Model reduction for vibrations

Karl Meerbergen

KU LEUVEN

August 9th, 2017

Joint work with Yao Yue and Friends from Engineering and Industry

Outline

- 2 Model reduction for vibrations
- 3 Krylov methods
- Parametric MOR
- 5 Trust region and penalty approaches
- 6 MIMO formulation for low rank parametric dependency

7 Conclusions

Design optimization

Dynamical system:

$$egin{array}{rcl} \mathsf{A}(\omega,\gamma) x &=& \mathit{fu}(s) \ y &=& \mathit{d}^{\mathsf{T}} x \ g &=& \int_{\omega_{\min}}^{\omega_{\max}} |y|^2 \mathit{d} \omega & ext{(energy)} \end{array}$$

- y/u: frequency response function (usually $u \equiv 1$
- Objective: minimize $g(\gamma)$
- Reduce the cost of computing y and ∇y :
 - Model reduction should be at least as fast the Lanczos eigenvalue solver
 - Allows for cheap computation of g and $abla_{\gamma}g$
- Assume uni-modal objective function

Design optimization

Dynamical system:

$$egin{array}{rcl} {\cal A}(\omega,\gamma)x&=&fu(s)\ y&=&d^Tx\ g&=&\int_{\omega_{
m min}}^{\omega_{
m max}}|y|^2d\omega & ({
m energy}) \end{array}$$

- y/u: frequency response function (usually $u \equiv 1$
- Objective: minimize $g(\gamma)$
- Reduce the cost of computing y and ∇y :
 - Model reduction should be at least as fast the Lanczos eigenvalue solver
 - Allows for cheap computation of g and $abla_{\gamma}g$
- Assume uni-modal objective function
- Note: more complex energy functions are possible (quadratic output): y = x*Sx

[Saak, 2008] [Van Beeumen, Lombaert, Van Nimmen, M. 2012]

Model reduction for vibrations

- The reference is the Lanczos eigenvalues, used very frequently in simulation software.
- Currently used in industry:
 - Modal truncation
 - Krylov methods (With multiple interpolation)
 - ► Direct linear system solvers are used: reduce the number of sparse matrix factorization → no simple interpolation
- Pole selection:
 - Often one pole works well enough: e.g., 0
 - Approaches based on an error estimation [Bodendiek, Bollhöfer, 2012, 2014], [Feng, Antoulas, Benner, 2015]

Model reduction for vibrations

- The reference is the Lanczos eigenvalues, used very frequently in simulation software.
- Currently used in industry:
 - Modal truncation
 - Krylov methods (With multiple interpolation)
 - ► Direct linear system solvers are used: reduce the number of sparse matrix factorization → no simple interpolation
- Pole selection:
 - Often one pole works well enough: e.g., 0
 - Approaches based on an error estimation [Bodendiek, Bollhöfer, 2012, 2014], [Feng, Antoulas, Benner, 2015]
- Other methods:
 - Dominant pole algorithm (may be useful in a parametric context)
 - IRKA [van de Walle, Van Ophem, Desmet, 2017]
 - Optimal reduction is not required, minimal computation time for sufficient accuracy is the criterion
 - Often one-sided methods only (but not for optimization)
 - Balanced truncation for frequency range [Benner, Kürschner, Saak, 2016]

Left and right Krylov spaces

• Linear system (linear case)

$$(A_0 + \omega A_1)x = f$$

$$y = d^T x$$

Right Krylov space:

$$A_0^{-1}f, (A_0^{-1}A_1)A_0^{-1}f, \dots, (A_0^{-1}A_1)^{k-1}A_0^{-1}f (A_0 + \sigma_1A_1)^{-1}f, \dots, (A_0 + \sigma_kA_1)^{-1}f$$

Basis: $V_k = [v_1, \ldots, v_k]$

Left Krylov space:

$$A_0^{-T}d, (A_0^{-T}A_1^{T})A_0^{-T}f, \dots, (A_0^{-T}A_1^{T})^{k-1}A_0^{-T}f (A_0 + \sigma_1A_1)^{-T}d, \dots, (A_0 + \sigma_kA_1)^{-T}d$$

Basis: $W_k = [w_1, \ldots, w_k]$

Reduced model:

$$\begin{aligned} (\widehat{A}_0 - \omega \widehat{A}_1) \widehat{x} &= \widehat{f} \\ \widehat{y} &= \widehat{d}^T \widehat{x} \end{aligned}$$

with $\widehat{A}_i = W_k^T A_i V_k$, $\widehat{f} = W_k^T f$, $\widehat{d} = V_k^T d$.

(See talk by Serkan Gugercin aka Chris Beattie aka Thanos Antoulas)

Example

$$(K + i\omega C - \omega^2 M)x = f$$

$$y = x^T Sx$$

Matrix size: n = 25,962

- Computation of y with full model: 3,534.5s (4001 points)
- Construction of reduced model with k = 40 and computation of ŷ require 5.3s

(Van Beeumen, Van Nimmen, Lombaert, M. 2011)

• Dynamical system:

$$\begin{array}{rcl} \mathbf{A}(\omega,\gamma)\mathbf{x} &=& \mathbf{f} \\ \mathbf{y} &=& \mathbf{d}^{\mathsf{T}}\mathbf{x} \end{array}$$

• Compute Right Krylov space V_k

• Dynamical system:

$$\begin{array}{rcl} \mathbf{A}(\omega,\gamma)\mathbf{x} &=& \mathbf{f} \\ \mathbf{y} &=& \mathbf{d}^{\mathsf{T}}\mathbf{x} \end{array}$$

- Compute Right Krylov space V_k
- Adjoint system:

$$\begin{array}{rcl} A(\omega,\gamma)^T z &=& d \\ y &=& f^T z \end{array}$$

Compute Left Krylov space W_k

- $\bullet\,$ Build two-sided reduced model for fixed value of γ for
- $\mathbf{y} = \mathbf{d}^T \mathbf{A}(\omega, \gamma_0)^{-1} \mathbf{f}$
- Gradient:

$$\frac{dy}{d\gamma} = \left(\mathbf{A}(\omega, \gamma_0)^{-*} d \right)^* \left(\frac{d \mathbf{A}(\omega, \gamma_0)}{d\gamma} \right) \left(\mathbf{A}(\omega, \gamma_0)^{-1} f \right)$$

• Blue part can be computed from the right subspace:

$$\boldsymbol{A}(\boldsymbol{\omega},\gamma_0)^{-1}\boldsymbol{f}\approx V_k(\widehat{A}^{-1}(\boldsymbol{\omega},\gamma_0)\widehat{f})$$

- Red part (adjoint) can be computed from the left subspace: $A(\omega, \gamma_0)^{-T} d \approx W_k(\widehat{A}^{-T}(\omega, \gamma_0)\widehat{d})$
- (Parametric) reduced model:

$$\widehat{A}(\omega,\gamma)\widehat{x} = \widehat{f} y = \widehat{d}^{T}\widehat{x} \widehat{A} = W_{k}^{T}AV_{k} \widehat{f} = W_{k}^{T}f \qquad \widehat{d} = V_{k}^{T}a$$

• Full gradient

$$\frac{dy}{d\gamma} = \left(\mathbf{A}(\omega, \gamma_0)^{-T} \mathbf{d} \right)^T \left(\frac{d\mathbf{A}(\omega, \gamma_0)}{\mathbf{d}\gamma} \right) \left(\mathbf{A}(\omega, \gamma_0)^{-1} \mathbf{f} \right)$$

Reduced gradient

$$\frac{d\widehat{y}}{d\gamma} = \left(W_k \widehat{A}(\omega, \gamma_0)^{-T} \widehat{d} \right)^T \left(\frac{dA(\omega, \gamma_0)}{d\gamma} \right) \left(V_k \widehat{A}(\omega, \gamma_0)^{-1} \widehat{f} \right)$$

$$= \left(\widehat{A}(\omega, \gamma_0)^{-T} \widehat{d} \right)^T \left(\frac{d\widehat{A}(\omega, \gamma_0)}{d\gamma} \right) \left(\widehat{A}(\omega, \gamma_0)^{-1} \widehat{f} \right)$$

- Accuracy of the gradient depends on the accuracy for both systems [Antoulas, Beattie, Gugercin 2010] [Yue, M. 2011]
- Almost free computatation of the gradient, regardless the number of parameters!

Approximation properties of the frequency response function / transfer function:

- For Rational Krylov: $y(\sigma_i) = \hat{y}(\sigma_i)$ and $y'(\sigma_i) = \hat{y}'(\sigma_i)$
- For Krylov: $y^{(j)}(\sigma_i) = \hat{y}^{(j)}(\sigma_i)$ for $j = 0, \dots, 2k 1$.

Approximation properties of the gradient

- For Rational Krylov: $y_{\gamma}(\sigma_i) = \hat{y}_{\gamma}(\sigma_i)$
- For Krylov: $y_{\gamma}^{(j)}(\sigma_i) = \hat{y}_{\gamma}^{(j)}(\sigma_i)$ for $j = 0, \dots, k-1$.

Optimization and model order reduction

Unimodal optimization

Combine optimization with model reduction: build a surrogate model that is accurate around the current iteration and exploit the model as much as possible.

- Gradient is easy to approximate with model reduction by interpolation
- The Hessian is more difficult
- We will not satisfy the first order condition (match function value and gradient in all points)
- No need to first build a parametric reduced model for the entire parameter space: instead integrate MOR with optimization
- Simple interpolation method (in 1 point γ or a line)

Damped BFGS with backtracking

- We use the Damped BFGS optimization method
- On iteration *i*:
 - Build reduced model for y (and ∇y) at $\gamma = \gamma^{(i)}$
 - Compute g and ∇g from the reduced model
- Objective may not be smooth: use sufficient decrease condition and possibly backtracking after the BFGS step

Numerical examples

- Floor with damper (n = 29800)
- Reduced model k = 7
- Determine optimal parameters c₁ and k₁

	Direct method	MOR
Matrix size	29800	7
Optimizer computed	(12231609, 106031.18)	(12231614, 106031.22)
Function value	1.316093349 10 ¹⁰	1.316093349 10 ¹⁰
CPU time	7626s	179s

Overview

 $\gamma^{(i)}$

 $\gamma(i)$

 Use MOR for function and gradient evaluation Use PMOR for line search optimization + backtracking

K. Meerbergen (KU Leuven)

Durham MOR

Parametric MOR

Dynamical system:

$$\begin{array}{rcl} \mathsf{A}(\omega,\gamma) x &=& f \\ y &=& d^T x \end{array}$$

Basis V_k is now built from interpolation points in ω and γ :

1

$$\begin{array}{cccc} x(\omega_1,\gamma_0) & \cdots & x(\omega_k,\gamma_0) \\ x(\omega_1,\gamma_1) & \cdots & x(\omega_k,\gamma_1) \end{array}$$

Lots of papers. A few names: Feng, Daniel, Bai, Su, Michielsen, ... (See talk by Chris Beattie)

Parametric MOR

Dynamical system:

$$\begin{array}{rcl} \mathsf{A}(\omega,\gamma) x &=& f \\ y &=& d^T x \end{array}$$

Basis V_k is now built from interpolation points in ω and γ :

1

$$\begin{array}{cccc} x(\omega_1,\gamma_0) & \cdots & x(\omega_k,\gamma_0) \\ x(\omega_1,\gamma_1) & \cdots & x(\omega_k,\gamma_1) \end{array}$$

Lots of papers. A few names: Feng, Daniel, Bai, Su, Michielsen, ... (See talk by Chris Beattie (or was it Serkan?))

The MOR/PMOR Framework

- $\bullet\,$ We can make a reduced model for ω and all parameters γ
- This is usually expensive and overkill: only reduce on the important directions
- We use PIMTAP¹ for efficient line search:

- The MOR Framework generates a reduced model for each accessed.
- The PMOR Framework generates a reduced model for each line search iteration.

¹[Li, Bai, Su & Zeng 2007] [Li, Bai, Su, Zeng 2008], [Li, Bai, Su 2009]

K. Meerbergen (KU Leuven)

Durham MOR

• For backtracking using Armijo line searcher:

- the MOR Framework is better for smooth objective functions (The first trial point is often accepted for Quasi-Newton methods);
- ▶ the PMOR Framework is better for non-smooth objective functions.
- For smooth objective functions, we can use exact line searches using the PMOR Framework.

K. Meerbergen (KU Leuven)

Durham MOR

Example: min-max optimization

- Floor optimization problem (2 unknowns)
- Univariate objective function:

• Comparison of MOR Framework and PMOR Framework

	2 norm			∞ norm		
	iter	k	Time	iter	k	Time
direct	11 (+6)	29,800	7626	15 (+108)	29,800	41,069
MOR	13 (+8)	7	179	15 (+120)	7	1,104
PMOR	12 (+4)	7+3	360	14 (+90)	7+3	417

[Yue & M. 2011]

K. Meerbergen (KU Leuven)

Example: exact line search optimization

- Lamot bridge finite element model (n = 25, 962)
- The goal is to determine the optimal stiffness and damping coefficient of four bridge dampers (=8 parameters).

Numerical results

	MOR	(backtracking) PMOR	Exact line search PMOF
order	12	18	18
iterations	70	73	27
time (s)	879	1830	703

Overview

 Use MOR for function and gradient evaluation Use PMOR for line search optimization + backtracking

 $\gamma^{(i)}$

 Use interpolatory MOR for trust region optimization

K. Meerbergen (KU Leuven)

Durham MOF

Trust region approach

- The reduced model interpolates the exact function and the gradient in one point,
- so, we expect the model to be useful in a region around the interpolation point.

- As long as the reduced model + upper bound of the error lead to a decreasing function value, we do not have to recompute a reduced model = penalty.
- On the *i*th iteration:
 - **1** Build Krylov space for $\gamma = \gamma^{(i)}$
 - 2 Use the subspace to make a reduced model in ω and γ :

$$\widehat{A}(\omega,\gamma)\widehat{x} = \widehat{f} \widehat{y} = \widehat{d}^T \widehat{x}$$

with $\widehat{A} = W_k^* A V_k$, $\widehat{f} = W_k^* f$, $\widehat{d} = V_k^* d$.

Convergence

Provable convergence for unconstrained optimization problem under the 'Relaxed First Order Condition':

MOR method has an error bound on the entire parameter space

$$|m{g}(\gamma) - \hat{m{g}}^{(i)}(\gamma)| \leq m{e}^{(i)}(\gamma) \qquad \|
abla m{g}(\gamma_i) -
abla \hat{m{g}}(\gamma_i)\| \leq m{e}_g^{(i)}$$

the error can infinitely be reduced

$$oldsymbol{e}^{(i)}(\gamma_i) \leq au_{oldsymbol{g}}oldsymbol{g}(\gamma_i) \qquad oldsymbol{e}_{oldsymbol{g}}^{(i)} \leq au_{
ablaoldsymbol{g}} \|
abla \hat{oldsymbol{g}}(\gamma_i)\|$$

surrogate model (= reduced model) $\hat{g}(\gamma)$ is smooth with finite gradient everywhere

Methods:

• Trust region:
$$e^{(i)}(\gamma) < \epsilon_L \hat{g}^{(i)}(\gamma)$$

• penalty function: $\hat{g}^{(i)} + w\left(\frac{e^{(i)}(\gamma)}{\hat{a}^{(i)}(\gamma)}\right) e^{(i)}(\gamma)$

[Yue & M., 2013]

Subproblems

ETR

EΡ

Terminate if close to boundary.

Terminate if w is active for μ successive steps.

Example of the Lamot footbridge

- Lamot bridge finite element model (n = 25, 962)
- The goal is to determine the optimal stiffness and damping coefficient of four bridge dampers (=8 parameters).

- Computation times:
 - without reduced modeling: 545 for one function evaluation, 70 function evaluations needed.
 - MOR Framework: 879 sec.
 - ETR: 200 sec.
 - EP: 189 sec.

MIMO formulation for low rank parametric dependency

Parametric system

$$(K - \omega^2 M + BC(\omega, \gamma)B^T)x = f$$

$$y = \varphi(x)$$

where *B* is low rank *r*

• Reduced model:

$$(\widehat{K} - \omega^{2}\widehat{M} + \widehat{B}C(\omega, \gamma)\widehat{B}^{T})\widehat{x} = \widehat{f}$$

$$y = \varphi(V\widehat{x})$$

$$\widehat{K} = V^{T}KV \qquad \widehat{M} = V^{T}MV$$

$$\widehat{B} = V^{T}B \qquad \widehat{f} = V^{T}f$$

Block Krylov method for low rank parameters

• Reduced model:

$$\begin{aligned} (\widehat{K} - \omega^2 \widehat{M} + \widehat{B}C(\omega, \gamma)\widehat{B}^T)\widehat{x} &= \widehat{f} \\ y &= \varphi(V\widehat{x}) \\ \widehat{K} &= V^T K V \qquad \widehat{M} = V^T M V \\ \widehat{B} &= V^T B \qquad \widehat{f} = V^T f \end{aligned}$$

with V Krylov basis for

$$(K - \omega^2 M)x = f - B(C(\omega, \gamma)Bx)$$
$$= \begin{bmatrix} f & B \end{bmatrix} \begin{bmatrix} 1 \\ C(\omega, \gamma)Bx \end{bmatrix}$$

- Approximation properties:
 - For any γ, y is interpolated in the shifts of rational Krylov (derivatives for multiple shifts)
 - γ dependence is fully held by *C* and therefore represented exactly.
- We need only one reduced model for all optimization steps.

Example

2-norm Optimization of the Footbridge Damper Optimization Problem

	Nr Models	Order	Optimum	CPU Tim
The MOR Framework	70	12	24.77751651	879s
The PMOR Framework	27	18	24.77751661	703s
ETR	3	20	24.78594112	205s
EP	3	20	24.7775166	189s
Block Arnoldi	1	30	24.77751815	20.4s

- Objective at the initial point: 142.34188.
- Damped-BFGS converges in 71 iterations.
- A single evaluation of *g* costs 540s.

Conclusions

- We proposed three types of methods to accelerate design optimization with (P)MOR.
- Performance:

Block Arnoldi > ETR/EP > The (P)MOR Framework

• Applicability:

The MOR Framework, ETR/EP > The PMOR Framework, Block Arnoldi

• Reliability:

Depends on error estimation for the reduced model

Bibliography

- 1. K. Meerbergen. The solution of parametrized symmetric linear systems. SIAM J. Matrix Anal. Appl., 24(4):1038–1059, 2003.
- K. Meerbergen. The Quadratic Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM Journal on Matrix Analysis and Applications, 30(4):1463–1482, 2008.
- K. Meerbergen and Z. Bai. The Lanczos method for parameterized symmetric linear systems with multiple right-hand sides. SIAM Journal on Matrix Analysis and Applications, 31(4):1642–1662, 2010.
- K. Meerbergen, P. Lietaert. Tensor Krylov methods for model reduction of the stochastic mean of a parametric dynamical system, European Control Conference, Linz, 15-17 July 2015.
- W. Michiels, E. Jarlebring, and K. Meerbergen. Krylov based model order reduction of time-delay systems. SIAM Journal on Matrix Analysis and Applications, 32(4):1399–1421, 2011.
- M. Saadvandi, K. Meerbergen, and W. Desmet, Parametric Dominant Pole Algorithm for Parametric Model Order Reduction, Journal of Computational and Applied Mathematics, 295:259–280, 2014.
- M. Saadvandi, K. Meerbergen, and E. Jarlebring, On dominant poles and model reduction of second order time-delay systems, *Applied Numerical Mathematics*, 62(1):21–34, 2012.
- R. Van Beeumen and K. Meerbergen. Model reduction by balanced truncation of second order systems with a quadratic output. In T. Simos, editor, Proceedings of the ICNAAM10 Conference, 2010.
- R. Van Beeumen, K. Van Nimmen, G. Lombaert, and K. Meerbergen. Model reduction for dynamical systems with quadratic output. International Journal of Numerical Methods in Engineering, 91(3):229–248, 2012.
- Y. Yue and K. Meerbergen. Using model order reduction for the design optimization of structures and vibrations. International Journal of Numerical Methods in Engineering, 90(10):1207–1232, 2012.
- Y. Yue and K. Meerbergen. Accelerating optimization of parametric linear systems by model order reduction. SIAM Journal on Optimization, 23(2):687–1370, 2013.
- Y. Yue and K. Meerbergen. Parametric model order reduction of damped mechanical systems via the block Arnoldi process. Applied Mathematics Letters, 26:643–648, 2013.