Dimensional reduction in topology optimization with vibration constraints

Michal Kočvara

School of Mathematics, The University of Birmingham

Durham Symposium 2017

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 1 / 37

・ 同 ト ・ ヨ ト ・ ヨ ト

A question by SDP software developer

... mostly already answered by Tobias Damm

Balanced truncation and (non-)linear matrix inequalities?

In the unreduced world of linear systems, one way to find Gramians is by solving system of linear matrix inequalities (LMI)

$$A^T P + P A \prec 0, P \succ 0$$

or by solving the linear semidefinite optimization problem

$$\min_{P} \operatorname{trace}(P) \quad \text{s.t.} \quad A^{T}P + PA + BB^{T} \preccurlyeq 0, \quad P \succ 0$$

by available SDP software (MOSEK, SeDuMi, PENSDP...)

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 2 / 37

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

A question by SDP software developer

In balanced truncation, working with Lyapunov inequalities (rather than equalities) can improve error bounds:

–D. Hinrichsen and A. J. Pritchard. "An improved error estimate for reduced-order models of discrete-time systems." IEEE Transactions on Automatic Control 35.3 (1990): 317-320.

 –H. Sandberg. "An extension to balanced truncation with application to structured model reduction." IEEE Transactions on Automatic Control 55.4 (2010): 1038-1043.

by solving

$$\min_{P} \operatorname{trace}(P) \quad \text{s.t.} \quad \begin{array}{l} A^{T}P + PA + BB^{T} \preccurlyeq 0, \quad P \succ 0\\ P = \operatorname{diag}(P_{N}, P_{1}, \dots, P_{q}) \end{array}$$

-see alsoTobias Damm's talk.

Are these techniques known/used/useful in model order reduction? Michal Kočvara (University of Birmingham)

Durham Symposium 2017 3/37

A comment by SDP software developer Software also available for

-bilinear matrix inequalities (BMI) e.g. the static output feedback stabilization problem of the type

$$(A + BFC)^T P + P^T (A + BFC) \prec 0, \quad P \succ 0$$

-polynomial matrix inequalities (PMI) e.g.

$$Q_1 + x_1 x_3 Q_2 + x_2 x_4^3 Q_3 \succcurlyeq 0$$

(the above SOF can be reformulated as PMI without the large matrix variable)

-(general) nonlinear matrix inequalities

$$\mathcal{A}(x, Y) \succcurlyeq 0$$

PENBMI, PENNON, PENLAB (open source Matlab)

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 4 / 37

A comment by SDP software developer

For LMIs, SeDuMi is no longer state-of-the-art software.

Matlab's Robust Control Toolbox solver is slow.

Try – MOSEK or – PENSDP with iterative solvers or – SDPLR, the low rank solver by Samuel Burer

using

YALMIP or direct interface (YALMIP can be slow for big problems!)

A comment by SDP software developer

SDP solver complexity (one iteration of PENSDP, augmented Lagrangian method)

Matrix assembly:

dense data matrices: $O(m^3n + m^2n^2)$ \rightarrow sparse data matrices: $O(m^3 + K^2n^2)$ $K = \max_i(nnz(A_i))$ sparse matrices, iterative solver: $O(m^3 + Kn)$

Linear system solution:

→dense Cholesky: $O(n^3)$ sparse Cholesky: $O(n^{\kappa}), 1 \le \kappa \le 3$ iterative solver: $O(n^2)$

SeDuMi sparse data: one iteration $O(m^3)$, total $O(m^{3.5})$

$$\min_{x \in \mathbb{R}^n} c^\top x \quad \text{subject to} \quad \sum_{i=1}^n x_i A_i - B \succeq 0 \quad (A_i, B \in \mathbb{R}^{m \times m})$$

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 6 / 37

The talk starts now...

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 7 / 37

э

<ロ> <同> <同> <同> < 同> < 同>

Structural optimization

The goal is to improve behavior of a mechanical structure while keeping its structural properties.

Objectives/constraints: weight, stiffness, vibration modes, stability, stress

Control variables: thickness/density (VTS/SIMP) material properties (FMO)

(4回) (日) (日)

Topology optimization

Aim:

Given an amount of material, boundary conditions and external load f, find the material distribution so that the body is as stiff as possible under f.

$$E(x) = \rho(x)E_0$$
 with $0 \le \rho \le \rho(x) \le \overline{\rho}$

 E_0 a given (homogeneous, isotropic) material

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 9 / 37

- 4 同 ト 4 ヨ ト 4 ヨ ト

Topology optimization, example

Pixels—finite elements Color—value of variable ρ , constant on every element

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 10 / 37

・ロット (雪) (日) (日)

Equilibrium

Equilibrium equation:

$$\mathcal{K}(\boldsymbol{\rho})\boldsymbol{u} = \boldsymbol{f}, \qquad \mathcal{K}(\boldsymbol{\rho}) = \sum_{i=1}^{m} \boldsymbol{\rho}_{i} \mathcal{K}_{i} := \sum_{i=1}^{m} \sum_{j=1}^{G} \boldsymbol{B}_{i,j} \boldsymbol{\rho}_{i} \boldsymbol{E}_{0} \boldsymbol{B}_{i,j}^{\top}$$
$$\boldsymbol{f} := \sum_{i=1}^{m} \boldsymbol{f}_{i}$$

Standard finite element discretization:

Quadrilateral elements

- ρ ... piece-wise constant
- u... piece-wise bilinear (tri-linear)

Michal Kočvara (University of Birmingham)

・ 同 ト ・ ヨ ト ・ ヨ ト

TO primal formulation

$$\min_{\rho \in \mathbb{R}^{m}, u \in \mathbb{R}^{n}} f^{T} u$$
subject to
$$(0 \leq) \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} \rho_{i} \leq 1$$

$$K(\rho) u = f$$

... large-scale nonlinear non-convex problem

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 12 / 37

・ロット (雪) (日) (日)

SDP formulation of TO

The TO problem

 $\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \ u \in \mathbb{R}^{n}, \ \gamma \in \mathbb{R}} \ \gamma \\ \text{subject to} \\ f^{T} u \leq \gamma, \quad K(\rho) u = f \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m \end{array}$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\substack{\in \mathbb{R}^m, \ \gamma \in \mathbb{R}}} \gamma \\ \text{ubject to} \\ \left(\begin{array}{cc} \gamma & f^T \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_i \leq 1, \quad \underline{\rho} \leq \rho_i \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints present (=) (=) (=) (=)

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 13 / 37

SDP formulation of TO

The TO problem

$$\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \; u \in \mathbb{R}^{n}, \; \gamma \in \mathbb{R}} \; \gamma \\ \text{subject to} \\ f^{\mathsf{T}} u \leq \gamma, \quad \mathcal{K}(\rho) u = f \\ \sum \rho_{i} \leq \mathsf{1}, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = \mathsf{1}, \ldots, m \end{array}$$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \, \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints present (=) (=)

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 13 / 37

SDP formulation of TO

The TO problem

$$\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \; u \in \mathbb{R}^{n}, \; \gamma \in \mathbb{R}} \; \gamma \\ \text{subject to} \\ f^{\mathsf{T}} u \leq \gamma, \quad \mathcal{K}(\rho) u = f \\ \sum \rho_{i} \leq \mathsf{1}, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = \mathsf{1}, \dots, m \end{array}$$

can be equivalently formulated as a linear SDP:

$$\begin{split} \min_{\rho \in \mathbb{R}^{m}, \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array} \right) \succeq 0 \quad \text{(positive semidefinite)} \\ \sum \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m. \end{split}$$

Helpful when vibration/buckling constraints present <=> <=> =

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 13 / 37

TO with a vibration constraint

Self-vibrations of the (discretized) structure-eigenvalues of

 $K(\rho)w = \lambda M(\rho)w$

where the mass matrix $M(\rho)$ has the same sparsity as $K(\rho)$.

Low frequencies dangerous \rightarrow constraint $\lambda_{\min} \geq \hat{\lambda}$

Equivalently: $V(\hat{\lambda}; \rho) := K(\rho) - \hat{\lambda}M(\rho) \succeq 0$

Michal

TO problem with vibration constraint as linear SDP:

$$\begin{array}{l} \min_{\rho \in \mathbb{R}^{m}, \gamma \in \mathbb{R}} \gamma \\ \text{subject to} \\ \left(\begin{array}{c} \gamma & f^{T} \\ f & \mathcal{K}(\rho) \end{array}\right) \succeq 0 \\ \frac{\mathcal{V}(\hat{\lambda}; \rho) \succeq 0}{\sum_{i} \rho_{i} \leq 1, \quad \underline{\rho} \leq \rho_{i} \leq \overline{\rho}, \quad i = 1, \dots, m_{\text{subject is subject is subject}} \in \infty \\ \text{Kočvara (University of Birmingham)} \end{array}$$

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 15 / 37

Dimensions in Semidefinite Optimization

 $\min_{x \in \mathbb{R}^{n}} c^{\top} x$ subject to $\sum_{i=1}^{n} x_{i} A_{i}^{(k)} - B^{(k)} \succeq 0, \quad k = 1, \dots, p$

where

$$x \in \mathbb{R}^n$$
, $A_i^{(k)}$, $B^{(k)} \in \mathbb{R}^{m \times m}$

Majority of SDP software BAD ...n large, m large many variables, big matrix OK ...n small, m large rare GOOD ...n large, m small many variables, small matrix GOOD ...n large, m small, p large many small matrix constraints Michal Kočvara (University of Birmingham)

Dimensions in Semidefinite Optimization

 $\min_{x \in \mathbb{R}^n} c^\top x$ subject to $\sum_{i=1}^n x_i A_i^{(k)} - B^{(k)} \succeq 0, \quad k = 1, \dots, p$

where

$$x \in \mathbb{R}^n$$
, $A_i^{(k)}$, $B^{(k)} \in \mathbb{R}^{m \times m}$

So we may want to replace BAD ...n large, m large, p=1 by GOOD ...n large, m small, p large many small matrix constraints

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 17 / 37

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SDP formulation of TO by DD

Both

$$\left(\begin{array}{cc} \gamma & f^{T} \\ f & \sum \rho_{i} K_{i} \end{array}\right) \succeq \mathbf{0}$$

and

 $V(\hat{\lambda};
ho) \succeq \mathbf{0}$

are large matrix constraints dependent on many variables ... bad for existing SDP software

Can we replace them by several smaller constraints equivalently?

Chordal decomposition

S. Kim, M. Kojima, M. Mevissen and M. Yamashita, Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion, Mathematical Programming, 2011

Based on:

A. Griewank and Ph. Toint, On the existence of convex decompositions of partially separable functions, MPA 28, 1984

J. Agler, W. Helton, S. McCulough and L. Rodnan, Positive semidefinite matrices with a given sparsity pattern, LAA 107, 1988

See also:

L. Vandenberghe and M. Andersen, Chordal graphs and semidefinite optimization. Foundations and Trends in Optimization 1:241–433, 2015

Michal Kočvara (University of Birmingham)

Chordal decomposition

G(N, E) – graph with $N = \{1, ..., n\}$ and max. cliques $C_1, ..., C_p$.

 $\mathbb{S}^{n}(E) = \{ Y \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i,j) \notin E \cup \{ (\ell,\ell), \ \ell \in N \}$

 $\mathbb{S}^{C_k}_+ = \{ Y \succeq 0 : Y_{ij} = 0 \text{ if } (i,j) \notin C_k \times C_k \}$

Theorem 1: G(N, E) is chordal if and only if for every $A \in \mathbb{S}^n(E)$, $A \succeq 0$, it holds that $\exists Y^k \in \mathbb{S}^{C_k}_+ \ (k = 1, ..., p)$ s.t. $A = Y^1 + Y^2 + ... + Y^p$.

Every psd matrix is a sum of psd matrices that are non-zero only on maximal cliques.

So $A(x) \succeq 0$ replaced equivalently by $Y^k(x) \succeq 0, k = 1, ..., p$.

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 20 / 37

(日)

Graph representation of matrix sparsity

Chordal sparsity graph, overlapping blocks

Durham Symposium 2017 21 / 37

A 10

Chordal decomposition

Theorem 1: G(N, E) is chordal if and only if for every $A \in \mathbb{S}^n(E)$, $A \succeq 0$, it holds that $\exists Y^k \in \mathbb{S}^{C_k}_+$ (k = 1, ..., p) s.t. $A = Y^1 + Y^2 + ... + Y^p$.

Let
$$K = \begin{pmatrix} K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)} + K_{1,1}^{(2)} & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)} \end{pmatrix}$$
 with $K^{(1)}, K^{(2)}$ dense.

Then $K \succeq 0 \Leftrightarrow K = Y^1 + Y^2$ such that

$$Y^{1} = \begin{pmatrix} K_{1,1}^{(1)} & K_{1,2}^{(1)} & 0 \\ K_{2,1}^{(1)} & K_{2,2}^{(1)} + S & 0 \\ 0 & 0 & 0 \end{pmatrix} \succeq 0, \ Y^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & K_{2,2}^{(2)} - S & K_{1,2}^{(2)} \\ 0 & K_{2,1}^{(2)} & K_{2,2}^{(2)} \end{pmatrix} \succeq 0$$

Even if $K^{(1)}$, $K^{(2)}$ not dense, we just assume that S is dense.

Michal Kočvara (University of Birmingham)

Chordal decomposition

Let $A \in \mathbb{S}^n$, $n \ge 3$, with a sparsity graph G = (N, E). Let $N = \{1, 2, ..., n\}$ be partitioned into $p \ge 2$ overlapping sets

$$N=I_1\cup I_2\cup\ldots\cup I_p.$$

Define
$$I_{k,k+1} = I_k \cap I_{k+1} \neq \emptyset$$
, $k = 1, ..., p-1$.
Assume $A = \sum_{k=1}^{p} A_k$, with A_k only non-zero on I_k .

Corollary 1:
$$A \succeq 0$$
 if and only if
 $\exists S_k \in \mathbb{S}^{l_{k,k+1}}, k = 1, \dots, p-1 \text{ s.t.}$
 $A = \sum_{k=1}^{p} \widetilde{A}_k \text{ with } \widetilde{A}_k = A_k - S_{k-1} + S_k \quad (S_0 = S_p = [])$
and $\widetilde{A}_k \succeq 0 \ (k = 1, \dots, p).$

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 23 / 37

イロト イポト イラト イラト

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

Using the original theorem:

6 max. cliques of size 3, 5 additional 2 \times 2 variables

Using the corollary:

2 "cliques" of size 5, 1 additional 2×2 variable

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 24 / 37

We can <u>choose</u> the partitioning $N = I_1 \cup I_2 \cup \ldots \cup I_p$!

When we know the sparsity structure of *A*, we can choose a "regular" partitioning.

SDP formulation of TO by DD

$$\left(egin{array}{cc} \mathcal{K}(
ho) & f \ f^{ op} & \gamma \end{array}
ight) \succeq 0 \qquad ext{and} \quad \mathcal{V}(\hat{\lambda};
ho) \succeq 0$$

are large matrix constraints dependent on many variables.

FE mesh, matrix $K(\rho)$ and its sparsity graph:

Durham Symposium 2017 26 / 37

< ロ > < 同 > < 回 > < 回 >

Chordal decomposition

Even though $K^{(1)}$ and $K^{(2)}$ are sparse, we need to assume that *S* is dense.

< 回 > < 回 > < 回 >

In this way, we can control the number and size of the maximal cliques and use the chordal decomposition theorem.

New result: For the matrix inequality

$$\left(egin{array}{cc} \mathcal{K}(
ho) & f \ f^{ op} & \gamma \end{array}
ight) \succeq \mathbf{0}$$

the additional matrix variables *S* are rank-one; this further reduces the size of the solved SDP problem.

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 28 / 37

・ 同 ト ・ ヨ ト ・ ヨ ト

SDP codes tested: PENSDP, SeDuMi, SDPT3, Mosek

Results shown for Mosek: not the fastest for the original problem but has highest speedup

Mosek:

- new version 8 much more reliable than version 7
- called from YALMIP
- difficult (for me) to control any options

< 同 > < 三 > < 三 >

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 30 / 37

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 31 / 37

Regular decomposition, 40x20 elements, Mosek 8.0 Basic problem (no vibration constraints)

no of doms	no of vars	size of matrix	no of iters	C total	CPU total per iter		speedup total /iter	
1	801	1681	53	2489	47	1	1	
2	844	882	66	778	12	3	4	
8	1032	243	57	49	0.86	51	55	
32	1492	73	55	11	0.19	235	244	
50	1764	51	54	8	0.14	323	329	
200	3544	19	45	5	0.10	553	470	
34	22997	11260	42	1206	29	2	2	

Automatic decomposition using software SparseCoLO by Kim, Kojima, Mevissen and Yamashita (2011); see page 16

Michal Kočvara (University of Birmingham)

▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ≫ Q (Durham Symposium 2017 32 / 37

Regular decomposition, 40x20 elements, Mosek 8.0 Problem with vibration constraints

no of	no of no of		no of	C	PU	speedup	
matrices	vars	matrix	iters	total	per iter	total	/iter
2	801	1681	64	3894	61	1	1
16	1746	243	59	127	2.15	31	28
64	3384	73	54	27	0.50	144	122
100	4263	51	55	25	0.45	155	136
400	9258	19	37	18	0.49	216	125

and without again, for comparison:

1	801	1681	53	2489	47	1	1
8	1032	243	57	49	0.86	51	55
32	1492	73	55	11	0.19	235	244
50	1764	51	54	8	0.14	323	329
200	3544	19	45	5	0.10	553	470

Michal Kočvara (University of Birmingham)

Regular decomposition, 120x60 elements, Mosek 8.0 Basic problem (no vibration constraints)

no of	no of	size of	no of	CPU		spee	edup
doms	vars	matrix	iters	total	per iter	total	/iter
1	7200	14641	178	5089762	28594	1	1
50	9524	339	85	1475	17.4	3541	1648
200	12904	99	72	209	2.9	24355	9851
450	16984	51	67	107	1.6	47568	17905
800	21764	33	61	82	1.3	62070	21271
1800	33424	19	44	77	1.6	66101	18196

estimated; 508976 sec \approx 2 months

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 34 / 37

Regular decomposition, Mosek 8.0 Basic problem (no vibration constraints) "best" decomposition speedup (subdomain = 4 elements)

	ORIGIN	AL	DEC	speedup		
no of	size of	CPU	no of	size of	CPU	
vars	matrix	total	vars	matrix	total	
801	1681	2489	3544	19	8	311
1801	3721	31835	8164	19	25	1273
3201	6561	252355	14684	19	23	10972
5001	10201	1298087	23104	19	46	28219
7201	14641	5091862	33424	19	77	66128
9801	19881	16436180	45664	19	115	142923
12801	25921	45804946	59764	19	206	222354
y <i>c</i> ⋅size ^q		<i>q</i> = 3.5		<i>q</i> =	= 1.33	
	vars 801 1801 3201 5001 7201 9801 12801	no of varssize of matrix801168118013721320165615001102017201146419801198811280125921	varsmatrixtotal801168124891801372131835320165612523555001102011298087720114641509186298011988116436180128012592145804946	no of varssize of matrixCPU totalno of vars801168124893544180137213183581643201656125235514684500110201129808723104720114641509186233424980119881164361804566412801259214580494659764	no of varssize of matrixCPU totalno of 	no of varssize of matrixCPU totalno of varssize of matrixCPU total80116812489354419818013721318358164192532016561252355146841923500110201129808723104194672011464150918623342419779801198811643618045664191151280125921458049465976419206

times estimated; 45804946 sec \approx 18 months

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 35 / 37

CPU time, original versus decomposed

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 36 / 37

THE END

Michal Kočvara (University of Birmingham)

Durham Symposium 2017 37 / 37

э

<ロ> <同> <同> <同> < 同> < 同>