# Balanced truncation model reduction: algorithms and applications 

## Tatjana Stykel

Universität Augsburg


LMS-EPSRC Durham Symposium on Model Order Reduction Durham, August 7-17, 2017

## Motivation



Model reduction ( $=$ dimension reduction, order reduction)
$=$ reduction of the state space dimension
$\Rightarrow$ reduction of computational complexity and storage requirements

## Applications

- Circuit simulation and electromagnetics (electrical networks, semiconductor devices, power systems, ... )
- Structures, vibrations and acoustics (bridges, buildings, machine tools, brake squeal, MEMS, ... )
- Weather prediction and data assimilation (North Sea level forecast, Pacific storm tracking, air pollution prediction, ... )
- Biological systems and chemical engineering (neural networks, molecular systems, chemical reactions, ... )



[McCaffrey'13]


## Outline

## Part I

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques


## Part II

- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems


## Part III

- Balanced truncation for parametric systems
- Related topics and open problems


## Model reduction problem

Given a large-scale control system

where $u \in \mathbb{R}^{m}$ - input, $x \in \mathbb{R}^{n}$ - state, $y \in \mathbb{R}^{p}$ - output, $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n}, \quad h: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{p}$,
find a reduced-order model

where $u \in \mathbb{R}^{m}, \quad \widetilde{x} \in \mathbb{R}^{\ell}, \quad \widetilde{y} \in \mathbb{R}^{p}, \quad \ell \ll n$.

## Model reduction problem: linear systems

Given a large-scale linear control system

where $A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}$,
find a reduced-order model

where $\widetilde{A} \in \mathbb{R}^{\ell \times \ell}, \quad \widetilde{B} \in \mathbb{R}^{\ell \times m}, \quad \widetilde{C} \in \mathbb{R}^{p \times \ell}, \quad \widetilde{D} \in \mathbb{R}^{p \times m}, \quad \ell \ll n$.

## Model reduction problem: linear systems

Laplace transform: $u(t) \mapsto \boldsymbol{u}(s)=\int_{0}^{\infty} e^{-s t} u(t) d t$,

$$
x(t) \mapsto \boldsymbol{x}(s), \quad y(t) \mapsto \boldsymbol{y}(s)
$$

$\hookrightarrow \boldsymbol{x}(s)=(s I-A)^{-1} B \boldsymbol{u}(s)+(s I-A)^{-1} x(0)$

$$
\boldsymbol{y}(s)=\left(C(s I-A)^{-1} B+D\right) \boldsymbol{u}(s)+C(s I-A)^{-1} x(0)
$$

with the transfer function $\boldsymbol{G}(s)=C(s I-A)^{-1} B+D$

Given $\boldsymbol{G}(s)=C(s I-A)^{-1} B+D \quad$ with $\quad A \in \mathbb{R}^{n \times n}$, find $\quad \widetilde{G}(s)=\widetilde{C}(s I-\widetilde{A})^{-1} \widetilde{B}+\widetilde{D}$ with $\widetilde{A} \in \mathbb{R}^{\ell \times \ell}, \quad \ell \ll n$, such that $\|\widetilde{G}-G\|$ is small.

## Model reduction: goals

- Preserve system properties
- stability $\left(\lambda_{j}(A) \in \mathbb{C}^{-}\right)$
- passivity ( $=$ system does not generate energy )
- contractivity $\left(\|y\|_{\mathcal{L}_{2}} \leq\|u\|_{\mathcal{L}_{2}}\right)$
- Satisfy desired error tolerance

$$
\begin{aligned}
& \|\tilde{\boldsymbol{G}}-\boldsymbol{G}\| \leq t o l \quad \text { or } \quad\|\tilde{y}-y\| \leq t o l \cdot\|u\| \text { for all } u \in \mathcal{U} \\
& \hookrightarrow \text { need for computable error bounds }
\end{aligned}
$$

- Automatic generation of reduced-order models
- Use numerically stable and efficient methods


## Approximation error

Fourier transform: $u(t) \mapsto \boldsymbol{u}(i \omega)=\int_{-\infty}^{\infty} e^{-i \omega t} u(t) d t, \quad y(t) \mapsto \boldsymbol{y}(i \omega)$

$$
\begin{aligned}
& \hookrightarrow \boldsymbol{y}(i \omega)=\left(C(i \omega I-A)^{-1} B+D\right) \boldsymbol{u}(i \omega)=\boldsymbol{G}(i \omega) \boldsymbol{u}(i \omega) \\
& \hookrightarrow\|u\|_{\mathcal{L}_{2}}^{2}=\int_{-\infty}^{\infty}\|u(t)\|^{2} d t=\|\boldsymbol{u}\|_{\mathcal{L}_{2}}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|\boldsymbol{u}(i \omega)\|^{2} d \omega \\
& \hookrightarrow\|\boldsymbol{G}\|_{\mathcal{H}_{\infty}}:=\sup _{\boldsymbol{u} \neq 0} \frac{\|\boldsymbol{G} \boldsymbol{u}\|_{\mathcal{L}_{2}}}{\|\boldsymbol{u}\|_{\mathcal{L}_{2}}}=\sup _{\omega \in \mathbb{R}}\|\boldsymbol{G}(i \omega)\|_{2}
\end{aligned}
$$

Approximation error: $\|\widetilde{y}-y\|_{\mathcal{L}_{2}}=\|\widetilde{\boldsymbol{y}}-\boldsymbol{y}\|_{\mathcal{L}_{2}} \leq\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathcal{H}_{\infty}}\|u\|_{\mathcal{L}_{2}}$

## Approximation by projection

Let $T \in \mathbb{R}^{n \times \ell}$ and $W \in \mathbb{R}^{n \times \ell}$ such that $W^{T} T=I_{\ell}$.

- Approximate the state $x(t) \approx T \widetilde{x}(t)$ with $\widetilde{x}(t) \in \mathbb{R}^{\ell}$

$$
\hookrightarrow
$$

$$
\begin{aligned}
T \dot{\widetilde{x}}(t) & =A T \widetilde{x}(t)+B u(t)+\rho(t) \\
\widetilde{y}(t) & =C T \widetilde{x}(t)+D u(t)
\end{aligned}
$$

- Project the state equation (Petrov-Galerkin projection)

$$
\begin{aligned}
W^{T} T \dot{\widetilde{x}}(t) & =W^{T} A T \widetilde{x}(t)+W^{T} B u(t) \\
\widetilde{y}(t) & =C T \widetilde{x}(t)+D u(t)
\end{aligned}
$$

- Reduced-order model

$$
\begin{aligned}
\dot{\widetilde{x}}(t) & =\widetilde{A} \widetilde{x}(t)+\widetilde{B} u(t) \\
\widetilde{y}(t) & =\widetilde{C} \widetilde{x}(t)+\widetilde{D} u(t)
\end{aligned}
$$

with $\widetilde{A}=W^{T} A T, \quad \widetilde{B}=W^{T} B, \quad \widetilde{C}=C T, \quad \widetilde{D}=D$

## Outline

- Model order reduction problem
- Balanced truncation model reduction
- singular value decomposition
- controllability and observability Gramians
- Hankel singular values
- numerical methods for Lyapunov equations
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- Related topics and open problems


## SVD-based approximation

Given $X \in \mathbb{R}^{n \times m}$ with $\operatorname{rank} X=r$, find $\tilde{X} \in \mathbb{R}^{n \times m}$ such that $\operatorname{rank} \widetilde{X}=\ell<r$ and $\|\widetilde{X}-X\|_{2} \rightarrow$ min.

Singular value decomposition:

$$
\begin{aligned}
X=U \Sigma V^{T} & =\left[u_{1}, \ldots, u_{r}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[v_{1}, \ldots, v_{r}\right]^{T} \\
& =\sigma_{1} u_{1} v_{1}^{T}+\ldots+\sigma_{\ell} u_{\ell} v_{\ell}^{T}+\sigma_{\ell+1} u_{\ell+1} v_{\ell+1}^{T}+\ldots+\sigma_{r} u_{r} v_{r}^{T}
\end{aligned}
$$

where $\sigma_{j}=\sqrt{\lambda_{j}\left(X^{T} X\right)}>0$ are the singular values of $X$.
$\leadsto \quad \widetilde{X}=\left(\sigma_{1} u_{1}\right) v_{1}^{T}+\ldots+\left(\sigma_{\ell} u_{\ell}\right) v_{\ell}^{T}$ with $\|\tilde{X}-X\|_{2}=\sigma_{\ell+1}$
Storage: $X \rightsquigarrow 4 n m$ Bytes, $\widetilde{X} \rightsquigarrow 4(n+m) \ell$ Bytes

## Example: image compression with SVD



Image $=n \times k$ pixels $=k$ columns with $n$ entries (RGB color values)
$\hookrightarrow \quad n \times k \times 3$ tensor or $n \times 3 k$ matrix $X=\left(\begin{array}{c}* * * * * * * * * * \\ * * * * * * * * * \\ \cdots, * * * * *\end{array}\right)$
$\hookrightarrow$ storage: $X \rightsquigarrow 12 n k$ Bytes ( 2.11 MB )

## Example: image compression with SVD



Singular values, $r=322$


$\ell=50 \rightsquigarrow 0.39 \mathrm{MB}$

## Input and output energy

$$
\dot{x}(t)=A x(t)+B u(t), \quad y(t)=C x(t)
$$

## Input energy:

$$
E_{u}\left(x_{0}\right)=\min _{\substack{u \in \mathcal{L}_{2}(-\infty, 0) \\ x(-\infty)=0 \\ x(0)=x_{0}}} \int_{-\infty}^{0}\|u(t)\|^{2} d t
$$



Output energy:

$$
E_{y}\left(x_{0}\right)=\int_{0}^{\infty}\|y(t)\|^{2} d t
$$



$$
u(t), t \in(-\infty, 0) \Rightarrow x(0)=x_{0} \Rightarrow y(t), t \in[0, \infty)
$$

## Gramians

Lyapunov equations: $\quad\left(\lambda_{j}(A) \in \mathbb{C}^{-}\right)$
$A X+X A^{T}=-B B^{T} \leadsto X$ - controllability Gramian
$A^{T} Y+Y A=-C^{T} C \quad \leadsto \quad Y$ - observability Gramian
$\hookrightarrow \quad E_{u}\left(x_{0}\right)=x_{0}^{T} X^{-1} x_{0}, \quad E_{y}\left(x_{0}\right)=x_{0}^{T} Y x_{0}$

- $(A, B, C, D)$ is balanced if $X=Y=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{n}\right)$
- $\xi_{j}=\sqrt{\lambda_{j}(X Y)}$ are Hankel singular values
- $X=R R^{T}, \quad Y=L L^{T} \quad \hookrightarrow \quad \xi_{j}=\sigma_{j}\left(L^{T} R\right)$


## Balanced truncation: idea

e Balance the dynamical system

$$
\begin{aligned}
(\hat{A}, \hat{B}, \hat{C}, \hat{D}) & =\left(\hat{T}^{-1} A \hat{T}, \hat{T}^{-1} B, C \hat{T}, D\right) \\
& =\left(\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[C_{1}, C_{2}\right], D\right) \\
\hookrightarrow T^{-1} X T^{-T} & =T^{T} Y T=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{\ell}, \xi_{\ell+1}, \ldots, \xi_{n}\right)
\end{aligned}
$$

e Truncate the states corresponding to small Hankel singular values

$$
\hookrightarrow(\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D})=\left(A_{11}, B_{1}, C_{1}, D\right)
$$

[Mullis/Roberts'76, Moore'81]

## Balanced truncation algorithm

1. Compute $X=R R^{T}$ and $Y=L L^{T}$.
2. Compute the SVD $L^{T} R=\left[\begin{array}{ll}U_{1}, & U_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{ll}V_{1}, & V_{2}\end{array}\right]^{T}$,
with $\quad \Sigma_{1}=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{\ell}\right), \quad \Sigma_{2}=\operatorname{diag}\left(\xi_{\ell+1}, \ldots, \xi_{n}\right)$.
3. Compute the reduced-order model

$$
\begin{aligned}
& \quad(\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D})=\left(W^{T} A T, W^{T} B, C T, D\right) \\
& \text { with } \quad W=L U_{1} \Sigma_{1}^{-1 / 2} \in \mathbb{R}^{n \times \ell}, \quad T=R V_{1} \Sigma_{1}^{-1 / 2} \in \mathbb{R}^{n \times \ell} \text {. }
\end{aligned}
$$

## Properties

- $(\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D})$ is asymptotically stable
- error bound: $\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathcal{H}_{\infty}} \leq 2\left(\xi_{\ell+1}+\ldots+\xi_{n}\right) \quad$ [Enns'84, Glover'84]
- need to solve large-scale Lyapunov equations


## Numerical methods for Lyapunov equations

$$
\begin{array}{lll}
A X+X A^{T}=-B B^{T} & \leadsto & X=R R^{T} \\
A^{T} Y+Y A=-C^{T} C & \leadsto & Y=L L^{T}
\end{array}
$$

- Hammarling method ( small, dense )
- Sign function method ( medium, dense )
[Hammarling'86, Penzl'98]
[Roberts'71, Byers'87, Larin/Aliev'93, Benner/Quintana-Orti'99]
- $\mathcal{H}$-matrices based methods ( large, dense+structure / sparse )
[Grasedyck/Hackbush/Khoromskij'03,
Benner/Baur'04]
- Krylov subspace methods ( large, sparse )
[Saad'90, Jaimoukha/Kasenally'94, Simoncini'06]
- Alternating direction implicit (ADI) method [Wachspress'88, Penzl'99, ( large, sparse )

Li/White'02, Benner/Kürschner/Saak'14]

## ADI method

$$
\begin{aligned}
\left(A+\tau_{k} I\right) X_{k-1 / 2} & =-B B^{T}-X_{k-1}\left(A-\tau_{k} I\right)^{T} \\
\left(A+\bar{\tau}_{k} I\right) X_{k}^{T} & =-B B^{T}-X_{k-1 / 2}^{T}\left(A-\bar{\tau}_{k} I\right)^{T}
\end{aligned}
$$

- $\lim _{k \rightarrow \infty} X_{k}=X$ with $X-X_{k}=\mathcal{A}_{k} X \mathcal{A}_{k}^{*}$, where

$$
\mathcal{A}_{k}=\left(A+\tau_{1} I\right)^{-1}\left(A-\tau_{1} I\right) \cdot \ldots \cdot\left(A+\tau_{k} I\right)^{-1}\left(A-\tau_{k} I\right), \quad \tau_{j} \in \mathbb{C}^{-}
$$

- optimal shift parameters:
[Wachspress'88]

$$
\left\{\tau_{1}, \ldots, \tau_{k}\right\}=\underset{\tau_{1}, \ldots, \tau_{k} \in \mathbb{C}^{-}}{\arg \min } \max _{t \in \operatorname{Sp}(\mathrm{~A})} \frac{\left|\left(t-\tau_{1}\right) \cdot \ldots \cdot\left(t-\tau_{k}\right)\right|}{\left|\left(t+\tau_{1}\right) \cdot \ldots \cdot\left(t+\tau_{k}\right)\right|}
$$

- suboptimal shift parameters
[Penzl'99]

$$
\left\{\tau_{1}, \ldots, \tau_{k}\right\}=\underset{\tau_{1}, \ldots, \tau_{k} \in \mathbb{C}^{-}}{\arg \min } \max _{t \in \mathcal{R}_{+} \cup\left(1 / \mathcal{R}_{-}\right)} \frac{\left|\left(t-\tau_{1}\right) \cdot \ldots \cdot\left(t-\tau_{k}\right)\right|}{\left|\left(t+\tau_{1}\right) \cdot \ldots \cdot\left(t+\tau_{k}\right)\right|},
$$

where $\mathcal{R}_{+}$and $\mathcal{R}_{-}$are the sets of Ritz values of $A$ and $A^{-1}$

- $X_{k}$ is symmetric, positive semidefinite $\hookrightarrow X_{k}=Z_{k} Z_{k}^{T}$


## Low-rank approximations

Lyapunov equation: $\quad A X+X A^{T}=-B B^{T}$

Eigenvalues of the Gramian, n=5177

$$
\begin{aligned}
X & =\sum_{j=1}^{n} \lambda_{j}(X) v_{j} v_{j}^{T}=R R^{T}, \quad R \in \mathbb{R}^{n \times n} \\
& \Downarrow \lambda_{j}(X) \approx 0, j=r+1, \ldots, n \\
X & \approx \sum_{j=1}^{r} \lambda_{j}(X) v_{j} v_{j}^{T}=\widetilde{R} \widetilde{R}^{T}, \quad \widetilde{R} \in \mathbb{R}^{n \times r}
\end{aligned}
$$


$\hookrightarrow$ compute a low-rank approximation to $X$

## Low-rank ADI method

$$
\begin{aligned}
& V_{0}=B, \quad Z_{0}=[], \quad k=1, \\
& \text { while }\left\|V_{k-1}^{T} V_{k-1}\right\|_{F} \geq \text { tol }\left\|B^{T} B\right\|_{F} \\
& \qquad F_{k}=\left(A+\tau_{k} I\right)^{-1} V_{k-1}, \\
& \quad V_{k}=V_{k-1}-2 \operatorname{Re}\left(\tau_{k}\right) F_{k}, \\
& \quad Z_{k}=\left[Z_{k-1}, \quad \sqrt{-2 \operatorname{Re}\left(\tau_{k}\right)} F_{k}\right] \\
& \quad k \leftarrow k+1
\end{aligned} \text { end } l l
$$

- low-rank approximation $X \approx Z_{k} Z_{k}^{T}$ with $Z_{k} \in \mathbb{R}^{n \times k m}$
- solve linear systems $\left(A+\tau_{k} I\right) z=v$
- low-rank residuals $A Z_{k} Z_{k}^{T}+Z_{k} Z_{k}^{T} A^{T}+B B^{T}=V_{k} V_{k}^{T}$ with $V_{k} \in \mathbb{R}^{n \times k} \quad \hookrightarrow$ fast stopping criterion
- adaptive ADI shift computation
[Benner/Kürschner/Saak'14]


## Example: optimal steel cooling



- Mathematical model

$$
\begin{array}{lr}
\partial_{t} \theta=\frac{\lambda}{c \rho} \Delta \theta & \text { in } \Omega \times(0, T) \\
\partial_{\nu} \theta=\frac{q k}{\lambda}\left(u_{k}-\theta\right) & \text { on } \Gamma_{k}, k=1, \ldots, 7 \\
\partial_{\nu} \theta=0 & \text { on } \Gamma_{0}
\end{array}
$$



- FEM model

$$
\begin{aligned}
E \dot{\theta}_{h} & =A \theta_{h}+B u, \quad \theta_{h} \in \mathbb{R}^{n} \\
y & =C \theta_{h} \\
\text { with } n & =1357 / 20209 / 79841 / \ldots
\end{aligned}
$$

[Oberwolfach Benchmark Collection]

## Example: optimal steel cooling

- $n=20209, m=7, p=6$
- $X \approx \widetilde{R} \widetilde{R}^{T}, \quad \widetilde{R} \in \mathbb{R}^{n \times 357}$
- $Y \approx \widetilde{L} \widetilde{L}^{T}, \quad \widetilde{L} \in \mathbb{R}^{n \times 276}$
- Reduced system: $\ell=52$

Frequency responses


Hankel singular values



## Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- positive real balanced truncation
- bounded real balanced truncation
- numerical methods for Riccati equations
- Model reduction of differential-algebraic equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- Related topics and open problems


## Positive real balanced truncation

- System is passive $\Longleftrightarrow \boldsymbol{G}(s)$ is positive real

$$
\text { i.e., } \boldsymbol{G}(s)+\boldsymbol{G}^{*}(s) \geq 0 \text { for all } s \in \mathbb{C}^{+}
$$

- Positive real Gramians $X_{\mathrm{PR}}$ and $Y_{\mathrm{PR}}$ are stabilizing solutions of the algebraic Riccati equations

$$
\begin{aligned}
& A X+X A^{T}+\left(X C^{T}-B\right)\left(D+D^{T}\right)^{-1}\left(X C^{T}-B\right)^{T}=0, \\
& A^{T} Y+Y A+\left(B^{T} Y-C\right)^{T}\left(D+D^{T}\right)^{-1}\left(B^{T} Y-C\right)=0 .
\end{aligned}
$$

- $\xi_{j}^{\mathrm{PR}}=\sqrt{\lambda_{j}\left(X_{\mathrm{PR}} Y_{\mathrm{PR}}\right)}$ are positive real characteristic values
$\hookrightarrow$ error bound: $\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathcal{H}_{\infty}} \leq c\left(\xi_{\ell+1}^{\mathrm{pR}}+\ldots+\xi_{n}^{\mathrm{PR}}\right)$

$$
\text { with } \quad c=2\left\|\left(D+D^{T}\right)^{-1}\right\|_{2}\left\|\boldsymbol{G}+D^{T}\right\|_{\mathcal{H}_{\infty}}\left\|\widetilde{\boldsymbol{G}}+D^{T}\right\|_{\mathcal{H}_{\infty}}
$$

$\hookrightarrow$ passivity is preserved
[Green'88, Ober'91]

## Bounded real balanced truncation

- System is contractive $\Longleftrightarrow G(s)$ is bounded real

$$
\text { i.e., } I-\boldsymbol{G}^{*}(s) \boldsymbol{G}(s) \geq 0 \text { for all } s \in \mathbb{C}^{+}
$$

- Bounded real Gramians $X_{\mathrm{BR}}$ and $Y_{\mathrm{BR}}$ are stabilizing solutions of the algebraic Riccati equations

$$
\begin{aligned}
& A X+X A^{T}+\left(X C^{T}+B D^{T}\right)\left(I-D D^{T}\right)^{-1}\left(X C^{T}+B D^{T}\right)^{T}=0 \\
& A^{T} Y+Y A+\left(B^{T} Y+D^{T} C\right)^{T}\left(I-D^{T} D\right)^{-1}\left(B^{T} Y+D^{T} C\right)=0
\end{aligned}
$$

- $\xi_{j}^{\mathrm{BR}}=\sqrt{\lambda_{j}\left(X_{\mathrm{BR}} Y_{\mathrm{BR}}\right)}$ are bounded real characteristic values
$\hookrightarrow$ error bound: $\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathcal{H}_{\infty}} \leq 2\left(\xi_{\ell+1}^{\mathrm{BR}}+\ldots+\xi_{n}^{\mathrm{BR}}\right)$
$\hookrightarrow$ contractivity is preserved
[Opdenacker/Jonckheere'88, Ober'91]


## Numerical methods for Riccati equations

Riccati equation: $B B^{T}+A X+X A^{T} \pm X C^{T} C X=0 \leadsto X \approx \widetilde{R} \widetilde{R}^{T}$

- Newton's method
[Kleinman'68, ..., Benner/Kürschner/Saak'16]
- Sign function method
[Roberts'80, Byers'87, Benner/Quintana-Orti'99]
- $\mathcal{H}$-matrices based methods
[Grasedyck/Hackbush/Khoromskij’03]
- Structured doubling algorithm
[Li/Chu/Lin/Weng'13]
- Structured invariant subspace methods
[Paige/Van Loan'81, Benner/Mehrmann/Xu'98, Kressner'05, ...]
- ADI-type methods
[Wong/Balakrishnan'05, Benner/Bujanović/Kürschner/Saak'17]
- Low-rank subspace iteration method
[Amodei and Buchot'10, Lin/Simoncini'15, Massoudi/Opmeer/Reis'16]
- Krylov subspace methods
[Jaimoukha/Kasenally'94, Heyouni/Jbilou'08, Simoncini'16]


## Conclusions

- Balanced truncation for continuous-time systems
- energy interpretation
- system-theoretic properties are preserved
- global computable error bounds
- using modern numerical linear algebra algorithms for solving large-scale Lyapunov and Riccati equations
- Balanced truncation for discrete-time systems

$$
\begin{aligned}
E x_{k+1} & =A x_{k}+B u_{k} \\
y_{k} & =C x_{k}+D u_{k}
\end{aligned}
$$

- Gramians satisfy the discrete-time Lyapunov equations

$$
A X A^{T}-X=-B B^{T}, \quad A^{T} Y A-Y=-C^{T} C
$$

which can be solved by the squared Smith method

- error bound: $\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathcal{H}_{\infty}} \leq 2\left(\xi_{\ell+1}+\ldots+\xi_{n}\right) \quad$ [Hinrichsen/Pritchard'90]


## Conclusions

- Other balancing-related model reduction techniques
- linear-quadratic Gaussian truncation
- stochastic balanced truncation
- frequency weighted balanced truncation
[Jonckeere/Silverman'83]
[Desai/Pal'88, Green'88]
[Enns'84, Zhou'95]
- fractional balanced truncation
- Cross-Gramian balanced truncation
[Ober/McFarlane'88, Meyer'90]
[Fernando/Nicholson'84]
- Balanced truncation for systems with many inputs or outputs
[Benner/Schneider'10]


## Outline

## Part I

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques


## Part II

- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems


## Part III

- Balanced truncation for parametric systems
- Related topics and open problems


## Balanced truncation

Idea: Balance the system $(A, B, C, D)$ and truncate the states corresponding to small Hankel singular values

## Algorithm:

1. Solve the Lyapunov equations

$$
A X+X A^{T}=-B B^{T}, \quad A^{T} Y+Y A=-C^{T} C
$$

for $X \approx \widetilde{R} \widetilde{R}^{T}$ and $Y \approx \widetilde{L} \widetilde{L}^{T}$.
2. Compute the SVD $\widetilde{L}^{T} \widetilde{R}=\left[\begin{array}{ll}U_{1}, & U_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{1} & \\ & \Sigma_{2}\end{array}\right]\left[\begin{array}{ll}V_{1}, & V_{2}\end{array}\right]^{T}$,
with $\quad \Sigma_{1}=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{\ell}\right), \quad \Sigma_{2}=\operatorname{diag}\left(\xi_{\ell+1}, \ldots, \xi_{n}\right)$.
3. $(\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D})=\left(W^{T} A T, W^{T} B, C T, D\right)$ with

$$
W=\widetilde{L} U_{1} \Sigma_{1}^{-1 / 2} \in \mathbb{R}^{n \times \ell}, \quad T=\widetilde{R} V_{1} \Sigma_{1}^{-1 / 2} \in \mathbb{R}^{n \times \ell} .
$$

## Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- properties of DAEs
- proper and improper Gramians
- proper and improper Hankel singular values
- numerical methods for projected Lyapunov equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- Related topics and open problems


## Linear DAE control systems

## Time domain representation


where $E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$, $\lambda E-A$ is regular $(\operatorname{det}(\lambda E-A) \not \equiv 0)$.

Frequency domain representation
Laplace transform: $u(t) \mapsto \boldsymbol{u}(s), \quad y(t) \mapsto \boldsymbol{y}(s)$

$$
\hookrightarrow \boldsymbol{y}(s)=\left(C(s E-A)^{-1} B+D\right) \boldsymbol{u}(s)+C(s E-A)^{-1} E x(0)
$$

with the transfer function $G(s)=C(s E-A)^{-1} B+D$

## Applications

- Multibody systems with constraints

$$
\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & M & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\mathbf{p}} \\
\dot{\mathbf{v}} \\
\dot{\boldsymbol{\lambda}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & I & 0 \\
K & D & -G^{T} \\
G & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p} \\
\mathbf{v} \\
\boldsymbol{\lambda}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{2} \\
B_{3}
\end{array}\right] u
$$

- Electrical circuits

$$
\left[\begin{array}{ccc}
A_{C} \mathcal{C} A_{C}^{T} & 0 & 0 \\
0 & L & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{\mathbf{e}} \\
\dot{\mathbf{j}_{L}} \\
\dot{\mathbf{j}}_{V}
\end{array}\right]=\left[\begin{array}{ccc}
-A_{R} R^{-1} A_{R}^{T} & -A_{L}^{T} & -A_{V}^{T} \\
A_{L}^{T} & 0 & 0 \\
A_{V}^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{e} \\
\mathbf{j}_{L} \\
\mathbf{j}_{V}
\end{array}\right]-\left[\begin{array}{cc}
A_{I} & 0 \\
0 & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
i_{V} \\
v_{I}
\end{array}\right]
$$

- Semidiscretized Stokes equation

$$
\left[\begin{array}{cc}
E_{11} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\dot{\mathbf{v}} \\
\dot{\mathbf{p}}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{v} \\
\mathbf{p}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u
$$



## DAEs are not ODEs!

- DAEs may have no solutions or solution may be nonunique
- Initial conditions $x(0)=x_{0}$ should be consistent
$\leadsto$ distributional solutions
- Control $u(t)$ should be sufficiently smooth
$\leadsto$ distributional solutions
- Drift off effects may occur in the numerical solution
- Index concepts:
differentiation index, geometric index, perturbation index, strangeness index, structural index, tractability index, unsolvability index, ...


## Model reduction problem

Given a large-scale DAE control system

where $E, A \in \mathbb{R}^{n \times n}, \quad B \in \mathbb{R}^{n \times m}, \quad C \in \mathbb{R}^{p \times n}, \quad D \in \mathbb{R}^{p \times m}$,
find a reduced-order model

where $\widetilde{E}, \widetilde{A} \in \mathbb{R}^{\ell \times \ell}, \quad \widetilde{B} \in \mathbb{R}^{\ell \times m}, \quad \widetilde{C} \in \mathbb{R}^{p \times \ell}, \quad \widetilde{D} \in \mathbb{R}^{p \times m}, \quad \ell \ll n$.

## Decoupling of DAEs

Weierstraß canonical form:

$$
E=T_{l}\left[\begin{array}{cc}
I & 0 \\
0 & N
\end{array}\right] T_{r}, \quad A=T_{l}\left[\begin{array}{cc}
J & 0 \\
0 & I
\end{array}\right] T_{r},
$$

where $J$ - Jordan block $\left(\lambda_{j}(J)\right.$ are finite eigenvalues of $\left.\lambda E-A\right)$, $N$ - nilpotent $\left(N^{\nu-1} \neq 0, N^{\nu}=0 \leadsto \nu\right.$ is index of $\left.\lambda E-A\right)$.

Slow subsystem

$$
\begin{aligned}
\dot{x}_{1}(t) & =J x_{1}(t)+B_{1} u(t) \\
y_{1}(t) & =C_{1} x_{1}(t) \\
\Rightarrow x_{1}(t) & =e^{J t} x_{1}(0)+\int_{0}^{t} e^{J(t-\tau)} B_{1} u(\tau) d \tau
\end{aligned}
$$

Fast subsystem

$$
\begin{aligned}
N \dot{x}_{2}(t) & =x_{2}(t)+B_{2} u(t) \\
y_{2}(t) & =C_{2} x_{2}(t)+D u(t) \\
\Rightarrow \quad x_{2}(t) & =-\sum_{k=0}^{\nu-1} N^{k} B_{2} u^{(k)}(t)
\end{aligned}
$$

Idea: define the controllability and observability Gramains for each subsystem and reduce the subsystems separately.

## Proper and improper Gramians

Consider the projectors

$$
P_{r}=T_{r}^{-1}\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] T_{r}, \quad P_{l}=T_{l}\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right] T_{l}^{-1}, \quad \begin{aligned}
& Q_{r}=I-P_{r} \\
& Q_{l}=I-P_{l}
\end{aligned}
$$

- The proper controllability and observability Gramians solve the projected continuous-time Lyapunov equations

$$
\begin{array}{ll}
E \mathcal{G}_{p c} A^{T}+A \mathcal{G}_{p c} E^{T}=-P_{l} B B^{T} P_{l}^{T}, & \mathcal{G}_{p c}=P_{r} \mathcal{G}_{p c} P_{r}^{T}, \\
E^{T} \mathcal{G}_{p o} A+A^{T} \mathcal{G}_{p o} E=-P_{r}^{T} C^{T} C P_{r}, & \mathcal{G}_{p o}=P_{l}^{T} \mathcal{G}_{p o} P_{l} .
\end{array}
$$

- The improper controllability and observability Gramians solve the projected discrete-time Lyapunov equations

$$
\begin{array}{rll}
A \mathcal{G}_{i c} A^{T}-E \mathcal{G}_{i c} E^{T}=Q_{l} B B^{T} Q_{l}^{T}, & \mathcal{G}_{i c}=Q_{r} \mathcal{G}_{i c} Q_{r}^{T}, \\
A^{T} \mathcal{G}_{i o} A-E^{T} \mathcal{G}_{i o} E=Q_{r}^{T} C^{T} C Q_{r}, & \mathcal{G}_{i o}=Q_{l}^{T} \mathcal{G}_{i o} Q_{l}
\end{array}
$$

## Balanced truncation for DAEs

- $\boldsymbol{G}=(E, A, B, C, D)$ is balanced, if the Gramians satisfy

$$
\mathcal{G}_{p c}=\mathcal{G}_{p o}=\left[\begin{array}{ll}
\Sigma & \\
& 0
\end{array}\right], \quad \mathcal{G}_{i c}=\mathcal{G}_{i o}=\left[\begin{array}{ll}
0 & \\
& \Theta
\end{array}\right]
$$

with $\Sigma=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{n_{f}}\right) \quad$ and $\quad \Theta=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{n_{\infty}}\right)$.

- $\xi_{j}=\sqrt{\lambda_{j}\left(\mathcal{G}_{p c} E^{T} \mathcal{G}_{p o} E\right)}$ are the proper Hankel singular values $\theta_{j}=\sqrt{\lambda_{j}\left(\mathcal{G}_{i c} A^{T} \mathcal{G}_{i o} A\right)}$ are the improper Hankel singular values

Idea: balance the system and truncate the states corresponding to small proper and zero improper Hankel singular values.

## Example

$$
\begin{aligned}
N \dot{x}(t) & =x(t)+B u(t) \quad \text { with } \quad N=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
10 \\
0.1 \\
0
\end{array}\right], \quad C^{T}=\left[\begin{array}{c}
0.04 \\
30 \\
1
\end{array}\right]
\end{aligned}
$$

Improper Hankel singular values $\theta_{1}=3.4, \theta_{2}=4.7 \cdot 10^{-6}, \theta_{3}=0$

- Reduced-order system: $\quad \ell=2$

$$
\begin{aligned}
{\left[\begin{array}{rr}
1.2 & 1.2 \\
-1.2 & -1.2
\end{array}\right] \dot{\tilde{x}}(t) } & =\left[\begin{array}{cc}
10^{3} & 0 \\
0 & 10^{3}
\end{array}\right] \tilde{x}(t)+\tilde{B} u(t) \\
\tilde{y}(t) & =\tilde{C} \tilde{x}(t)
\end{aligned}
$$

- Reduced-order system: $\quad \ell=1$

$$
\begin{aligned}
& \dot{\tilde{x}}(t)=850 \tilde{x}(t)+1567 u(t) \\
& \tilde{y}(t)=1.9 \tilde{x}(t)
\end{aligned}
$$



## Balanced truncation for DAEs

1. Solve the projected Lyapunov equations for

$$
\mathcal{G}_{p c}=R_{p} R_{p}^{T}, \quad \mathcal{G}_{p o}=L_{p} L_{p}^{T}, \quad \mathcal{G}_{i c}=R_{i} R_{i}^{T}, \quad \mathcal{G}_{i o}=L_{i} L_{i}^{T} ;
$$

2. Compute the SVD

$$
L_{p}^{T} E R_{p}=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & \\
& \Sigma_{2}
\end{array}\right]\left[V_{1}, V_{2}\right]^{T} ;
$$

3. Compute the SVD

$$
L_{i}^{T} A R_{i}=\left[U_{3}, U_{4}\right]\left[\begin{array}{cc}
\Theta & \\
& 0
\end{array}\right]\left[V_{3}, V_{4}\right]^{T} ;
$$

4. $(\tilde{E}, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(W^{T} E T, W^{T} A T, W^{T} B, C T, D\right)$ with

$$
W=\left[L_{p} U_{1} \Sigma_{1}^{-1 / 2}, L_{i} U_{3} \Theta^{-1 / 2}\right], \quad T=\left[R_{p} V_{1} \Sigma_{1}^{-1 / 2}, R_{i} V_{3} \Theta^{-1 / 2}\right] .
$$

## Balanced truncation: properties

- Asymptotic stability is preserved
- Error bound:
- $\boldsymbol{G}(s)=C(s E-A)^{-1} B+D=\boldsymbol{G}_{\text {sp }}(s)+\boldsymbol{P}(s)$,
where $G_{\mathrm{sp}}(s)=C_{1}(s I-J)^{-1} B_{1}$ is strictly proper,

$$
\boldsymbol{P}(s)=C_{2}(s N-I)^{-1} B_{2}+D=-\sum_{k=0}^{\nu-1} C_{2} N^{k} B_{2} s^{k}+D
$$

- $\widetilde{\boldsymbol{G}}(s)=\widetilde{C}(s \widetilde{E}-\widetilde{A})^{-1} \widetilde{B}+\widetilde{D}=\widetilde{\boldsymbol{G}}_{\text {sp }}(s)+\boldsymbol{P}(s)$

$$
\hookrightarrow \quad\|\widetilde{\boldsymbol{G}}-\boldsymbol{G}\|_{\mathcal{H}_{\infty}} \leq 2\left(\xi_{\ell_{f}}+\ldots+\xi_{n_{f}}\right)
$$

- $\operatorname{Index}(\widetilde{E}, \widetilde{A}) \leq \operatorname{Index}(E, A)$


## Computing the Gramians

- Instead of the proper Gramians compute their low-rank approximations

$$
\mathcal{G}_{p c} \approx \tilde{R}_{p} \tilde{R}_{p}^{T} \quad \text { and } \quad \mathcal{G}_{p o} \approx \tilde{L}_{p} \tilde{L}_{p}^{T}
$$

with $\tilde{R}_{p} \in \mathbb{R}^{n \times r_{p c}}, \tilde{L}_{p} \in \mathbb{R}^{n \times r_{p o}}, r_{p c}, r_{p o} \ll n$ $\hookrightarrow$ use the generalized ADI method [St.'08]


- Since $r_{i c}=\operatorname{rank}\left(\mathcal{G}_{i c}\right) \leq \nu m$ and $r_{i o}=\operatorname{rank}\left(\mathcal{G}_{i o}\right) \leq \nu q$, compute the full-rank factors of the improper Gramians

$$
\mathcal{G}_{i c}=R_{i} R_{i}^{T}, R_{i} \in \mathbb{R}^{n \times r_{i c}} \quad \text { and } \quad \mathcal{G}_{i o}=L_{i} L_{i}^{T}, L_{i} \in \mathbb{R}^{n \times r_{i o}}
$$

$\hookrightarrow$ use the generalized Smith method

- Projectors $P_{r}$ and $P_{l}$ are required
$\hookrightarrow$ exploit the structure of the matrices $E$ and $A$


## Computing the projectors

$[\checkmark$ ] semi-explicit systems (index 1)

$$
E=\left[\begin{array}{cc}
E_{11} & E_{12} \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

$[\checkmark$ ] Stokes-like systems (index 2)

$$
E=\left[\begin{array}{cc}
E_{11} & 0 \\
0 & 0
\end{array}\right], \quad A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & 0
\end{array}\right]
$$

$[\checkmark$ ] mechanical systems (index 3)

$$
E=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & M & 0 \\
0 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & I & 0 \\
D & K & -G^{T} \\
G & 0 & 0
\end{array}\right]
$$

$[\checkmark$ ] electrical circuits (index 1 and 2)
Remark: For some problems, the explicit computation of the projectors can be avoided
[Heinkenschloss/Sorensen/Sun'08, Freitas/Rommes/Martins'08]

## Example: one-phase transformer

- Mathematical model


$$
\begin{array}{rlrl}
\sigma \frac{\partial A}{\partial t}+\nabla \times\left(\nu_{\mathrm{ir}} \nabla \times A\right) & =0 & & \text { in } \Omega_{\mathrm{ir}} \times(0, T) \\
\nabla \times\left(\nu_{c a} \nabla \times A\right) & =\omega i & & \text { in } \Omega_{\mathrm{c}} \cup \Omega_{\mathrm{a}} \times(0, T) \\
\int_{\Omega} \omega^{T} \frac{\partial}{\partial t} A d z+R i & =u & & \text { in }(0, T) \\
A \times n & =0 & & \text { on } \partial \Omega \times(0, T) \\
A & =A_{0} & \text { in } \Omega_{\mathrm{ir}}
\end{array}
$$

- FEM model

$$
\begin{aligned}
{\left[\begin{array}{ccc}
M_{11} & 0 & 0 \\
0 & 0 & 0 \\
X_{1}^{T} & X_{2}^{T} & 0
\end{array}\right] \frac{d}{d t}\left[\begin{array}{c}
a_{1} \\
a_{2} \\
i
\end{array}\right] } & =\left[\begin{array}{ccc}
-K_{11} & -K_{12} & X_{1} \\
-K_{12}^{T} & -K_{22} & X_{2} \\
0 & 0 & -R
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
i
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
I
\end{array}\right] u \\
y & =i
\end{aligned}
$$

## Example: one-phase transformer

Transform the DAE into the ODE form
[Kerler-Back/St.'17]

$$
\begin{aligned}
\hat{E} \dot{\hat{x}} & =\hat{A} \hat{x}+\hat{B} u \\
y & =\hat{C} \hat{x}
\end{aligned}
$$

with
$\hat{E}=\left[\begin{array}{cc}M_{11}+X_{1} R^{-1} X_{1}^{T} & X_{1} R^{-1} X_{2}^{T} Z \\ Z^{T} X_{2} R^{-1} X_{1}^{T} & Z^{T} X_{2} R^{-1} X_{2}^{T} Z\end{array}\right]>0, \quad \hat{x}=\left[\begin{array}{c}a_{1} \\ Z^{T} a_{2}\end{array}\right] \in \mathbb{R}^{n_{d},}$
$\hat{A}=-\left[\begin{array}{cc}K_{11} & K_{12} Z \\ Z^{T} K_{12}^{T} & Z^{T} K_{22} Z\end{array}\right]+\left[\begin{array}{c}K_{12} \\ Z^{T} K_{22}\end{array}\right] Y\left(Y^{T} K_{22} Y\right)^{-1} Y^{T}\left[K_{12}^{T}, K_{22} Z\right]<0$,
$\hat{B}=\left[\begin{array}{c}X_{1} \\ Z^{T} X_{2}\end{array}\right] R^{-1}, \quad \operatorname{im} Y=\operatorname{ker} X_{2}^{T}, \quad Z=X_{2}\left(X_{2}^{T} X_{2}\right)^{-1 / 2}$,
$\hat{C}=\left(X_{2}^{T} X_{2}\right)^{-1} X_{2}^{T}\left(I-K_{22} Y\left(Y^{T} K_{22} Y\right)^{-1} Y^{T}\right)\left[K_{12}^{T}, K_{22} Z\right]=-\hat{B}^{T} \hat{E}^{-1} \hat{A}$.

## Example: one-phase transformer

Goal: solve $(\hat{A}+\tau \hat{E}) z=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ with
$\hat{E}=\left[\begin{array}{cc}M_{11}+X_{1} R^{-1} X_{1}^{T} & X_{1} R^{-1} X_{2}^{T} Z \\ Z^{T} X_{2} R^{-1} X_{1}^{T} & Z^{T} X_{2} R^{-1} X_{2}^{T} Z\end{array}\right], \quad Z=X_{2}\left(X_{2}^{T} X_{2}\right)^{-1 / 2}$
$\hat{A}=-\left[\begin{array}{cc}K_{11} & K_{12} Z \\ Z^{T} K_{21} & Z^{T} K_{22} Z\end{array}\right]+\left[\begin{array}{c}K_{12} \\ Z^{T} K_{22}\end{array}\right] Y\left(Y^{T} K_{22} Y\right)^{-1} Y^{T}\left[K_{21}, K_{22} Z\right]$

- Solve $\left[\begin{array}{ccc}\tau M_{11}-K_{11} & -K_{12} & X_{1} \\ -K_{21} & -K_{22} & X_{2} \\ \tau X_{1}^{T} & \tau X_{2}^{T} & -R\end{array}\right]\left[\begin{array}{c}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]=\left[\begin{array}{c}v_{1} \\ Z v_{2} \\ 0\end{array}\right]$.
- Compute $z=\left[\begin{array}{c}z_{1} \\ Z^{T} z_{2}\end{array}\right]$.

Note: $Y$ is not required!

## Example: one-phase transformer

- $n=17733, n_{d}=7202, n_{a}=12531, m=2$
- $X \approx \widetilde{R} \widetilde{R}^{T}, \quad \widetilde{R} \in \mathbb{R}^{n_{d} \times 126}$
- Reduced system: $r=29$
- $t_{\text {orig }}=180.74 \mathrm{sec}, \quad t_{\text {red }}=0.06 \mathrm{sec}$





## Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems
- structure-preserving model reduction
- position and velocity Gramians
- position and velocity Hankel singular values
- second-order balanced truncation
- Balanced truncation for parametric systems
- Related topics and open problems


## Second-order control systems

Time domain representation

where $M, D, K \in \mathbb{R}^{n \times n}, \quad B_{2} \in \mathbb{R}^{n \times m}, \quad C_{1}, C_{2} \in \mathbb{R}^{p \times n}$,
$u \in \mathbb{R}^{m}$ - input, $q \in \mathbb{R}^{n}$ - state, $y \in \mathbb{R}^{p}$ - output.

Frequency domain representation
Laplace transform: $u(t) \mapsto \boldsymbol{u}(s), y(t) \mapsto \boldsymbol{y}(s) \quad(q(0)=0, \dot{q}(0)=0)$

$$
\begin{gathered}
\hookrightarrow \\
\quad \boldsymbol{y}(s)=\left(C_{1}+s C_{2}\right)\left(s^{2} M+s D+K\right)^{-1} B_{2} \boldsymbol{u}(s)=\boldsymbol{G}(s) \boldsymbol{u}(s) \\
\quad \text { with } \boldsymbol{G}(s)=\left(C_{1}+s C_{2}\right)\left(s^{2} M+s D+K\right)^{-1} B_{2}
\end{gathered}
$$

## Applications

- Vibration and acoustic systems (automotive industry, rotor dynamics, machine tools, civil and earthquake engineering, ...)
- Control of large flexible structures
- MEMS devices design



The Tamar Bridge in England


50-Storey Tower in Kuala Lumpur, Malaysia

## Model reduction problem

Given a second-order system

with $M, D, K \in \mathbb{R}^{n \times n}, \quad B_{2} \in \mathbb{R}^{n \times m}, \quad C_{1}, C_{2} \in \mathbb{R}^{p \times n}$,
find a reduced-order model

with $\tilde{M}, \tilde{D}, \tilde{K} \in \mathbb{R}^{\ell \times \ell}, \quad \tilde{B}_{2} \in \mathbb{R}^{\ell \times m}, \quad \tilde{C}_{1}, \tilde{C}_{2} \in \mathbb{R}^{p \times \ell}$ and $\ell \ll n$.

## Structure-preserving model reduction

$$
\begin{aligned}
M \ddot{q}(t)+D \dot{q}(t)+K q(t) & =B_{2} u(t) \\
C_{2} \dot{q}(t)+C_{1} q(t) & =y(t)
\end{aligned} \Longrightarrow \begin{aligned}
\tilde{M} \ddot{\tilde{q}}(t)+\tilde{D} \dot{\tilde{q}}(t)+\tilde{K} \tilde{q}(t) & =\tilde{B}_{2} u(t) \\
\tilde{C}_{2}(t)+\tilde{C}_{1} \tilde{q}(t) & =\tilde{y}(t)
\end{aligned}
$$

## Second-order $\Rightarrow$ first-order

$M \ddot{q}(t)+D \dot{q}(t)+K q(t)=B_{2} u(t)$

$$
\tilde{M} \ddot{\tilde{q}}(t)+\tilde{D} \dot{\tilde{q}}(t)+\tilde{K} \tilde{q}(t)=\tilde{B}_{2} u(t)
$$

$$
C_{2} \dot{q}(t)+C_{1} q(t)=y(t)
$$

$$
\tilde{C}_{2} \dot{\tilde{q}}(t)+\tilde{C}_{1} \tilde{q}(t)=\tilde{y}(t)
$$

$$
E \dot{x}(t)=A x(t)+B u(t)
$$

$$
y(t)=C x(t)
$$

$$
E=\left[\begin{array}{cc}
I & 0 \\
0 & M
\end{array}\right], \quad A=\left[\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
B_{2}
\end{array}\right], \quad C=\left[C_{1}, C_{2}\right]
$$

or

$$
E=\left[\begin{array}{cc}
D & M \\
M & 0
\end{array}\right], \quad A=\left[\begin{array}{cc}
-K & 0 \\
0 & M
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{2} \\
0
\end{array}\right], \quad C=\left[C_{1}, C_{2}\right]
$$

$$
\hookrightarrow \quad \boldsymbol{G}(s)=\left(C_{1}+s C_{2}\right)\left(s^{2} M+s D+K\right)^{-1} B_{2}=C(s E-A)^{-1} B
$$

## Model reduction of the first-order system

$$
\begin{aligned}
& M \ddot{q}(t)+D \dot{q}(t)+K q(t)=B_{2} u(t) \\
& C_{2} \dot{q}(t)+C_{1} q(t)=y(t) \\
& \Downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{M} \ddot{\tilde{q}}(t)+\tilde{D} \dot{\tilde{q}}(t)+\tilde{K} \tilde{q}(t)=\tilde{B}_{2} u(t) \\
& \tilde{C}_{2} \dot{\tilde{q}}(t)+\tilde{C}_{1} \tilde{q}(t)=\tilde{y}(t)
\end{aligned}
$$

## First-order $\Rightarrow$ second-order

$$
\begin{aligned}
& M \ddot{q}(t)+D \dot{q}(t)+K q(t)=B_{2} u(t) \\
& C_{2} \dot{q}(t)+C_{1} q(t)=y(t) \\
& \Downarrow \\
& \begin{aligned}
\tilde{M} \ddot{\tilde{q}}(t)+\tilde{D} \dot{\tilde{q}}(t)+\tilde{K} \tilde{q}(t) & =\tilde{B}_{2} u(t) \\
\tilde{C}_{2}\left(\begin{array}{r}
q \\
(t)
\end{array}+\tilde{C}_{1} \tilde{q}(t)\right. & =\tilde{y}(t)
\end{aligned} \\
& \Uparrow ? \\
& E \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t) \\
& E=\left[\begin{array}{cc}
I & 0 \\
0 & M
\end{array}\right], \\
& A=\left[\begin{array}{cc}
0 & I \\
-K & -D
\end{array}\right], \\
& \downarrow \\
& \tilde{E}=W^{T} E T, \quad \tilde{A}=W^{T} A T, \\
& \begin{array}{cc}
B=\left[\begin{array}{c}
0 \\
B_{2}
\end{array}\right], & C=\left[C_{1},\right. \\
\downarrow & \downarrow \\
\tilde{B}=W^{T} B, & \tilde{C}=C T
\end{array} \\
& \begin{array}{cc}
B=\left[\begin{array}{c}
0 \\
B_{2}
\end{array}\right], & C=\left[C_{1},\right. \\
\downarrow & \downarrow \\
\tilde{B}=W^{T} B, & \tilde{C}=C T
\end{array} \\
& \downarrow \\
& \downarrow \\
& \tilde{M}=\text { ?, } \\
& \tilde{D}=?, \\
& \tilde{K}=?, \\
& \tilde{B_{2}}=?, \\
& \tilde{C}_{1}=?, \quad \tilde{C}_{2}=\text { ? }
\end{aligned}
$$

## First-order $\Rightarrow$ second-order

Is it always possible to rewrite a first-order control system as a second-order control system?

Answer: NO!
But ...

$$
\begin{aligned}
& \text { for } W=\left[\begin{array}{ll}
W_{1} & \\
& W_{2}
\end{array}\right] \text { and } T=\left[\begin{array}{ll}
T_{1} & \\
& T_{1}
\end{array}\right], \text { we have } \\
& \tilde{E}=W^{T} E T=\left[\begin{array}{cc}
W_{1}^{T} T_{1} & 0 \\
0 & W_{2}^{T} M T_{1}
\end{array}\right], \tilde{A}=W^{T} A T=\left[\begin{array}{cc}
0 & W_{1}^{T} T_{1} \\
-W_{2}^{T} K T_{1} & -W_{2}^{T} D T_{1}
\end{array}\right], \\
& \tilde{B}=W^{T} B=\left[\begin{array}{ll}
0, & \left(W_{2}^{T} B_{2}\right)^{T}
\end{array}\right]^{T}, \quad \tilde{C}=C T=\left[C_{1} T_{1}, C_{2} T_{1}\right] \\
& \hookrightarrow \quad \tilde{G}=\left(W_{2}^{T} M T_{1}, W_{2}^{T} D T_{1}, W_{2}^{T} K T_{1}, W_{2}^{T} B_{2}, C_{1} T_{1}, C_{2} T_{1}\right)
\end{aligned}
$$

## Position and velocity Gramians

$$
\begin{array}{cc}
A X E^{T}+E X A^{T}=-B B^{T} & A^{T} Y E+E^{T} Y A=-C^{T} C \\
\Downarrow & \Downarrow \\
X=\left[\begin{array}{cc}
X_{p} & X_{12} \\
X_{12}^{T} & X_{v}
\end{array}\right], \quad Y=\left[\begin{array}{cc}
Y_{p} & Y_{12} \\
Y_{12}^{T} & Y_{v}
\end{array}\right] \\
X_{p}-\text { position controllability Gramian } \\
X_{v}-\text { velocity controllability Gramian } \\
Y_{p}-\text { position observability Gramian } \\
Y_{v}-\text { velocity observability Gramian }
\end{array}
$$

[Meyer/Srinivasan'96]

## Hankel singular values

## First-order system:

$$
\xi_{j}=\sqrt{\lambda_{j}\left(X E^{T} Y E\right)}-\text { Hankel singular values }
$$

Second-order system:

$$
\begin{array}{ll}
\xi_{j}^{p}=\sqrt{\lambda_{j}\left(X_{p} Y_{p}\right)} & - \text { position singular values } \\
\xi_{j}^{v}=\sqrt{\lambda_{j}\left(X_{v} M^{T} Y_{v} M\right)} & - \text { velocity singular values } \\
\xi_{j}^{p v}=\sqrt{\lambda_{j}\left(X_{p} M^{T} Y_{v} M\right)} & - \text { position-velocity singular values } \\
\xi_{j}^{v p}=\sqrt{\lambda_{j}\left(X_{v} Y_{p}\right)} & - \text { velocity-position singular values } \\
\text { [Reis/St.'08] }
\end{array}
$$

## Balancing

## First-order system:

$(E, A, B, C)$ is balanced, if $X=Y=\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{2 n}\right)$.

## Second-order system:

( $M, K, D, B_{2}, C_{1}, C_{2}$ ) is position balanced, if

$$
X_{p}=Y_{p}=\operatorname{diag}\left(\xi_{1}^{p}, \ldots, \xi_{n}^{p}\right) .
$$

( $M, K, D, B_{2}, C_{1}, C_{2}$ ) is velocity balanced, if $X_{v}=Y_{v}=\operatorname{diag}\left(\xi_{1}^{v}, \ldots, \xi_{n}^{v}\right)$.
( $M, K, D, B_{2}, C_{1}, C_{2}$ ) is position-velocity balanced, if $X_{p}=Y_{v}=\operatorname{diag}\left(\xi_{1}^{p v}, \ldots, \xi_{n}^{p v}\right)$.
( $M, K, D, B_{2}, C_{1}, C_{2}$ ) is velocity-position balanced, if $X_{v}=Y_{p}=\operatorname{diag}\left(\xi_{1}^{v p}, \ldots, \xi_{n}^{v p}\right)$.

## Second-order balanced truncation (SOBTp)

1. Compute $X=\left[\begin{array}{cc}X_{p} & X_{12} \\ X_{12}^{T} & X_{v}\end{array}\right], Y=\left[\begin{array}{cc}Y_{p} & Y_{12} \\ Y_{12}^{T} & Y_{v}\end{array}\right] \left\lvert\, \begin{aligned} & X_{p}=R_{p} R_{p}^{T}, \\ & Y_{p}=L_{p} L_{p}^{T}, \\ & Y_{v}=R_{v} R_{v}^{T} \\ & Y_{v}^{T}\end{aligned}\right.$
2. Compute the SVD $R_{p}^{T} L_{p}=\left[U_{p 1}, U_{p 2}\right]\left[\begin{array}{ll}\Sigma_{p 1} & \\ & \Sigma_{p 2}\end{array}\right]\left[\begin{array}{ll}V_{p 1}, & V_{p 2}\end{array}\right]^{T}$, where $\quad \Sigma_{p 1}=\operatorname{diag}\left(\xi_{1}^{p}, \ldots, \xi_{\ell}^{p}\right) \quad$ and $\quad \Sigma_{p 2}=\operatorname{diag}\left(\xi_{\ell+1}^{p}, \ldots, \xi_{n}^{p}\right)$;
3. Compute the SVD $R_{v}^{T} M^{T} L_{v}=\left[U_{v 1}, U_{v 2}\right]\left[\begin{array}{lll}\Sigma_{v 1} & \\ & \Sigma_{v 2}\end{array}\right]\left[V_{v 1}, V_{v 2}\right]^{T}$, where $\quad \Sigma_{v 1}=\operatorname{diag}\left(\xi_{1}^{v}, \ldots, \xi_{\ell}^{v}\right) \quad$ and $\quad \Sigma_{v 2}=\operatorname{diag}\left(\xi_{\ell+1}^{v}, \ldots, \xi_{n}^{v}\right)$;
4. Compute $\tilde{M}=\tilde{W}^{T} M \tilde{T}, \tilde{D}=\tilde{W}^{T} D \tilde{T}, \tilde{K}=\tilde{W}^{T} K \tilde{T}, \tilde{B}_{2}=\tilde{W}^{T} B_{2}$, $\tilde{C}_{1}=C_{1} \tilde{T}, \quad \tilde{C}_{2}=C_{2} \tilde{T}$ with $\tilde{W}=L_{v} V_{v 1} \Sigma_{p 1}^{-1 / 2}, \quad \tilde{T}=R_{p} U_{p 1} \Sigma_{p 1}^{-1 / 2}$.

## Properties of the SOBT

- Stability is not necessarily preserved in the reduced model and, in general, no error bounds
- For symmetric second-order systems with
$M=M^{T}>0, D=D^{T}>0, K=K^{T}>0, B_{2}=C_{2}^{T}, C_{1}=0$, we have
- $\boldsymbol{G}(s)=\boldsymbol{G}^{T}(s)$
- $\lambda^{2} M+\lambda D+K$ is stable
- $X_{p}=Y_{v}$
- symmetry and stability are preserved
- no error bounds
- Position and velocity Graminas can be computed using the ADI method without explicit forming the double sized matrices
[Benner/Saak'11]


## Clamped beam model

## Conclusions

- Balanced truncation for DAEs
- proper and improper Gramians
- algebraic constraints are preserved
- exploiting the structure of system matrices for computing $P_{l}$ and $P_{r}$ and solving the Lyapunov equations
- other balancing techniques can also be extended to DAEs
[Reis/St.'10,11, Möckel/Reis/St.'11, Benner/St.'17]
- Balanced truncation for second-order systems
- position and velocity Gramians
- second-order structure is preserved
- stability is not always guaranteed
- no error bounds


## Outline

## Part I

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques


## Part II

- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems


## Part III

- Balanced truncation for parametric systems
- Related topics and open problems


## Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- reduced basis method for parametric Lyapunov equations
- parametric balanced truncation
- Related topics and open problems


## Model reduction problem

Given a large-scale parametric control system

where $E(p), A(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}, C(p) \in \mathbb{R}^{q \times n}, D(p) \in \mathbb{R}^{q \times m}$, $p \in \mathbb{P} \subset \mathbb{R}^{d}$, find a reduced-order model

$$
\longrightarrow \quad \begin{aligned}
\widetilde{E}(p) \dot{\tilde{x}}(t, p) & =\widetilde{A}(p) \widetilde{x}(t, p)+\widetilde{B}(p) u(t) \\
\widetilde{y}(t, p) & =\widetilde{C}(p) \widetilde{x}(t, p)+\widetilde{D}(p) u(t)
\end{aligned}
$$

where $\widetilde{E}(p), \widetilde{A}(p) \in \mathbb{R}^{\ell \times \ell}, \widetilde{B}(p) \in \mathbb{R}^{\ell \times m}, \widetilde{C}(p) \in \mathbb{R}^{q \times \ell}, \widetilde{D}(p) \in \mathbb{R}^{q \times m}$.

## Balanced truncation algorithm

1. Solve the parametric Lyapunov equations

$$
\begin{aligned}
& A(p) X(p) E^{T}(p)+E(p) X(p) A^{T}(p)=-B(p) B^{T}(p), \\
& A^{T}(p) Y(p) E(p)+E^{T}(p) Y(p) A(p)=-C^{T}(p) C(p)
\end{aligned}
$$

for $X(p) \approx \widetilde{R}(p) \widetilde{R}^{T}(p)$ and $Y(p) \approx \widetilde{L}(p) \widetilde{L}^{T}(p)$.
2. Compute the SVD

$$
\widetilde{L}^{T}(p) E(p) \widetilde{R}(p)=\left[U_{1}(p), U_{2}(p)\right]\left[\begin{array}{ll}
\Sigma_{1}(p) & \\
& \Sigma_{2}(p)
\end{array}\right]\left[\begin{array}{c}
V_{1}^{T}(p) \\
V_{2}^{T}(p)
\end{array}\right] .
$$

3. Compute $(\widetilde{E}(p), \widetilde{A}(p), \widetilde{B}(p), \widetilde{C}(p), \widetilde{D}(p))$ with

$$
\begin{array}{ll}
\widetilde{E}(p)=W^{T}(p) E(p) T(p), & \widetilde{A}(p)=W^{T}(p) A(p) T(p), \\
\widetilde{B}(p)=W^{T}(p) B(p), & \widetilde{C}(p)=C(p) T(p), \quad \widetilde{D}(p)=D(p), \\
W(p)=\widetilde{L}(p) U_{1}(p) \Sigma_{1}^{-1 / 2}(p), & T(p)=\widetilde{R}(p) V_{1}(p) \Sigma_{1}^{-1 / 2}(p) .
\end{array}
$$

## Parametric Lyapunov equations

- Lyapunov equation:

$$
-A(p) X(p) E^{T}(p)-E(p) X(p) A^{T}(p)=B(p) B^{T}(p)
$$

where $E(p), A(p), X(p) \in \mathbb{R}^{n \times n}, B(p) \in \mathbb{R}^{n \times m}$

- Operator equation:

$$
\mathcal{L}_{p}(X(p))=B(p) B^{T}(p),
$$

where $\mathcal{L}_{p}: \mathbb{S}_{+} \longrightarrow \mathbb{S}_{+}$is a Lyapunov operator

- Linear system:

$$
\boldsymbol{L}(p) \boldsymbol{x}(p)=\boldsymbol{b}(p),
$$

where $L(p)=-E(p) \otimes A(p)-A(p) \otimes E(p) \in \mathbb{R}^{n^{2} \times n^{2}}$,

$$
\boldsymbol{x}(p)=\operatorname{vec}(X(p)), \quad \boldsymbol{b}(p)=\operatorname{vec}\left(B(p) B^{T}(p)\right) \in \mathbb{R}^{n^{2}}
$$

## Reduced basis method: idea

Reduced basis method for $\mathcal{L}_{p}(X(p))=B(p) B^{T}(p)$

- Snapshots collection:
construct the reduced basis matrix $V_{k}=\left[Z_{1}, \ldots, Z_{k}\right]$, where $X\left(p_{j}\right) \approx Z_{j} Z_{j}^{T}$ solves $\mathcal{L}_{p_{j}}\left(X\left(p_{j}\right)\right)=B\left(p_{j}\right) B\left(p_{j}\right)^{T}$
- Galerkin projection:
approximate the solution $X(p) \approx V_{k} \widetilde{X}(p) V_{k}^{T}$, where $\widetilde{X}(p)$
solves $-\widetilde{A}(p) \widetilde{X}(p) \widetilde{E}^{T}(p)-\widetilde{E}(p) \widetilde{X}(p) \widetilde{A}^{T}(p)=\widetilde{B}(p) \widetilde{B}^{T}(p)$
with $\widetilde{E}(p)=V_{k}^{T} E(p) V_{k}, \widetilde{A}(p)=V_{k}^{T} A(p) V_{k}, \widetilde{B}(p)=V_{k}^{T} B(p)$


## Questions

- How to choose the parameters $p_{1}, \ldots, p_{k}$ ?
- How to estimate the error $\mathcal{E}_{k}(p)=X(p)-V_{k} \widetilde{X}(p) V_{k}^{T}$ ?
- How to make the computations efficient?


## Error estimation

Goal: estimate the error $\mathcal{E}_{k}(p)=X(p)-V_{k} \widetilde{X}(p) V_{k}^{T}$
Residual $\mathcal{R}_{k}(p):=B(p) B^{T}(p)-\mathcal{L}_{p}\left(V_{k} \widetilde{X}(p) V_{k}^{T}\right)=\mathcal{L}_{p}\left(\mathcal{E}_{k}(p)\right)$

- Error estimate

$$
\left\|\mathcal{E}_{k}(p)\right\|_{F} \leq\left\|\mathcal{L}_{p}^{-1}\right\|_{F}\left\|\mathcal{R}_{k}(p)\right\|_{F}=\frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha(p)}
$$

with $\alpha(p):=\left\|\mathcal{L}_{p}^{-1}\right\|_{F}^{-1}=\inf _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\min }(\mathbf{L}(p))$

- Effectivity of the error estimator

$$
\begin{aligned}
& \quad 1 \leq \frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha(p)\left\|\mathcal{E}_{k}(p)\right\|_{F}}=\frac{\| \mathcal{L}_{p}\left(\mathcal{E}_{k}(p) \|_{F}\right.}{\alpha(p)\left\|\mathcal{E}_{k}(p)\right\|_{F}} \leq \frac{\left\|\mathcal{L}_{p}\right\|_{F}}{\alpha(p)}=\frac{\gamma(p)}{\alpha(p)} \\
& \text { with } \gamma(p):=\left\|\mathcal{L}_{p}\right\|_{F}=\sup _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\max }(\mathbf{L}(p))
\end{aligned}
$$

## Error estimation

Goal: estimate the error $\mathcal{E}_{k}(p)=X(p)-V_{k} \widetilde{X}(p) V_{k}^{T}$
Residual $\mathcal{R}_{k}(p):=B(p) B^{T}(p)-\mathcal{L}_{p}\left(V_{k} \widetilde{X}(p) V_{k}^{T}\right)=\mathcal{L}_{p}\left(\mathcal{E}_{k}(p)\right)$

- Error estimate

$$
\left\|\mathcal{E}_{k}(p)\right\|_{F} \leq\left\|\mathcal{L}_{p}^{-1}\right\|_{F}\left\|\mathcal{R}_{k}(p)\right\|_{F}=\frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha(p)} \leq \frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha_{L B}(p)}=: \Delta_{k}(p)
$$

with $\alpha(p):=\left\|\mathcal{L}_{p}^{-1}\right\|_{F}^{-1}=\inf _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\min }(\mathbf{L}(p)) \geq \alpha_{L B}(p)$

- Effectivity of the error estimator

$$
\begin{aligned}
& \quad 1 \leq \frac{\Delta_{k}(p)}{\left\|\mathcal{E}_{k}(p)\right\|_{F}}=\frac{\left\|\mathcal{R}_{k}(p)\right\|_{F}}{\alpha_{\mathrm{LB}}(p)\left\|\mathcal{E}_{k}(p)\right\|_{F}} \leq \frac{\gamma(p)}{\alpha_{L B}(p)} \leq \frac{\gamma_{U B}(p)}{\alpha_{L B}(p)} \\
& \text { with } \gamma(p):=\left\|\mathcal{L}_{p}\right\|_{F}=\sup _{\|X\|_{F}=1}\left\|\mathcal{L}_{p}(X)\right\|_{F}=\sigma_{\max }(\mathbf{L}(p)) \leq \gamma_{U B}(p)
\end{aligned}
$$

## Construction of the reduced basis

## Greedy algorithm

Input: tolerance tol, training set $\mathbb{P}_{\text {train }} \subset \mathbb{P}$, initial parameter $p_{1} \in \mathbb{P}$

- Solve $\mathcal{L}_{p_{1}}\left(X\left(p_{1}\right)\right)=B\left(p_{1}\right) B^{T}\left(p_{1}\right)$ for $X\left(p_{1}\right) \approx Z_{1} Z_{1}^{T}, \quad Z_{1} \in \mathbb{R}^{n \times r_{1}}$
- Set $k=2, \Delta_{1}^{\max }=1$ and $V_{1}=Z_{1}$
- while $\Delta_{k-1}^{\max } \geq t o l$

$$
\begin{aligned}
& p_{k}=\arg \max _{p \in \mathbb{P}_{\text {train }}} \Delta_{k-1}(p) \quad \% \Delta_{k-1}(p)=\frac{\left\|\mathcal{R}_{k-1}(p)\right\|_{F}}{\alpha_{L B}(p)} \\
& \Delta_{k}^{\max }=\Delta_{k-1}\left(p_{k}\right) \\
& \text { solve } \mathcal{L}_{p_{k}}\left(X\left(p_{k}\right)\right)=B\left(p_{k}\right) B^{T}\left(p_{k}\right) \text { for } X\left(p_{k}\right) \approx Z_{k} Z_{k}^{T}, Z_{k} \in \mathbb{R}^{n \times r_{k}} \\
& V_{k}=\left[V_{k-1}, Z_{k}\right] \\
& k \leftarrow k+1
\end{aligned}
$$

end

## Offline-online decomposition

Assumption: affine parameter dependence

$$
\begin{aligned}
& E(p)=\sum_{i=1}^{n_{E}} \theta_{i}^{E}(p) E_{i}, \quad A(p)=\sum_{i=1}^{n_{A}} \theta_{i}^{A}(p) A_{i}, \quad B(p)=\sum_{i=1}^{n_{B}} \theta_{i}^{B}(p) B_{i} \\
& \hookrightarrow \\
& \mathcal{L}_{p}(X)=\sum_{i=1}^{n_{E}} \sum_{j=1}^{n_{A}} \theta_{i}^{E}(p) \theta_{j}^{A}(p) \mathcal{L}_{i j}(X), \quad \mathcal{L}_{i j}(X)=-A_{j} X E_{i}^{T}-E_{i} X A_{j}^{T}, \\
& B(p) B^{T}(p)=\sum_{i=1}^{n_{B}} \sum_{j=1}^{n_{B}} \theta_{i}^{B}(p) \theta_{j}^{B}(p) B_{i} B_{j}^{T}
\end{aligned}
$$

Offline: compute the reduced basis matrix $V_{k}=\left[Z_{1}, \ldots, Z_{k}\right] \in \mathbb{R}^{n \times r}$. Online: for $p \in \mathbb{P}$, compute $X(p) \approx V_{k} \widetilde{X}(p) V_{k}^{T}$, where $\widetilde{X}(p)$ solves

$$
-\widetilde{A}(p) \widetilde{X}(p) \widetilde{E}^{T}(p)-\widetilde{E}(p) \widetilde{X}(p) \widetilde{A}^{T}(p)=\widetilde{B}(p) \widetilde{B}^{T}(p)
$$

with

## Computation of the residual norm

$$
\begin{aligned}
\left\|\mathcal{R}_{k}(p)\right\|_{F}^{2} & =\left\|B(p) B^{T}(p)-\mathcal{L}_{p}\left(V_{k} \widetilde{X}(p) V_{k}^{T}\right)\right\|_{F}^{2} \\
& =\sum_{i, j=1}^{n_{B}} \sum_{f, g=1}^{n_{B}} \theta_{i j f g}^{B}(p) \operatorname{trace}\left(\left(B_{i}^{T} B_{f}\right)\left(B_{g}^{T} B_{j}\right)\right) \\
& +4 \sum_{i, j=1}^{n_{B}} \sum_{f=1}^{n_{E}} \sum_{g=1}^{n_{A}} \theta_{i j f g}^{A E B}(p) \operatorname{trace}\left(B_{i}^{T}\left(E_{f} V_{k}\right) \widetilde{X}(p)\left(A_{g} V_{k}\right)^{T} B_{j}\right) \\
& +2 \sum_{i, f=1}^{n_{E}} \sum_{j, g=1}^{n_{A}} \theta_{i j f g}^{A E}(p) \operatorname{trace}\left(\left(E_{f} V_{k}\right)^{T}\left(E_{i} V_{k}\right) \widetilde{X}(p)\left(A_{j} V_{k}\right)^{T}\left(A_{g} V_{k}\right) \widetilde{X}(p)\right) \\
& +2 \sum_{i, f=1}^{n_{E}} \sum_{j, g=1}^{n_{A}} \theta_{i j f g}^{A E}(p) \operatorname{trace}\left(\left(E_{f} V_{k}\right)^{T}\left(A_{j} V_{k}\right) \widetilde{X}(p)\left(E_{i} V_{k}\right)^{T}\left(A_{g} V_{k}\right) \widetilde{X}(p)\right)
\end{aligned}
$$

with $\quad \theta_{i j f g}^{B}(p)=\theta_{i}^{B}(p) \theta_{j}^{B}(p) \theta_{f}^{B}(p) \theta_{g}^{B}(p), \quad \theta_{i j f g}^{A E B}(p)=\theta_{i}^{B}(p) \theta_{j}^{B}(p) \theta_{f}^{E}(p) \theta_{g}^{A}(p)$,

$$
\theta_{i j f g}^{A E}(p)=\theta_{i}^{E}(p) \theta_{j}^{A}(p) \theta_{f}^{E}(p) \theta_{g}^{A}(p) .
$$

## Error estimation: min- $\theta$ approach

Assumption: $E(p)=E^{T}(p)>0, \quad A(p)+A^{T}(p)<0$ for all $p \in \mathbb{P}$ (e.g., $\theta_{i}^{E}(p)>0, \quad E_{i}=E_{i}^{T} \geq 0, \bigcap \operatorname{ker}\left(E_{i}\right)=\{0\}$ and

$$
\left.\theta_{i}^{A}(p)>0, \quad A_{i}+A_{i}^{T} \leq 0, \quad \bigcap \operatorname{ker}\left(A_{i}+A_{i}^{T}\right)=\{0\}\right)
$$

Let $\hat{p} \in \mathbb{P}$ and

$$
\theta_{\min }^{\hat{p}}(p)=\min _{\substack{i=1, \ldots, n_{E} \\ j=1, \ldots, n_{A}}} \frac{\theta_{i}^{E}(p) \theta_{j}^{A}(p)}{\theta_{i}^{E}(\hat{p}) \theta_{j}^{A}(\hat{p})}, \quad \theta_{\max }^{\hat{p}}(p)=\max _{\substack{i=1, \ldots, n_{E} \\ j=1, \ldots, n_{A}}} \frac{\theta_{i}^{E}(p) \theta_{j}^{A}(p)}{\theta_{i}^{E}(\hat{p}) \theta_{j}^{A}(\hat{p})} .
$$

Then $\alpha(p) \geq \theta_{\min }^{\hat{p}}(p) \lambda_{\min }\left(-A(\hat{p})-A^{T}(\hat{p})\right) \lambda_{\min }(E(\hat{p}))=: \alpha_{L B}(p)$,

$$
\gamma(p) \leq \theta_{\max }^{\hat{p}}(p) \lambda_{\max }\left(-A(\hat{p})-A^{T}(\hat{p})\right) \lambda_{\max }(E(\hat{p}))=: \gamma_{U B}(p)
$$

for all $p \in \mathbb{P}$.

## Parametric balanced truncation

Offline phase: compute the reduced basis matrices $V_{X}$ and $V_{Y}$ for the controllability and observability Lyapunov equations; compute all parameter-independent matrices.
Online phase: for given $p \in \mathbb{P}$,

- solve the reduced Lyapunov equations

$$
\begin{aligned}
& -\widetilde{A}_{X}(p) \widetilde{X}(p) \widetilde{E}_{X}^{T}(p)-\widetilde{E}_{X}(p) \widetilde{X}(p) \widetilde{A}_{X}^{T}(p)=\widetilde{B}(p) \widetilde{B}^{T}(p), \\
& -\widetilde{A}_{Y}^{T}(p) \widetilde{Y}(p) \widetilde{E}_{Y}(p)-\widetilde{E}_{Y}^{T}(p) \widetilde{Y}(p) \widetilde{A}_{Y}(p)=\widetilde{C}^{T}(p) \widetilde{C}(p)
\end{aligned}
$$

with $\quad \widetilde{E}_{X}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) V_{X}^{T} E_{j} V_{X}, \quad \widetilde{A}_{X}(p)=\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) V_{X}^{T} A_{j} V_{X}$,

$$
\begin{array}{ll}
\widetilde{E}_{Y}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) V_{Y}^{T} E_{j} V_{Y}, & \widetilde{A}_{Y}(p)=\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) V_{Y}^{T} A_{j} V_{Y}, \\
\widetilde{B}(p)=\sum_{j=1}^{n_{B}} \theta_{j}^{B}(p) V_{X}^{T} B_{j}, & \widetilde{C}(p)=\sum_{j=1}^{n_{C}} \theta_{j}^{C}(p) C_{j} V_{Y} .
\end{array}
$$

## Parametric balanced truncation

$\hookrightarrow$ Gramians $X(p) \approx V_{X} \widetilde{X}(p) V_{X}^{T}=V_{X} Z_{X}(p) Z_{X}^{T}(p) V_{X}^{T}$

$$
Y(p) \approx V_{Y} \widetilde{Y}(p) V_{Y}^{T}=V_{Y} Z_{Y}(p) Z_{Y}^{T}(p) V_{Y}^{T}
$$

- Compute the SVD

$$
\begin{aligned}
Z_{Y}^{T}(p) V_{Y}^{T} E(p) V_{X} Z_{X}(p) & =\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) Z_{Y}^{T}(p) V_{Y}^{T} E_{j} V_{X} Z_{X}(p) \\
& =\left[U_{1}(p), U_{2}(p)\right]\left[\begin{array}{cc}
\Sigma_{1}(p) & 0 \\
0 & \Sigma_{2}(p)
\end{array}\right]\left[\begin{array}{l}
V_{1}^{T}(p) \\
V_{2}^{T}(p)
\end{array}\right] .
\end{aligned}
$$

- Compute the reduced model $(\widetilde{E}(p), \widetilde{A}(p), \widetilde{B}(p), \widetilde{C}(p), D(p))$ with

$$
\begin{aligned}
& \widetilde{E}(p)=\sum_{j=1}^{n_{E}} \theta_{j}^{E}(p) W^{T}(p) V_{Y}^{T} E_{j} V_{X} T(p), \quad \widetilde{B}(p)=\sum_{j=1}^{n_{B}} \theta_{j}^{B}(p) W^{T}(p) V_{Y}^{T} B_{j}, \\
& \widetilde{A}(p)=\sum_{j=1}^{n_{A}} \theta_{j}^{A}(p) W^{T}(p) V_{Y}^{T} A_{j} V_{X} T(p), \quad \widetilde{C}(p)=\sum_{j=1}^{n_{C}} \theta_{j}^{C}(p) C_{j} V_{X} T(p), \\
& T(p)=Z_{X}(p) V_{1}(p) \Sigma_{1}(p)^{-1 / 2}, \quad W(p)=Z_{Y}(p) U_{1}(p) \Sigma_{1}(p)^{-1 / 2} .
\end{aligned}
$$

## Properties

- Preservation of stability
- Computable error bounds
- Approximation does not rely on solution snapshots and is independent of the training input
- Other error estimation techniques can be used (e.g., successive constraints method)
- Reduced basis method for parametric Riccati equations
[Haasdonk/Schmidt'15]


## Example: anemometer



## Mathematical model:

$\rho c \frac{\partial T}{\partial t}=\nabla \cdot \kappa \nabla T-\rho c v \cdot \nabla T+\dot{q}$
boundary / initial conditions

FEM model: $\quad E(p) \dot{x}=A(p) x+B u$

$$
y=C x
$$

with $E(p)=E_{1}+p_{1} E_{2}, \quad A(p)=A_{1}+p_{2} A_{2}+p_{3} A_{3} \in \mathbb{R}^{n \times n}, \quad p=\left[\begin{array}{c}c_{f} \\ \kappa_{f} \\ c_{f} v\end{array}\right]$,

$$
B, C^{T} \in \mathbb{R}^{n}, \quad n=29008
$$

[Moosmann’07, MOR Wiki]

## Example: anemometer

$\mathbb{P}_{\text {train }}=\{10000$ random points $\}, 20$ Greedy iterations
$\mathbb{P}_{\text {test }}=\{50$ random points $\}$


## Example: anemometer




## Outline

- Model order reduction problem
- Balanced truncation model reduction
- Balancing-related model reduction techniques
- Balanced truncation for differential-algebraic equations
- Balanced truncation for second-order systems
- Balanced truncation for parametric systems
- Related topics and open problems
- Balanced truncation for linear time-varying systems
- Balanced truncation for bilinear systems
- Balanced truncation for quadratic-bilinear systems
- Balanced truncation for nonlinear systems
- Balanced truncation for infinite-dimensional systems


## BT for linear time-varying systems

- For linear time-varying systems

$$
\begin{array}{ll}
\dot{x}(t) & =A(t) x(t)+B(t) u(t), \quad t \in[0, T], \\
y(t)=C(t) x(t)+D(t) u(t),
\end{array}
$$

the Gramians satisfy the Lyapunov differential equations

$$
\begin{aligned}
\dot{X}(t) & =A(t) X(t)+X(t) A^{T}(t)+B(t) B^{T}(t), X(0)=0, \\
-\dot{Y}(t) & =A^{T}(t) Y(t)+Y(t) A(t)+C^{T}(t) C(t), \quad Y(T)=0
\end{aligned}
$$

[Shokoohi/Silverman/Van Dooren'83, Sandberg'02]
$\hookrightarrow$ use the BDF or Rosenbrock method combined with the $L D L^{T}$-type ADI or Krylov subspace methods [Lang/Saak/St.'16]

- projection matrices are time-dependent
- zero initial and final conditions for the Gramians lead to zero initial and final reduced state


## BT for bilinear systems

- For bilinear systems
[Benner/Damm'11, Benner/Goyal/Redmann'16]

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+\sum_{k=1}^{m} N_{k} x(t) u_{k}(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

the Gramians satisfy the generalized Lyapunov equations

$$
\begin{aligned}
& A X+X A^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=-B B^{T} \\
& A^{T} Y+Y A+\sum_{k=1}^{m} N_{k}^{T} Y N_{k}=-C^{T} C
\end{aligned}
$$

$\hookrightarrow$ use the ADI or Krylov subspace methods
$\hookrightarrow\left(W^{T} A T, W^{T} N_{1} T, \ldots, W^{T} N_{m} T, W^{T} B, C T, D\right)$

- energy functionals: $E_{u}\left(x_{0}\right) \geq x_{0}^{T} X^{-1} x_{0}, E_{y}\left(x_{0}\right) \leq x_{0}^{T} Y x_{0}, x_{0} \in \mathcal{B}(0)$
- computationally expensive $\hookrightarrow$ use truncated Gramians
- no error bounds


## BT for quadratic-bilinear systems

- For quadratic-bilinear systems

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+H(x(t) \otimes x(t))+\sum_{k=1}^{m} N_{k} x(t) u_{k}(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

the Gramians satisfy the generalized Lyapunov equations

$$
\begin{aligned}
& A X+X A^{T}+H(X \otimes X) H^{T}+\sum_{k=1}^{m} N_{k} X N_{k}^{T}=-B B^{T}, \\
& A^{T} Y+Y A+\left(H^{(2)}\right)^{T}(X \otimes Y) H^{(2)}+\sum_{k=1}^{m} N_{k}^{T} Y N_{k}=-C^{T} C .
\end{aligned}
$$

$\hookrightarrow$ use the fix point iteration combined with the ADI method
$\hookrightarrow\left(W^{T} A T, W^{T} H(T \otimes T), W^{T} N_{1} T, \ldots, W^{T} N_{m} T, W^{T} B, C T, D\right)$

- energy functionals: $E_{u}\left(x_{0}\right) \geq x_{0}^{T} X^{-1} x_{0}, E_{y}\left(x_{0}\right) \leq x_{0}^{T} Y x_{0}, x_{0} \in \mathcal{B}(0)$
- computationally expensive $\hookrightarrow$ use truncated Gramians
- no error bounds


## BT for nonlinear systems

- For nonlinear systems
[Scherpen'94, Fujimoto/Scherpen'10]

$$
\begin{aligned}
\dot{x}(t) & =f(x(t))+g(x(t)) u(t), \\
y(t) & =h(x(t)),
\end{aligned}
$$

the input and output energy functionals $E_{u}\left(x_{0}\right)$ and $E_{y}\left(x_{0}\right)$ satisfy the partial differential equations

$$
\begin{aligned}
& \frac{\partial E_{c}}{\partial x} f(x)+\frac{1}{4} \frac{\partial E_{c}}{\partial x} g(x) g^{T}(x) \frac{\partial^{T} E_{c}}{\partial x}=0, \quad E_{c}(0)=0 \\
& \frac{\partial E_{o}}{\partial x} f(x)+h(x) h^{T}(x)=0, \quad E_{o}(0)=0
\end{aligned}
$$

- computationally very expensive


## BT for infinite-dimensional systems

- For infinite-dimensional systems

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

with $A: \mathcal{D}(A) \subset \mathcal{X} \rightarrow \mathcal{X}, B: \mathcal{U} \rightarrow \mathcal{D}\left(A^{*}\right)^{\prime}, C: \mathcal{X} \rightarrow \mathcal{Y}$, $D: \mathcal{U} \rightarrow \mathcal{Y}$, where $\mathcal{U}, \mathcal{X}$ and $\mathcal{Y}$ are Hilbert spaces, the Gramians satisfy the operator Lyapunov equations

$$
\begin{array}{ll}
2 \operatorname{Re}\left\langle X v, A^{*} v\right\rangle_{\mathcal{X}}+\left\|B^{\prime} v\right\|_{\mathcal{U}}^{2}=0 & \text { for all } v \in \mathcal{D}\left(A^{*}\right), \\
2 \operatorname{Re}\langle A v, Y v\rangle_{\mathcal{X}}+\|C v\|_{\mathcal{Y}}^{2}=0 & \text { for all } v \in \mathcal{D}(A) .
\end{array}
$$

[Glover/Curtain/Partingto'88, Guiver/Opmeer'13, Reis/Selig'14]
$\hookrightarrow$ use the finite-rank ADI iteration
[Reis/Opmeer/Wollner'13]

- error bound $\|\boldsymbol{G}-\widetilde{\boldsymbol{G}}\|_{\mathcal{H}_{\infty}} \leq 2 \sum_{j=\ell+1}^{\infty} \xi_{j}$


## Conclusion

- General framework for balanced truncation model reduction
- input and output energy functionals
- controllability and observability Gramians
- (Hankel) singular values
- balanced realization
- Properties
- preservation of physical properties
- computable error bounds
- independence of the control
- Numerical solution of Lyapunov, Riccati, Lur'e equations


## References

- P. Benner, T. Damm. Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM J. Control Optim., 49(2):686-711, 2011.
- P. Benner, P. Goyal. Balanced truncation model order reduction for quadratic-bilinear control systems. arXiv Preprint arXiv:1705.00160, April 2017.
- P. Benner, P. Goyal, M. Redmann. Truncated Gramians for bilinear systems and their advantages in model order reduction. In P. Benner, M. Ohlberger, T. Patera, G. Rozza, K. Urban, eds., Model Reduction of Parametrized Systems, Springer International Publishing, 2017.
- P. Benner, P. Kürschner, J. Saak. Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. ETNA, 43:142-162, 2014.
- P. Benner, J. Saak. Efficient balancing-based MOR for large-scale second-order systems. Math. Comput. Model. Dyn. Syst., 17(2):123-143, 2011.
- P. Benner, A. Schneider. Balanced truncation model order reduction for LTI systems with many inputs or outputs. Proc. of the 19th Intern. Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), 5-9 July, 2010, Budapest, Hungary, 2010.
- P. Benner, T. Stykel. Model order reduction of differential-algebraic equations: a survey. In Surveys in Differential-Algebraic Equations IV. A. Ilchmann, T. Reis, eds., Springer, 2017, pp. 107-160.
- D. Enns. Model reduction with balanced realization: an error bound and a frequency weighted generalization. Proc. of the 23rd IEEE CDC, pp. 127-132, 1984.
- C. Guiver, M.R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Math. Control Related Fields, 3(1):83-119, 2013.


## References

- K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their $L^{\infty}$-error bounds. Internat. J. Control, 39(6):1115-1193, 1984.
- M. Green, M.: Balanced stochastic realizations. Linear Algebra Appl., 98:211-247, 1988.
- J. Kerler-Back, T. Stykel. Model reduction for linear and nonlinear magneto-quasistatic equations. Internat. J. Numer. Methods Engrg., to appear, DOI: 10.1002/nme.5507.
- J. Möckel, T. Reis, T. Stykel. Linear-quadratic Gaussian balancing for model reduction of differential-algebraic systems. Internat. J. Control, 84(10):1627-1643, 2011.
- MOR Wiki http://modelreduction.org
- D.G. Meyer, S. Srinivasan. Balancing and model reduction for second-order form linear systems. IEEE Trans. Automat. Control, 41(11):1632-1644, 1996.
- B.C. Moore. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automat. Control, AC-26(1):17-32, 1981.
- C.T. Mullis, R.A. Roberts. Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans. Circuits Syst., CAS-23(9):551-562, 1976.
- T. Penzl. A cyclic low-rank Smith method for large sparse Lyapunov Equations. SIAM J. Sci. Comp., 21 (4):1401-1418, 1999/2000.
- L. Pernebo, L.M. Silverman. Model reduction via balanced state space representation. IEEE Trans. Automat. Control, AC-27:382-387, 1982.
- L.R. Petzold. Differential/algebraic equations are not ODE's. SIAM J. Sci. Stat. Comput., 3(3):367-384, 1982.
- R. Ober. Balanced parametrization of classes of linear systems. SIAM J. Control Optim., 29(6):1251-1287, 1991.


## References

- Oberwolfach Benchmark Collection
http://simulation.uni-freiburg.de/downloads/benchmark
- P. Opdenacker, E. Jonckheere. A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst., 35(2):184-189, 1988.
- T. Reis, T. Stykel. Balanced truncation model reduction of second-order systems. Math.

Comput. Model. Dyn. Syst., 14(5):391-406, 2008.

- T. Reis, T. Stykel. Positive real and bounded real balancing for model reduction of descriptor systems. Internat. J. Control, 83(1):74-88, 2010.
- T. Reis, T. Stykel. PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 29(9):1354-1367, 2010.
- J.M.A. Scherpen. Balancing for Nonlinear Systems. Ph.D. thesis, University of Twente, 1994.
- R.A. Smith. Matrix equation $X A+B X=C$. SIAM J. Appl. Math., 16:198-201, 1968.
- N.T. Son, T. Stykel. Solving parameter-dependent Lyapunov equations using the reduced basis method with application to parametric model order reduction. SIAM J. Matrix Anal. Appl., 38(2), 2017, pp. 478-504.
- T. Stykel. Gramian-based model reduction for descriptor systems. Math. Control Signals Systems, 16:297-319, 2004.
- T. Stykel. Low-rank iterative methods for projected generalized Lyapunov equations. ETNA, 30:187-202, 2008.
- E.L. Wachspress. The ADI minimax problem for complex spectra. Appl. Math. Lett., 1:311-314, 1988.

