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Motivation
Linear-Quadratic Optimal Control Problem

min
uPL2

1

2

ż T

0

}yptq ´ ydptq}
2
L2pΩoq

dt`
1

2
}ypT q ´ ydpT q}

2
L2pΩo q̀

σ

2

ż T

0

}uptq}22dt,

where for given u : r0, T s Ñ IRnu the state y PW p0, T q solves

Bypx, tq

Bt
´ κ∆ypx, tq ` ν ¨∇ypx, tq ` γypx, tq “

nu
ÿ

i“1

bipxquiptq, x P Ω, t P p0, T q,

ypx, tq “ 0, x P BΩ, t P p0, T q,

ypx, 0q “ spxq, x P Ω.

After semi-discretization in space

min
uPL2

ż T

0

1
2yptqTQyptq`cptqTyptqdt` 1

2ypT qTQTypT q`cTTypT q`

ż T

0

1
2uptqTRuptqdt,

where for given control u P L2pp0, T q; IRnuq the state y solves

M
d

dt
yptq `Ayptq “ fptq `Buptq, Myp0q “ Ms.
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§ Linear-quadratic optimal control problem (although with time dependent
A, ...) arises as subproblem in Newton-SQP-type methods for nonlinear
optimal control problems.

§ When A has negative eigenvalues (γ ă 0 in model PDE), solution of PDE
becomes unstable. Use multiple shooting reformulation.
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Multiple Shooting

Split time interval r0, T s into M
subintervals rtj , tj`1s, j “ 0, . . . ,M ´ 1.

Introduce auxiliary initial values sj ; solve
differential eqn. on each subinterval.

Add continuity conditions
Myptj`1; sj ,uq ´Msj`1 “ 0
as constraints.

-

6

yptq

tj tj`1t0“0 T “ tM

s0
r r

sjr
sj`1

r r
6?

6?
6? 6?

Multiple Shooting Formulation

min
ujPL2,sjPIRn

M´1
ÿ

j“0

ż tj`1

tj

1
2yjptq

TQyjptq ` cptqTyjptqdt`

ż T

0

1
2ujptq

TRujptqdt,

` 1
2yM´1pT q

TQTyM´1pT q ` cTTyM´1pT q,

s.t. Myjptj`1; sj ,uq ´Msj`1 “ 0,

where for given control uj P L
2pp0, T q; IRnu and sj P IR

n the state yj solves

M
d

dt
yjptq `Ayjptq “ fptq `Bujptq, t P ptj , tj`1q, Myptjq “ Msj .
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Multiple Shooting Formulation

min
ujPL2,sjPIRn

M´1
ÿ

j“0

ż tj`1

tj

1
2yjptq

TQyjptq ` cptqTyjptqdt`

ż T

0

1
2ujptq

TRujptqdt,

` 1
2yM´1pT q

TQTyM´1pT q ` cTTyM´1pT q,

s.t. Myjptj`1; sj ,uq ´Msj`1 “ 0,

where for given control uj P L
2pp0, T q; IRnu and sj P IR

n the state yj solves

M
d

dt
yjptq `Ayjptq “ fptq `Bujptq, t P ptj , tj`1q, Myptjq “ Msj .

§ Multiple shooting formulation can alleviate the instability, but at the price of
introducing additional optimization variables rs0, . . . , sM´1s P IR

M ¨n, n " 1.

§ For PDE constrained problems this creates challenges for numerical solution.

§ Goal: Faster solver by Reduced Order Modeling for Hessian computation
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ROM and Optimization

§ Finding ROMs that well approximate the optimization problem over a range
of optimization parameters can be expensive.

§ Recovering from poor ROMs in the optimization can be expensive.

§ Often difficult to amortize cost of ROM generation in the optimization.
In his case better to use inexpensive, rough ROMs to solve subproblems,
rather that to approximate original optimization problem.

In this talk

§ There is no (small) ROMs that well approximates the optimization problem
(number of inputs and outputs is large).

§ Therefore, we use full order model to compute objective function and
gradient.

§ Use ROM to generate efficient Hessian approximation for fast Newton-type
algorithms.
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Outline

ROM for Initial Value Control Problems

Sequential ROMs for Initial Value Control Problems

ROMs for Problems with Initial Value and Right Hand Side Controls
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Optimal Control Problems with Initial Value Controls

min
sPIRn

Jpsq “

ż T

0

1

2
yptqTQyptq`cptqTyptqdt` 1

2ypT qTQTypT q`cTTypT q`
β

2
sTMs,

where for given s the state y solves

M
d

dt
yptq `Ayptq “ fptq, Myp0q “ Ms.

§ Q,QT symmetric, pos semidefinite; M symmetric, pos. definite, β ą 0,

§ A possibly non-symmetric

Such problems arise

§ as subproblem on multiple shooting,

§ in source inversion, e.g., [Bashir et al., 2008],

§ as subproblems in data assimilation, e.g., [Blum et al.,2009], [Rao&Sandu, 2016],
[talk by Nancy Nichols].

ROM for variable initial conditions [H.,Reis,Antoulas 2011],
[Beattie,Gugercin,Mehrmann2016], but require initial value in small dim. subspace.
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Optimality Condition and Hessian Computation

§ Weighted inner product xs1, s2y “ sT1 Ms2 .

§ Gradient: Solve

M
d

dt
yptq `Ayptq “ fptq, Myp0q “ Ms,

´M
d

dt
pptq `ATpptq “ Q yptq ` cptq, MppT q “ QT pypT q ` cT q,

∇Jpsq “ pp0q ` βs.

§ Hessian-vector-product: Solve

M
d

dt
zptq `Azptq “ 0, Mzp0q “ Ms,

´M
d

dt
qptq `ATqptq “ Q zptq, MppT q “ QT zpT q,

∇2J s “ Hs` βs, where H s “ qp0q.

§ First order optimality condition

0 “ ∇Jps˚q “ ∇2J s˚ `∇Jp0q “ Hs˚ ` βs˚ `∇Jp0q.
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Petrov-Galerkin Projection based ROM
§ Want to approximate Hessian in pH` βIqs˚ “ ´∇Jp0q, by projection based

reduced order model (ROM)
§ For given V,W P IRnˆk, k ! n, with WTMV invertible (often “ Ik )

z « Vpz and q « Wpq where pz, pq solve

WTMV
d

dt
pzptq `WTAV pzptq “ 0,

WTMVpzp0q “ WTMs

and

´VTMW
d

dt
pqptq `VTATW pqptq “ VTQ V pzptq,

VTMWpqpT q “ VTQTV pzpT q.

ROM Hessian approximation

pHs “ Wpqp0q.

§ Solve pHs` βs “ ´∇Jp0q.
§ Difficulty: s varies in IRn. Can’t find ROM that is good for all s P IRn.
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Important Special Case to Illustrate Issues
§ A is symmetric (i.e. no advection) → W “ V

§ Q “ QT “ M

§ Generalized eigenvalue decomposition of pA,Mq:

Λ “ diagpλ1, . . . , λnq P IR
nˆn, λ1 ď . . . ď λn

VT
nMVn “ I, AVn “ MVnΛ.

After transformation of variables yptq “ Vnryptq
OCP decouples into n real scalar OCPs with initial data rs :“ VT

nMs.

Hessian is diagonal, ∇2
rJ “ rH`βI, where

rH “ diagp rH11, . . . , rHnnq,

and

rH11 ě rH22 ě . . . rHnn ą 0.
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Basic ROM = best rank k approximation

§ Approximate rH “ diagp rH11, . . . , rHnnq by best rank k-approximation

rHbsc “ diagp rH11, . . . , rHkk, 0, . . . , 0q.

§ This is basic ROM
§ rHbsc

rs obtained by projection with rV “ ĂW “ re1, . . . , eks P IR
nˆk,

§ Only two differential equations of size k need to be solved.
§ Need to compute k smallest generalized eigenvalues pA,Mq.

§ rHrs` βrs “ ´rg
def
“ ´∇ rJp0q is approximated by

rHiirsi ` βrsi “ ´rgi, i “ 1, . . . , k exact

βrsi “ ´rgi, i “ k ` 1, . . . , n potentially large error

§ Error large if rHii ą β for some i ě k ` 1, and there are relatively large
components rgk`1, . . . , rgn
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Augmentation of Basic ROM by right hand side rg
Add rhs rg to reduced basis rV “ ĂW “ re1, . . . , eks to generate

p

rV “
x

ĂW with

rangep
p

rVq “ rangeprrV, rgsq,
p

rVT p
rV “ I.

If rg R rV, then new basis vector is

rv “
´

0, . . . , 0, rgk`1, . . . , rgn

¯TḾ n
ÿ

i“k`1

rg2
i

¯1{2

Hessian approximation

rHaug
rs “

k
ÿ

i“1

rHii rsi ei ` rρp0q rv

required solution of two additional scalar ODEs

d

dt
rζptq ` λprgq rζptq “ 0, rζp0q “ rvTrs,

´
d

dt
rρptq ` λprgq rρptq “ rζptq, rρpT q “ rζpT q.

Matthias Heinkenschloss August 12, 2017 13



Error Estimate

p rH` βIqrs “ ´rg with full Hessian

p rHbsc ` βIqrsbsc “ ´rg with basic ROM Hessian

p rHaug ` βIqrsaug “ ´rg with augm. ROM Hessian

Error estimate

}rs´ rsaug}2 ď }rs´ rsbsc}2 ´

ˆ

hpλprgqq

β phpλk`1q ` βq

˙2 n
ÿ

i“k`1

rg2
i ă }rs´ rsbsc}2.

where

hpλq “ e´2λT `
`

1´ e´2λT
˘

{p2λq, ( ě 0, mon Œ, convex)

rHii “ hpλiq,

λprgq “
n
ÿ

i“k`1

λirg
2
i

M

n
ÿ

i“k`1

rg2
i . (weighted arithmetic mean of λk`1, . . .)

Roughly speaking, augmentation works the better the fewer important right hand
side components rgk`1, . . . , rgn exist
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Illustration
FEM disc. of 2D model problem with κ “ 0.1, ν “ p0, 0qT , γ “ 0.5, β “ 5 ¨ 10´4.

rg14 “ rg18 “ rg22 “ .7, rg34 “ 1.2, rg840 “ rg841 “ 10´5

rg90 “ ¨ ¨ ¨ “ rg160 “ 1
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General ROM Augmentation & Use of ROM Hessians
§ In practice, apply ROM augmentation to original OCP.

§ A symmetric:

Compute k smallest generalized eigenvalues λ1 ď . . . ď λk of pA,Mq and
matrix of corresponding eigenvectors V P IRnˆk,
VTMV “ Ikˆk, AV “ MVdiagpλ1, . . . , λkq.

Augment: rangeppVq “ rangeprV,gsq, pVTMpV “ I.

§ A non-symmetric:

Compute k generalized eigenvalues of pA,Mq with smallest real part
Repλ1q ď . . . ď Repλkq and corresponding left and right eigenvectors V,W
(each complex vector gives two real vectors).

Augment: rangeppVq “ rangeprV,gsq, rangepxWq “ rangeprW,gsq,
xWTMpV “ I.

§ Use conjugate gradient method to solve

pH` βIqs “ ´g where g “ ∇Jp0q
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CG with Fixed ROM Hessian Approximation

Algorithm 1:

1. Generate reduced order model W,V P IRnˆk.
Compute p pH` βIqs0 and set r0 “ ´g ´ p pH` βIqs0, d0 “ r0.

2. For i “ 0, 1, 2, ..., imax

2.1 If }ri} ď tolcg, return si.

2.2 Compute hi “ p pH` βIqdi.
2.3 αi “ xri, riy { xdi,hiy

2.4 si`1 “ si ` αidi

2.5 ri`1 “ ri ´ αihi

2.6 di`1 “ ri`1 `
xri`1,ri`1y
xri,riy

di

If eigenvalues pµ1 ě . . . ě pµk ě pµk`1“ . . .“0 of pH, then Algorithm 1 converges in
k ` 1 iterations.

If r0 P RpWq, then di P RpWq for all i.
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Numerical Results

Model problem with β “ 10´4, γ “ 0.5, Ωo “ Ω “ p0, 1q3

discretized by P1 elements on a 30ˆ 30ˆ 30 spatial grid
→ n “ 29, 791, Q “ QT “ M, R “ βM

Desired state computed using initial state

spxq “2e´10}x´x1}
2
2 ` e´5}x´x2}

2
2

` 2e´50}x´x3}
2
2 ` 2e´40}x´x4}

2
2

` e´100}x´x5}
2
2 ,

where x1 “ p0.2, 0.2, 0.2q,
x2 “ p0.8, 0.8, 0.8q, x3 “ p0.5, 0.5, 0.5q,
x4 “ p0.2, 0.8, 0.8q, x5 “ p0.8, 0.2, 0.2q.

Implicit Euler method in time with 50 steps.
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Model Problem with Symmetric A (κ “ 0.1, ν “ p0, 0qT )

Solve linear system using CG with ROM k “ 20 Hessians and two CG tolerances.
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(b) tolcg “ 10´4}g}M

§ Augmented ROM Hessians produce better results

§ Coarse CG tolerance can negatively impact improvement achieved by ROM
augmentation

Matthias Heinkenschloss August 12, 2017 19



Model Problem with Symmetric A

Solve model problem with ROM size k “ 20 and tolcg “ 10´4}g}M.

CG ROM PDE solves
J }∇J} iters size full / ROM rel err

at s0 “ 0 1.46e´ 2 5.91e´ 2
Full Hessian 1.75e´ 5 5.61e´ 6 24 50 / 0

Hbsc 1.82e` 1 8.47e´ 1 11 20 2 / 22 5.44e` 3
Haug, a “ g 5.27e´ 5 8.68e´ 4 9 21 2 / 18 3.59e´ 2
Haug, a “ di 5.27e´ 5 8.68e´ 4 9 21 2 / 18 3.59e´ 2

§ Solution by augmented ROM is much better than by basic ROM (failed)

§ Computation using augmented ROM much cheaper than full Hessian

Experiments with Nonsymmetric A (ν ‰ 0)

§ Augmented ROM xW, pV gives better results than basic ROM

§ Benefit of ROM augmentation increases for more advection-dominated prob.
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Outline

ROM for Initial Value Control Problems

Sequential ROMs for Initial Value Control Problems

ROMs for Problems with Initial Value and Right Hand Side Controls
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Sequential Reduced Order Modeling

ROM augmentation provides substantial improvement over basic ROM, but
resulting s approximation may still not be sufficiently accurate

→ Apply ROM approach sequentially

§ Each iteration uses a small sized ROM that works on a different subspace

§ Isolate subspaces by projections

For an approximation sp`q of the OCP solution s˚,
ROM results in Hessian approximation pHp`q,
correction ∆s solves

p pHp`q `M´1Rq∆s “ ´∇Jpsp`qq

and yields new approximation sp``1q “ sp`q `∆s.
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Sequential ROM for Decoupled Problem

Consider diagonalizable case:

§ A is symmetric (i.e. no advection) → W “ V

§ Q “ QT “ M, R “ βM, β ą 0

§ Generalized eigenvectors Vn of pA,Mq

→ OCP decouples in n scalar OCPs with initial data rs :“ VT
nMs (by y“Vnry).

p
p

rH` βIq∆rs “ ´∇ rJprsp`qq

rsp``1q “ rsp`q `∆rs

§ After initial (` “ 0) solution with basic ROM:
first k components of rsp1q are exact, first k components of gradient are zero.

§ In step `: Repeat procedure on subsystem with indices `k ` 1 to n.

§ Use projection P to essentially remove first `k equations and unknowns
(needed to compute augmentation).
Use projection Q to essentially solve equations `k ` 1, . . . , p`` 1qk.
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Optimization with Sequential ROM Hessians
Algorithm 2:

0. Given tol P p0, 1q, sp0q, k, Vold “ rs, P “ I, Q “ I.

1. Generate Vn, i.e. eigenvectors of pA,Mq.

2. For ` “ 0, 1, 2, . . . , `max
2.1 If }∇Jpsp`qq}M ă tol, return sp`q.
2.2 Choose ROM Vc:

2.2.1 Either basic ROM Vc “ rpVnq`k`1, ¨ ¨ ¨ , pVnqp``1qks P IRnˆk

2.2.2 or this basic ROM augmented by P˚∇Jpsp`qq which gives

Vc “ rpVnq`k`1, ¨ ¨ ¨ , pVnqp``1qk, vs P IRnˆpk`1q

2.3 Compute orthogonal projection on subspace Vc: Q “ Vc
pVc

q
TM.

2.4 For the Hessian approximation pHc obtained by Vc solve

Q˚p pHc
`M´1RqQ∆s “ ´Q˚∇Jpsp`qq

2.5 Update sp``1q
“ sp`q `∆s

2.6 Set Vold
“ rVold Vc

1 . . .V
c
ks P IR

nˆp``1qk

2.7 Compute orthogonal projection on pVold
q
K: P “ I´Vold

pVold
q
TM.
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iter J }∇J} CG iters full / ROM solves

full Hessian 0 1.4578e-02 5.9128e-02 2 / 0
(size n “ 29, 791) 1 1.7529e-05 5.6103e-06 24 48 / 0

basic ROM 0 1.4578e-02 5.9128e-02 2 / 0
(size 20) 1 5.5269e-04 4.3797e-03 11 2 / 22

2 1.7462e-04 1.9109e-03 7 2 / 14
3 6.9784e-05 8.5360e-04 5 2 / 10
4 6.0665e-05 7.2887e-04 5 2 / 10
...

...
...

...
...

14 2.3966e-05 1.7130e-04 3 2 / 6
15 2.1713e-05 1.2443e-04 4 2 / 8

augmented ROM 0 1.4578e-02 5.9128e-02 2 / 0
(size 21) 1 5.2692e-05 8.6795e-04 12 2 / 24

2 2.4754e-05 3.3800e-04 7 2 / 14
3 1.9291e-05 1.5485e-04 6 2 / 12
4 1.8066e-05 6.7495e-05 5 2 / 10
...

...
...

...
...

8 1.7542e-05 6.0700e-06 4 2 / 8
9 1.7527e-05 2.4308e-06 4 2 / 8
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Numerical Results

exact

50 full PDE solves

one step of augmented
ROM

4 full PDE solves

sequential application of
augmented ROM

20 full PDE solves
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Outline

ROM for Initial Value Control Problems

Sequential ROMs for Initial Value Control Problems

ROMs for Problems with Initial Value and Right Hand Side Controls
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Problem with Controls

Recall: nu is small → No model order reduction wrt u
n is large → Model order reduction wrt y

min
s,u

Jps,uq“

ż T

0

1
2yptqTQyptq ` cptqTyptqdt` 1

2ypT qTQTypT q ` cTTypT q

` 1
2sTRs`

σ

2

ż T

0

uptqTuptqdt,

where for given s,u the state y P H1p0, T ; IRnq solves

M
d

dt
yptq `Ayptq “ fptq `Buptq, Myp0q “ Ms.

Weighted inner product in IRn`nu with matrix

ˆ

M
I

˙
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Hessian Computation & Reduced Order Modeling

∇2J

ˆ

v
d

˙

“

ˆ

H11 H12

H21 H22

˙ˆ

v
d

˙

First and second row are

qp0q `M´1Rv and ´

ż T

0

BptqTqptqdt` σ

ż T

0

dptqdt

where z and q solve

M
d

dt
zptq `Azptq “ Bdptq, Mzp0q “ Mv,

´M
d

dt
qptq `ATqptq “ Q zptq, MqpT q “ QT zpT q.

Modified basic ROM: Add columns of B to basic ROM.
Now in setting as before.
Control inputs included since rangepBq Ă rangepWq.
But, outputs not fully captured - are working on better ‘control ROM’ (rigorous
incorporation of final time observation).
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Numerical Results

§ Model problem with symmetric A

§ Control regularization σ “ 10´3 and controls are acting on

p1 “ p0.6, 0.3q, p2 “ p0.2, 0.5q, p3 “ p0.70.6q.

→ n “ 841 and 150 discrete control variables

k “ 30, tolcg “ 10´4}g}

J }∇J} CG iters ROM size full/ROM

at p0,0q 1.14e-1 2.12e-1
full Hess 2.67e-4 1.67e-5 33 68 / 0

pHbsc 3.78e+0 4.31e-1 26 33 2 / 52
pH,a“g 3.00e-4 1.42e-3 21 33+1 2 / 42
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Summary

§ Optimal control problems with controls in initial conditions arise often
– large number of control variables makes these problems expensive to solve

§ Use ROMs to reduce computational expense
– initial data vary in IRn, n " 1
– no single ROM provides good approximation

§ Introduced ROM augmentation for inexpensive, but good Hessian approx.
– substantially improves ROM quality for variable initial data / right hand
side,
– computationally inexpensive,
– complete analysis for important diagonalizable case.

§ Sequential application of augmented ROMs gives approximate optimizer with
same accuracy as the full model approach but at a faction of cost.

§ Introduced augmented ROMs for OCPs with controls in initial conditions and
right hand side.

§ Extensions still needed:
– to time varying problems A Ñ Aptq,
– ...
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