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My MOR background

A control systems perspective:

• Long term: Theory for nonlinear balancing, realization theory, and nonlinear
balanced truncation, around equilibrium points, around trajectories, related to
stability and incremental stability, etc. Computationally not useful for very
high order systems yet, need for numerical collaborators.

• Some balancing of linear systems with structure preservation.

• Recent: Reduction of linear networks, clustering based, structure preserving
(first order and second order networks) and balancing, work on poster with
Xiaodong Cheng.

• Recent: singularly perturbed systems, topic of today.
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Regular perturbation

Consider the algebraic problem

x2 + εx − 1 = 0, 0 < ε� 1.

It has solutions

x1,2 =
−ε±

√
4 + ε2

2
= ±1 + O(ε)

The limit equation is
x2 − 1 = 0

which has solutions x1,2 = ±1.

“The solutions of the limit equation are
ε-close to those of the original problem”
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Singular perturbation

Consider the algebraic problem

εx2 + x − 1 = 0, 0 < ε� 1.

It has solutions

x1,2 =
−1±

√
4ε+ 1

2ε
∈ O(1/ε)

The limit equation is
x − 1 = 0

which has (one) solution x = 1.

“The solutions of the limit equation are
not close to those of the original problem”
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Motivation

Relevant considerations for differential equations with various time-scales. In
many applications, e.g., energy grids:
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Singularly perturbed ODEs (a.k.a. Slow-Fast Systems)

ẋ = f (x , z , ε)

εż = g(x , z , ε)

x ′ = εf (x , z , ε)

z ′ = g(x , z , ε)

ẋ = f (x , z , 0)

0 = g(x , z , 0)

x ′ = 0

z ′ = g(x , z , 0)

τ =
t

ε

0 < ε� 1

ε→ 0 ε→ 0

S

critical manifold

slow fast

DAE layer
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Normal hyperbolicity

Definition (Critical manifold)

S = {(x , z) ∈ X × Z | g(x , z , 0) = 0}

S is said to be Normally Hyperbolic if spec

{
∂g

∂z
(x , z , 0)

}
has nonzero real part.

If S is NH, then ∃ h0(x) such that locally1

S = {(x , z) ∈ X × Z | z = h0(x)}

Then, the flow along S is given by the reduced slow system

ẋ = f (x , h0(x), 0)
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Geometric Singular Perturbation Theory N. Fenichel, 1979

Let S̄ be NH and S ⊆ S̄ be compact. Then, for ε > 0 sufficiently small

• ∃ an invariant manifold Sε diffeomorphic to S
• The flow along Sε is ε-close to the flow along S

exp. decay O(e−c/ε)

S

S

S

Sε
O(ε)

“NHIMs persist under small perturbations”
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Application to control - Composite control Kokotović et al.

Relies on Tikhonov’s theorem (1935).

ẋ = f (x , z , ε, u)

εż = g(x , z , ε, u)

x ′ = εf (x , z , ε, u)

z ′ = g(x , z , ε, u)

ẋ = f (x , z , 0, u)

0 = g(x , z , 0, u)

x ′ = 0

z ′ = g(x , z , 0, u)

Let S be NH and u = us(x) + uf (x , z), uf (x , z)|S = 0

ẋ = fr (x , z , us) z ′ = ḡx(z , uf )

Stabilize reduced subsystems and combine for overall control.

However, so far model order reduction and composite control only hold around
hyperbolic points. Furthermore, properties as passivity not always preserved.
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ẋ = f (x , z , 0, u)

0 = g(x , z , 0, u)

x ′ = 0

z ′ = g(x , z , 0, u)

Let S be NH and u = us(x) + uf (x , z), uf (x , z)|S = 0

ẋ = fr (x , z , us) z ′ = ḡx(z , uf )
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Motivation
Flexible-joint robots are a standard example of two time scale mechanical systems

Goal: to follow a desired trajectory with only position measurements
Assumption: |K | is large
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Flexible-joint manipulator

Joint flexibility can be attributed to:

• Harmonic drives

• Transmission belts

• Long shafts

• Robotic hands

• Variable stiffness drives for
safety/interaction purposes

•
...

Some preliminary remarks:

• Flexible-joint robots have been
studied for many years

• Port-Hamiltonian systems + sin-
gular perturbations have a wide
range of applicability
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Port-Hamiltonian systems Maschke, van der Schaft, 1992

General description in x coordinates on some n dimensional manifold:

ẋ = (J(x)− R(x))
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x)

where
J(x) = −JT (x): interconnection structure (related to Dirac structures)
R(x) = RT (x) ≥ 0): damping
H(x) > 0 : is the Hamiltonian (total energy).

Nice property: Ḣ = −∂TH
∂x (x)R(x)∂H

∂x (x) + yTu ≤ yTu

Passivity! Very useful for Passivity Based Control, control based on the
port-Hamiltonian structure (e.g., energy shaping and damping injection).

Jacquelien Scherpen Slow Fast Control Systems Durham, 15 August 2017



Port-Hamiltonian systems Maschke, van der Schaft, 1992

General description in x coordinates on some n dimensional manifold:
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Standard mechanical systems in the PH framework

Generalized coordinates q, generalized momenta p. Hamiltonian:

H(q, p) =
1

2
pTM−1(q)p + V (q)

V (q) > 0 potential energy, M(q) = MT (q) > 0 mass inertia matrix.

Model without damping:

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H
∂q

(q, p) + B(x)u

y = BT (x)
∂H

∂p
(q, p)

Input is a generalized force, output is a generalized velocity, uT y is the supplied
power.
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Port-Hamiltonian model of a flexible-joint robot 1/3

q1 ∈ Rn links’ coordinate, q2 ∈ Rn motors’ coordinate

• Link’s kinetic energy:

Kl(q1, q̇1) =
1

2
q̇T1 Ml(q1)q̇1

• Motor’s kinetic energy:

Km(q̇2) =
1

2
q̇T2 I q̇2

• Potential energy due to gravity

Pg (q1) =
n∑

i=1

(Pg ,li (q1) + Pg ,mi (q1))

• Potential energy due to joint stiff-
ness

Ps(q1, q2) =
1

2
(q1−q2)TK (q1−q2),

where K ∈ O(1/ε).
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Port-Hamiltonian model of a flexible-joint robot 2/3

Total energy

H =
1

2
q̇T1 Ml(q1)q̇1 +

1

2
q̇T2 I q̇2 + Pg (q1) +

1

2ε
(q1 − q2)T (q1 − q2)

Let

εz = q1 − q2.

Then

H̄ =
1

2
q̇T1 (Ml(q1) + I )q̇1 + Pg (q1) + ε

(
−q̇T1 I ż +

1

2
εżT I ż +

1

2
zT z

)
Rigid robot
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Port-Hamiltonian model of a flexible-joint robot 3/3

Let q = (q1, z), H̄ can be written as

H̄ =
1

2
pTMε

−1(q)p + Vε(q),

where

Mε =

[
Ml(q1) + I −εI
−εI ε2I

]
, p = Mεq̇, Vε(q) = Pg (q1) +

1

2
εzT z

Major obstruction
for good model.

What is good model? Consider

[
ẋ1

εẋ2

]
= J(x , ε)

∂H

∂x
+ G (x , ε)u

[
ẋ1

0

]
=

[
J̄11 J̄12

J̄21 J̄22

] ∂H̄
∂x1

∂H̄
∂x2

+

[
Ḡ1

Ḡ2

]
u

NH implies x2 = h0(x1, u). Then, reduced system is not necessarily in
port-Hamiltonian format.

Solution: use canonical change of coordinates23 to obtain

H̄ε (q̄, p̄) =
1

2
p̄>p̄ + V̄ε (q̄)
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3Fujimoto, K. and Sugie, T. (2001).
3Viola, G., Ortega, R., Banavar, R., Acosta, J.A., and Astolfi, A. (2007).
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Reduced models

Reduced slow (rigid):[ ˙̄q1

˙̄p1

]
=

 0 t−T1

−t−1
1 j1

∂H0

∂q̄1

∂H0

∂p̄1

+

[
0n×n

g1(q̄1, p̄1)

]
us

Reduced fast: [
q̄′2

p̄′2

]
=

[
0 t−T4

−t−1
4 j32

] ∂H̄
∂q̄2

∂H̄
∂p̄2

+

[
0n×n

g2(α, q̄2, p̄2)

]
uf

with
ti = ti (q̄k), j• = j•(q̄k , p̄k), k = 1, 2.

Both reduced systems are port-Hamiltonian
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Simulation
Control of a 2DOF flexible joint robot with only position measurements

x

y

q1
2

q2
2

q1
1

q2
1

Goal: To make both links follow
the desired trajectory

qd = 0.1 + 0.05 sin(t)

with only position measure-
mentsa.

aDirksz and Scherpen (2013).
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Composite control of the flexible model4

u = us + uf ,

where us is given by the existing con-
trol, and uf stabilizes the fast subsys-
tem with reference

zd =
1

ε
(q1,d − q2,d) = (0, 0).

uf = −Lpz − Lc(z − zc)

żc = L−1
d Lc(z − zc)

0 0.5 1 1.5 2
t

-0.15

-0.1

-0.05

0

0.05

q1
1 ! q1

1;d

q2
1 ! q2

1;d

q1
1 ! q1

2

q2
1 ! q2

2

0 0.5 1 1.5 2
t

-10

-5

0

5 #10 -6

(q1
1 ! q1

2)

(q2
1 ! q2

2)

4 Jardón-Kojakhmetov, Munoz-Arias, Scherpen, 2016.
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Non-hyperbolic points
Examples

The fold

ẋ = 1

εż = −(z2 + x)

The cusp

ẋ1 = 1

ẋ2 = 0

εż = −(z3 + x2z + x1)
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Why are non-hyperbolic points interesting?

• They are responsible for relaxation oscillations

• They are responsible for hidden effects (canards)

• They model complicated phenomena (mixed-mode oscillations, canards
explosion)

• They appear in many mathematical models of

• Electric circuits (van der Pol oscillator)
• Biology (cell division, heartbeat)
• Chemistry (biochemical reactions)
• Neuroscience (nerve impulse)
• Classical mechanics
...
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van der Pol oscillator

Source: http://www.scholarpedia.org/article/Van_der_

Pol_oscillator

W

V

S
r

s

r ≡ hyperbolic point  “well understood”

s ≡ non-hyperbolic point  “?”

Goal: to stabilize a non-hyperbolic point

Jacquelien Scherpen Slow Fast Control Systems Durham, 15 August 2017
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Geometric Desingularization

• Has its origins in algebraic geometry.

x

z

x̄

z̄

ε̄
ε

Σ−

Σ+

Σ̄−

Σ̄+

Figure: Schematic picture of a blow up of a fold point

• The blown up vector field is regular, hyperbolic

• The blown up vector field is equivalent to the original one
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Stabilization of a folded point Jardon-Kojakhmetov, Scherpen, 2017

x ′ = ε(Ax + Bz + u)

z ′ = −(z2 + x)

ε′ = 0

x = r2x̄

z = r z̄

ε = r3

x̄ ′ = Ar2x̄ + Br z̄ + ū

z̄ ′ = −(z̄2 + x̄)

r ′ = 0

Design controller here!

closed-loop slow-fast system
u = −Ax − Bz + αε−2/3x + βε−1/3z

closed-loop blown up v.f.
ū = −Ar 2x̄ − Brz̄ + αx̄ + βz̄
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ū = −Ar 2x̄ − Brz̄ + αx̄ + βz̄

Jacquelien Scherpen Slow Fast Control Systems Durham, 15 August 2017



Application: Trigger control of the van der Pol oscillator
Jardón-Kojakhmetov, Scherpen 2016.

x ′ = ε(z + u), u = −z + O(ε−1/3)

z ′ = −z3 + z − x
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Adaptive stabilization of a non-hyperbolic point
Blow up + backstepping → injection of hyperbolicity, Jardon-Kojakhmetov, del Puerto Flores,
Scherpen, 2017

Consider the SFS

x ′ = ε(A0 + Ax + Bz + u(x , z , ε))

z ′ = −(z2 + x),

where A0,A,B are unknown, together
with the control

u =
1

ε
(−â0 + O(ε1/3, z))

â′0 = O(ε−2/3)

Then the origin is a locally a.s. equilib-
rium point.
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Adaptive control of an electrical circuit

L

Vs

VR1

VR2

ε

ε

R1 − non linear

R2 − linear

x − current through L

zi − voltage at Ri

ẋ = −α1z1 − α2z2 + u

εż1 = −f1(z1) + x

εż2 = −f2(z2) + x ,

x

z1

p
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Adaptive control of an electrical circuit
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Conclusions

• Starting from a slow fast PH system, we can rewrite it such that the slow
and fast subsystems are both port-Hamiltonian.

• Model order reduction can be used to design a controller for a flexible-joint
robot from a rigid one.

• We have presented a novel approach to stabilize non-hyperbolic points of
slow-fast systems.

• The blow up technique allows us to desingularize a fold point and study the
dynamics nearby.

• The “geometric desingularization” technique has been introduced into the
control systems context.

• Geometric desingularization + well-known control strategies can be used to
stabilize non-hyperbolic points of slow-fast systems.
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Future research

For ODE systems

• Consideration of general “slow-fast PHSs”.

• Influence of ε on the transient performance.

• Regularization of Differential Algebraic port-Hamiltonian systems.

• Path following and trajectory tracking along non-hyperbolic sets.

• More than 2 time scales.

• Etc.

For PDE systems (relevant for e.g. fast reaction- slow diffusion systems)

• Extension of Tikhonov’s theorem.

• Normally hyperbolic and non-hyperbolic extensions?

• Well-posedness issues.

• .......

• Etc.
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Groningen Autumn School on MOR (in COST action)

Main invited speakers

• Serkan Gugercin (Virginia Tech)
• Paolo Rapisarda (University of Southampton)

with in addition some local speakers.

Topics: Model reduction for design and optimization, data-based model
reduction, and model reduction of networks.

30 October - 2 November 2017
University of Groningen, the Netherlands

http://www.math.rug.nl/gcsc/morschool.html
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