the solution of a PDE

e observations/data y = O(F(u)) + 1, with y € R% and 7 a realisation
of a N(O,agl) random variable

We are interested in the inverse problem of finding u given y.

Following the Bayesian approach, we
@ assign a prior distribution pg to u;
@ determine the data likelihood P(y|u) = exp ( - ﬁ”y - (’)(}'(u))||§);
@ want to determine the posterior distribution ©¥ on u|y.
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Bayesian Inverse Problems

Computational Challenges

@ Using Bayes' Theorem, the posterior distribution p¥ is given by
dpy 1 , 1
d—zo(u) = - €XD (—®(u)), (W”(u) = exp (- (T>('u))m)('u,)>

where ®(u) = Ln |y — O(F(u))||5 and Z = Euo(exp (- @(u)))
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Bayesian Inverse Problems

Computational Challenges
@ Using Bayes' Theorem, the posterior distribution p¥ is given by

o0 = 7o (~2@), (w00 = Zex (~00)mw)

where ®(u) = ﬁ |y — O(F(u))||5 and Z = Eu()(exp (- @(u)))

@ Sampling methods such as Markov chain Monte Carlo require
repeated evaluation of the data likelihood exp ( — <I>(u)) easily in the
order of millions of evaluations.

@ Since the computation of ® involves evaluating F, this is typically
very costly. We approximate ® by a surrogate model (emulator,
reduced order model, ...).

@ We will use Gaussian process emulators, but other choices are
possible.
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Gaussian Process Regression
Simple Derivation [Rasmussen, Williams '06]
@ We treat ® as unknown, and assign a probability distribution to it: we

model ® as a Gaussian process, with mean 0 and (positive definite)
covariance kernel k : U x U — R:

Oy ~ GP(0, k(u,u"))

For every set {u;}7, C U, the random variables {®q(u;)}7, are
multivariate Gau55|an with E(®(u;)) = 0 and E(®q(u;)Po(u;)) = k(ui, uj).
The kernel k incorporates information such as smoothness and typlcal
length scales.
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Gaussian Process Regression
Simple Derivation [Rasmussen, Williams '06]
@ We treat ® as unknown, and assign a probability distribution to it: we

model ® as a Gaussian process, with mean 0 and (positive definite)
covariance kernel k : U x U — R:

®y ~ GP(0, k(u,u’))
For every set {u;}7, C U, the random variables {®q(u;)}7, are
multivariate Gaussian with E(®(u;)) = 0 and E(®g(u;)Po(u;)) = k(ui, uyj).
The kernel k incorporates information such as smoothness and typlcal
length scales.

o We evaluate ® at design points D = {u"}\_; C U, obtaining

function values {®(u™)})_;.
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Gaussian Process Regression
Simple Derivation [Rasmussen, Williams '06]
@ We treat ® as unknown, and assign a probability distribution to it: we
model ® as a Gaussian process, with mean 0 and (positive definite)
covariance kernel k: U x U — R:

Oy ~ GP(0, k(u,u"))
For every set {u;}7, C U, the random variables {®q(u;)}7, are
multivariate Gaussian with E(®(u;)) = 0 and E(®g(u;)Po(uj)) = k(us, uj).

The kernel k incorporates information such as smoothness and typlcal
length scales.

o We evaluate ® at design points D = {u"}\_; C U, obtaining
function values {®(u™)})_;.
e Conditioning ®( on given function values {®(u")}}_; leads to
dy ~ GP(mS (u), kn(u,u’)), with
my () = k()T K 0., kn(u, ') = k(u,u') — ky(w)T K7k (),
and (k«(w))n = kE(u,u™), (K«)nm = k(u™,u™) and (®y), = ®(u").
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Gaussian Process Regression

Relation to Kernel Interpolation

@ The predictive mean is a linear combination of kernel evaluations
N
my(u) = Z ank(u,u), a=K1®,.
n=1

o We have m% (u") = ®(u") and ky(u™,u") =0, forn=1,...,N.
= Oy (u") =m$(u") = ¢(u") , forn=1,...,N.
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Gaussian Process Regression

Relation to Kernel Interpolation

@ The predictive mean is a linear combination of kernel evaluations
N
my(u) = Z ank(u,u), a=K1®,.
n=1

e We have m% (u") = ®(u") and ky(u",u") =0, forn=1,...,N.

u™)
= oy (u") =mE(u") = ®(u") , forn=1,...,N.
@ The predictive mean m% is a kernel interpolant of ®, and in the
special case of isotropic kernels k(u,u') = k(|ju — u'|]), a radial basis
function interpolant.

@ The emulator @, is a random interpolant of @, reflecting the
uncertainty in ® away from the design points D.
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Gaussian Process Regression

Matern Kernels

o Examples of kernels frequently used are the family of Matern
covariances

o2 u—ul|\” u—u
ku,A,az(ua ul) = F(V)Qy—l (“ A “) B, <w) )

2

with smoothness parameter v > 0, marginal variance o°, correlation
length A, I the gamma function and B, the modified Bessel function
of the second kind.

'l

v=1/2: k) .2(u,u) = o? exp ( - H”%
[Ju—u’ 2)

V=00 ": kz/.)\‘a2 ('U,-, “'/) = exp ( B A2

),
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Gaussian Process Emulators
Scattered Data Approximation [Wendland '04]

With design points D = {u"})_,, define the fill distance

hp = inf |lu— u"|.
p=sup inf [Ju —u™||

Theorem (see e.g. [Scheuerer, Schaback, Schlather '13], [Stuart, ALT '17])

Suppose U satisfies an interior cone condition. With covariance kernel
K, x o2, we have for hp sufficiently small

v+dy
12 = mF 2wy < C B2 @) poanrery,
with C' independent of D and ®. Furthermore,

Hk?NHL2 < C hp.
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Approximations of the Posterior

@ Recall:
dp¥ 1

o (u) = — OXP (—®(w).

@ We now use the emulator @ to build different approximations y; to
the posterior distribution Y.

@ We focus on bounding the Hellinger distance

2 1/2

1 duy du

y Y\ — - _ N
dhen (1 1) 2/U \' dro V' duo o '
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Approximations of the Posterior
Using the mean m%, we define the mean based approximation

d///mean 1 >
u) = X —m u)).
(1) — 0 (— ()
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Approximations of the Posterior

Using the mean m?, we define the mean based approximation
g N

y,N 1

dpiiean o
u) = [$2:€ —m u)).
(1) = i o9 (— iy ()

Lemma [Stuart, ALT '17]
There exist a positive constants C1, Cs, independent of IV, such that

Oh € 750 = @

Proof: Uses convergence of mfl\’v to .

Theorem [Stuart, ALT '17]
There exists a constant (', independent of N, such that

dhell(:uya “?ﬁé\zfm) <C H(I) B m%HLQ(U) :

Proof: Uses Lemma and Lipschitz continuity of likelihood.
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Approximations of the Posterior

Using the process @, we define the the random approximation

d,u sample ( ) 1

duo (u) = Wexp(—qn\,(u’w))’

and the marginal approximation

dlu’marglnal o 1
o (u) = ]E(Z]s\?mple)]E<exp ( — dn(u, )))

@ The emulator @y includes the uncertainty in ®(u) for u ¢ D .

° E(exp ( — Oy (u, ))) is the optimal approximation of exp ( — <I>(u))

in an L2-sense.
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Approximations of the Posterior

Lemma [Stuart, ALT '17]
There exist positive constants Cq, Cs, C3, independent of IV, s.t.

C1 <E((ZE™'°)P) < Cp, and Oy <E((ZF™)7P) < Cs,

for all 1 < p < oo and N sufficiently large.

Proof: Uses convergence of mf{’v and ky, Fernique's Theorem, Borell-TIS
inequality and Sudakov-Fernique inequality.
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Approximations of the Posterior
Theorem [Stuart, ALT '17]

There exists a constant (', independent of N, such that

9

1
N 5§\ 1+8
dhell(:u'y’ :u’i{narginal) <C HE <|CI) - (I)N|1+ )
L2(U)

for any ¢ > 0.

Proof: Uses Lemma, Lipschitz cont'y of likelihood, Fernique's Theorem.
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Approximations of the Posterior
Theorem [Stuart, ALT '17]

There exists a constant (', independent of N, such that

9

1
N 5\ I+8
dhell(:u’y’ :u?r!narginal) <C HE ("I) — q)N‘:H— )
L2(U)

for any ¢ > 0.

Proof: Uses Lemma, Lipschitz cont'y of likelihood, Fernique's Theorem.

Theorem [Stuart, ALT '17]

There exists a constant (', independent of N, such that

E (dhell(ﬂy7 Mgﬁlple)Q)w <C H <E<|(I) B CI)N|2+6>) - 12(U)

for any 6 > 0.

Proof: Uses Lemma, Lipschitz cont'y of likelihood, Fernique's Theorem.
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Approximations of the Posterior

Extensions
@ Combining the two types of error estimates, we get convergence rates
in terms of hp for dpen(p?, u).

o Instead of emulating @, we can also emulate O(F), with similar error
bounds.

@ Numerical computations confirm the rates proved.
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Approximations of the Posterior

Extensions
@ Combining the two types of error estimates, we get convergence rates
in terms of hp for dpen(p?, u).

o Instead of emulating @, we can also emulate O(F), with similar error
bounds.

@ Numerical computations confirm the rates proved.

@ We are currently investigating the influence of the choice of
hyper-parameters v, A\, 02, and how to choose these optimally (joint
with A Stuart).

@ We are devising a general framework for random approximations of
Bayesian posterior distributions (joint with H Lie and T Sullivan).
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Approximations of the Posterior

Dimension reduction in U

@ The error estimates in terms of hp yield strong dependence on the
dimension of U C R%:

@ For a uniform tensor grid with N points in d,, dimensions, we have

hp = \/dy (NY& —1)71,

@ Incorporating dimensionality reduction of U in the definition of the
Gaussian process emulator should alleviate this?

@ Covariance kernels are frequently defined in terms of ||u — u/||3 - use
distance preserving methods?
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Conclusions

@ Gaussian process emulators can be used in inverse problems to
approximate the mathematical model.

@ The error between the true and approximate posterior can be
bounded by moments of the GP emulation error.

@ Our theory does not make any assumptions on the GP emulator other
than convergence as N — oo.

@ The only assumptions on the mathematical model are in terms of its
(Sobolev) smoothness.
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