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Bayesian Inverse Problems
Mathematical Formulation [Stuart ’10] [Kaipio, Somersalo ’04]

We are given

a model F of a physical process depending on parameters
u ∈ U ⊂ Rdu for some du ∈ N and compact U ,

- evaluation of F typically involves the solution of a PDE

observations/data y = O(F(u)) + η, with y ∈ Rdy and η a realisation
of a N (0, σ2

ηI) random variable

We are interested in the inverse problem of finding u given y.

Following the Bayesian approach, we

assign a prior distribution µ0 to u;

determine the data likelihood P(y|u) h exp
(
− 1

2σ2
η
‖y −O(F(u))‖22

)
;

want to determine the posterior distribution µy on u|y.

A. Teckentrup (Edinburgh) GP emulators in BIP August 8, 2017 3 / 17



Bayesian Inverse Problems
Mathematical Formulation [Stuart ’10] [Kaipio, Somersalo ’04]

We are given

a model F of a physical process depending on parameters
u ∈ U ⊂ Rdu for some du ∈ N and compact U ,

- evaluation of F typically involves the solution of a PDE

observations/data y = O(F(u)) + η, with y ∈ Rdy and η a realisation
of a N (0, σ2

ηI) random variable

We are interested in the inverse problem of finding u given y.

Following the Bayesian approach, we

assign a prior distribution µ0 to u;

determine the data likelihood P(y|u) h exp
(
− 1

2σ2
η
‖y −O(F(u))‖22

)
;

want to determine the posterior distribution µy on u|y.

A. Teckentrup (Edinburgh) GP emulators in BIP August 8, 2017 3 / 17



Bayesian Inverse Problems
Computational Challenges

Using Bayes’ Theorem, the posterior distribution µy is given by

dµy

dµ0
(u) =

1

Z
exp

(
− Φ(u)

)
,

(
πy(u) =

1

Z
exp

(
− Φ(u)

)
π0(u)

)
where Φ(u) = 1

2σ2
η
‖y −O(F(u))‖22 and Z = Eµ0

(
exp

(
− Φ(u)

))
.

Sampling methods such as Markov chain Monte Carlo require
repeated evaluation of the data likelihood exp

(
− Φ(u)

)
, easily in the

order of millions of evaluations.

Since the computation of Φ involves evaluating F , this is typically
very costly. We approximate Φ by a surrogate model (emulator,
reduced order model, ...).

We will use Gaussian process emulators, but other choices are
possible.
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Gaussian Process Regression
Simple Derivation [Rasmussen, Williams ’06]

We treat Φ as unknown, and assign a probability distribution to it: we
model Φ as a Gaussian process, with mean 0 and (positive definite)
covariance kernel k : U × U → R:

Φ0 ∼ GP(0, k(u, u′))

For every set {ui}mi=1 ⊆ U , the random variables {Φ0(ui)}mi=1 are

multivariate Gaussian with E(Φ(ui)) = 0 and E(Φ0(ui)Φ0(uj)) = k(ui, uj).

The kernel k incorporates information such as smoothness and typical
length scales.

We evaluate Φ at design points D = {un}Nn=1 ⊆ U , obtaining
function values {Φ(un)}Nn=1.

Conditioning Φ0 on given function values {Φ(un)}Nn=1 leads to
ΦN ∼ GP(mΦ

N (u), kN (u, u′)), with

mΦ
N (u) = k∗(u)TK−1

∗ Φ∗, kN (u, u′) = k(u, u′)− k∗(u)TK−1
∗ k∗(u

′),

and (k∗(u))n = k(u, un), (K∗)nm = k(un, um) and (Φ∗)n = Φ(un).
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Gaussian Process Regression
Relation to Kernel Interpolation

The predictive mean is a linear combination of kernel evaluations

mΦ
N (u) =

N∑
n=1

αnk(u, un), α = K−1
∗ Φ∗.

We have mΦ
N (un) = Φ(un) and kN (un, un) = 0, for n = 1, . . . , N .

⇒ ΦN (un) ≡ mΦ
N (un) = Φ(un) , for n = 1, . . . , N .

The predictive mean mΦ
N is a kernel interpolant of Φ, and in the

special case of isotropic kernels k(u, u′) = k(‖u− u′‖), a radial basis
function interpolant.

The emulator ΦN is a random interpolant of Φ, reflecting the
uncertainty in Φ away from the design points D.
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Gaussian Process Regression
Matèrn Kernels

Examples of kernels frequently used are the family of Matèrn
covariances

kν,λ,σ2(u, u′) =
σ2

Γ(ν)2ν−1

(
‖u− u′‖

λ

)ν
Bν

(
‖u− u′‖

λ

)
,

with smoothness parameter ν > 0, marginal variance σ2, correlation
length λ, Γ the gamma function and Bν the modified Bessel function
of the second kind.

ν = 1/2 : kν,λ,σ2(u, u′) = σ2 exp
(
− ‖u−u

′‖
λ

)
,

ν =∞ : kν,λ,σ2(u, u′) = exp
(
− ‖u−u

′‖2
λ2

)
.
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Gaussian Process Emulators
Scattered Data Approximation [Wendland ’04]

With design points D = {un}Nn=1, define the fill distance

hD = sup
u∈U

inf
un∈D

‖u− un‖.

Theorem (see e.g. [Scheuerer, Schaback, Schlather ’13], [Stuart, ALT ’17])

Suppose U satisfies an interior cone condition. With covariance kernel
kν,λ,σ2 , we have for hD sufficiently small

‖Φ−mΦ
N‖L2(U) ≤ C h

ν+du/2
D ‖Φ‖Hν+du/2(U),

with C independent of D and Φ. Furthermore,

‖k
1
2
N‖L2(U) ≤ C hνD.
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Approximations of the Posterior

Recall:
dµy

dµ0
(u) =

1

Z
exp

(
− Φ(u)

)
.

We now use the emulator ΦN to build different approximations µyN to
the posterior distribution µy.

We focus on bounding the Hellinger distance

dhell(µ
y, µyN ) =

1

2

∫
U

√dµy

dµ0
−

√
dµyN
dµ0

2

dµ0

1/2

.
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Approximations of the Posterior

Using the mean mΦ
N , we define the mean based approximation

dµy,Nmean

dµ0
(u) =

1

Zmean
N

exp
(
−mΦ

N (u)
)
.

Lemma [Stuart, ALT ’17]

There exist a positive constants C1, C2, independent of N , such that

C1 ≤ Zmean
N ≤ C2.

Proof: Uses convergence of mΦ
N to Φ.

Theorem [Stuart, ALT ’17]

There exists a constant C, independent of N , such that

dhell(µ
y, µy,Nmean) ≤ C

∥∥Φ−mΦ
N

∥∥
L2(U)

.

Proof: Uses Lemma and Lipschitz continuity of likelihood.
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Approximations of the Posterior

Using the process ΦN , we define the the random approximation

dµy,Nsample(ω)

dµ0
(u) =

1

Zsample
N (ω)

exp
(
− ΦN (u, ω)

)
,

and the marginal approximation

dµy,Nmarginal

dµ0
(u) =

1

E(Zsample
N )

E
(

exp
(
− ΦN (u, ·)

))
.

The emulator ΦN includes the uncertainty in Φ(u) for u /∈ D .

E
(

exp
(
− ΦN (u, ·)

))
is the optimal approximation of exp

(
− Φ(u)

)
in an L2-sense.
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Approximations of the Posterior

Lemma [Stuart, ALT ’17]

There exist positive constants C1, C2, C3, independent of N , s.t.

C1 ≤ E
(
(Zsample

N )p
)
≤ C2, and C2 ≤ E

(
(Zsample

N )−p
)
≤ C3,

for all 1 ≤ p <∞ and N sufficiently large.

Proof: Uses convergence of mΦ
N and kN , Fernique’s Theorem, Borell-TIS

inequality and Sudakov-Fernique inequality.
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Approximations of the Posterior
Theorem [Stuart, ALT ’17]

There exists a constant C, independent of N , such that

dhell(µ
y, µy,Nmarginal) ≤ C

∥∥∥∥E(|Φ− ΦN |1+δ
) 1

1+δ

∥∥∥∥
L2(U)

,

for any δ > 0.

Proof: Uses Lemma, Lipschitz cont’y of likelihood, Fernique’s Theorem.

Theorem [Stuart, ALT ’17]

There exists a constant C, independent of N , such that

E
(
dhell(µ

y, µy,Nsample)
2
)1/2

≤ C
∥∥∥∥(E(|Φ− ΦN |2+δ

)) 1
2+δ

∥∥∥∥
L2(U)

.

for any δ > 0.

Proof: Uses Lemma, Lipschitz cont’y of likelihood, Fernique’s Theorem.
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Approximations of the Posterior
Extensions

Combining the two types of error estimates, we get convergence rates
in terms of hD for dhell(µ

y, µyN ).

Instead of emulating Φ, we can also emulate O(F), with similar error
bounds.

Numerical computations confirm the rates proved.

We are currently investigating the influence of the choice of
hyper-parameters ν, λ, σ2, and how to choose these optimally (joint
with A Stuart).

We are devising a general framework for random approximations of
Bayesian posterior distributions (joint with H Lie and T Sullivan).
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Approximations of the Posterior
Dimension reduction in U

The error estimates in terms of hD yield strong dependence on the
dimension of U ⊆ Rdu .

For a uniform tensor grid with N points in du dimensions, we have

hD =
√
du (N1/du − 1)−1.

Incorporating dimensionality reduction of U in the definition of the
Gaussian process emulator should alleviate this?

Covariance kernels are frequently defined in terms of ‖u− u′‖2 - use
distance preserving methods?
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Conclusions

Gaussian process emulators can be used in inverse problems to
approximate the mathematical model.

The error between the true and approximate posterior can be
bounded by moments of the GP emulation error.

Our theory does not make any assumptions on the GP emulator other
than convergence as N →∞.

The only assumptions on the mathematical model are in terms of its
(Sobolev) smoothness.
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