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Motivation
Linear-Quadratic Optimal Control Problem

T
g
i [ 10) ~ a0t + D) 0T g [ Tl

where for given u : [0, 7] — IR™ the state y € W(0,T) solves

6y({;, 2 kAy(x,t) + v - Vy(x,t) + yy(z,t) Eb ), xeQte(0,T),
y(m,t):(), xed,te(0,7T),
y(x,0) = s(x), x €.

After semi-discretization in space
T

T
min f %y<t>TQy<t>+c<t>Ty<t>dt+%y(TFQTy(THc%y(THJ Lu()"Ru(t)dt,

uel? 0 0
where for given control u € L?((0,7); IR™) the state y solves

thy( t)+ Ay(t) = f(t) + Bu(t), My(0) = Ms.
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» Linear-quadratic optimal control problem (although with time dependent
A ...) arises as subproblem in Newton-SQP-type methods for nonlinear
optimal control problems.

» When A has negative eigenvalues (7 < 0 in model PDE), solution of PDE
becomes unstable. Use multiple shooting reformulation.
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Multiple Shooting

Split time interval [0, T] into M
subintervals [t;,¢;41], 7 =0,..., M — 1.

y(t)

Introduce auxiliary initial values s;; solve
differential eqn. on each subinterval.

Add continuity conditions
My (tj1+1585,u) — Ms;11 =0
as constraints.

Multiple Shooting Formulation

M—1 nt;iq T
min Z f 1y, )" Qy; () +c(t) y;(t)dt +L 1u;(t) " Ru;(t)dt,

UJELQ,SJ'EIRW’ j=0 t;
+ iym1 (D) Qryv—1(T) + chym—1(T),
st. My;(tj41585,u) — Msjq =0,
where for given control u; € L?((0,7); IR™ and s; € IR™ the state y; solves

d
M£Yj(t) + ij(t) = f(t) + Buj(t), te (tj,thrl), My(tj) = MSj.
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Multiple Shooting Formulation

M—1 ~t;4q T
min ) f iy, )" Qy;(t) +C(t)Tyj(t)dt+f 1u; ()" Ru;(t)dt,

LIJ'ELQ,SJ'GR" j=0 t; 0

+ 3y (1) " Qryn—1(T) + chyn—1(T),
s.t. My;(tj+1585,u) — Msjq =0,
where for given control u; € L((0,T); IR™ and s; € IR™ the state y; solves

d
M%y](t) + ij(t) = f(t) + BUj(t), te (tj,tj+1), My(tj) = MSj.

» Multiple shooting formulation can alleviate the instability, but at the price of
introducing additional optimization variables [so, ...,sy 1] € RM™, n > 1.

» For PDE constrained problems this creates challenges for numerical solution.
» Goal: Faster solver by Reduced Order Modeling for Hessian computation
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ROM and Optimization

» Finding ROMs that well approximate the optimization problem over a range
of optimization parameters can be expensive.

» Recovering from poor ROMs in the optimization can be expensive.

» Often difficult to amortize cost of ROM generation in the optimization.
In his case better to use inexpensive, rough ROMs to solve subproblems,
rather that to approximate original optimization problem.

In this talk

» There is no (small) ROMs that well approximates the optimization problem
(number of inputs and outputs is large).

» Therefore, we use full order model to compute objective function and
gradient.

» Use ROM to generate efficient Hessian approximation for fast Newton-type
algorithms.
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Outline

ROM for Initial Value Control Problems
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Optimal Control Problems with Initial Value Controls

min .J(s) :J 1y(t)TQY(t)JrC(t)Ty(t)dH%.V(T)TQTy( T)+cpy(T)+ ﬁ s"Ms,

seR™ 0 2

where for given s the state y solves

MZy(t) + Ay(t) = £(t), My(0) = Ms.
» Q, Qp symmetric, pos semidefinite; M symmetric, pos. definite, 5 > 0,

» A possibly non-symmetric

Such problems arise
» as subproblem on multiple shooting,
> in source inversion, e.g., [Bashir et al., 2008],

» as subproblems in data assimilation, e.g., [Blum et al.,2009], [Rao&Sandu, 2016],
[talk by Nancy Nichols].
ROM for variable initial conditions [H.,Reis,Antoulas 2011],
[Beattie, Gugercin,Mehrmann2016], but require initial value in small dim. subspace.
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Optimality Condition and Hessian Computation

» Weighted inner product {s;,s2) = s Ms, .

» Gradient: Solve

MLyt + Ay = 50,

“MEp(t) + ATP() = Qy (1) + elt).

VJ(s) = p(0) + Bs.

» Hessian-vector-product: Solve

d
M -La(t) + Aa(t) = 0,

M () + ATa(t) = Qalt),

V2J s = Hs + s, where Hs = q(0).

» First order optimality condition

0=VJ(syx) = V3Jsy +VJ(0) =

Mz(0) = Ms,

Mp(T) = QTZ(T) )

Hs, + sy + V.J(0).
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Petrov-Galerkin Projection based ROM

» Want to approximate Hessian in (H + SI)s, = —V.J(0), by projection based
reduced order model (ROM)

» For given V., W € IR"**  k « n, with WMV invertible (often =1 )

z ~ Vz and q  Wq where Zz, q solve

d.. .
WTMV%z(t) +WTAV z(t) = 0,

WTMVZ(0) = W Ms
and
—VTMW%a(t) + VIATW q(t) = VIQV %(t),
VIMWQ(T) = VIQrV z(T).
ROM Hessian approximation
Hs = Wq(0).

» Solve Hs + s = —V.J(0).
» Difficulty: s varies in IR™. Can’t find ROM that is good for all s € IR™.
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Important Special Case to lllustrate Issues

» A is symmetric (i.e. no advection) W=V
»Q=Qr=M
» Generalized eigenvalue decomposition of (A, M):

A =diag(\, ..., ) € R™™ A\ < ... < A\

viMV, =1, AV, = MV,A.

After transformation of variables  y(t) = V, ¥(t)

OCP decouples into n real scalar OCPs with initial data § := V. Ms.

Hessian is diagonal, V2] = ﬁ+ﬁI, where

10°
~ . ~ ~ .
H= dlag(HH,...,H,,m), 10
1072
and
~ ~ ~ 1073
H11>H22>‘..Hnn>0. u
10 0 200 400 600 800
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Basic ROM = best rank k approximation

~

» Approximate H= diag(ITIH7 ...,H,,) by best rank k-approximation

Hbse — diag(ﬁlh .. ,ﬁkk,o, ..., 0).

» This is basic ROM

» H"° 3 obtained by projection with V=W= le1, ..., ex] € R™F,
> Only two differential equations of size k need to be solved.
> Need to compute k smallest generalized eigenvalues (A, M).

» HS + 5= g% — Vj(O) is approximated by

~

H;;S; +B§i = —§i7 i=1,...,k exact
Bsi=-g;, i=k+1,....n potentially large error

» Error large if H; > [ for some ¢ > k + 1, and there are relatively large
components gxi1,...,8n
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Augmentation of Basic ROM by right hand side g

ei] to generate V.= W with

Add rhs g to reduced basis V = W = [e1,...,

A~

range(V) = range([V,g]), VIV =1
If g ¢ V., then new basis vector is
n )1/2

v:(o,...,o,gk+1,...,§n)T/(Z g

i=k+1

Hessian approximation

k
H*e S = Z H“ gz e; + ;)(0) v
i=1

required solution of two additional scalar ODEs

S @D =0, &)=

() + M@ 1) = S0, BT) = &)
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Error Estimate

(H + BI)S = —g with full Hessian
(HP* + BI)3P*° = —g with basic ROM Hessian
(H€ + BI)3*"8 = —g with augm. ROM Hessian

Error estimate

v gl o Iy bs h(A\E ° & o e b
HS*SdugHQ < HS*SbsCHQ o ( L( (g)) > 2 gi2 < HS*SbbCHQ.

B (hvs) +8)) &
where
h(A) = e 2 4+ (1— e /(2), ( =0, mon \, convex)
H; = h(\y),
Ag) = Z Aié?/ Z g2, (weighted arithmetic mean of A\gi1,...)

i=k+1 i=k+1

Roughly speaking, augmentation works the better the fewer important right hand
side components gx11, ..., &, exist
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[[lustration

FEM disc. of 2D model problem with x = 0.1, v = (0,0)%, v = 0.5, 3 =5-10~*.

14 = G18 = G22 = .7, §34 = 1.2, Ggao = Gga1 = 10
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General ROM Augmentation & Use of ROM Hessians

» In practice, apply ROM augmentation to original OCP.
» A symmetric:

Compute k smallest generalized eigenvalues A} < ... < A\ of (A, M) and
matrix of corresponding eigenvectors V € IR™**,
VIMV = Ix, AV = MVdiag(\1, ..., \).
Augment: range(V) = range([V,g]), VIMV =L
» A non-symmetric:
Compute k generalized eigenvalues of (A, M) with smallest real part

Re(A1) < ... < Re(Ag) and corresponding left and right eigenvectors V, W
(each complex vector gives two real vectors).

Augment: range(V) = range([V, g]), range(W) = range([W, g]),
WMV =1

» Use conjugate gradient method to solve

(H+pfI)s=—g whereg=VJ(0)
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CG with Fixed ROM Hessian Approximation

Algorithm 1:

1. Generate reduced order model W,V € B”ik.

Compute (H + SI)sg and set rg = —g — (H + 5I)sg, dg = ro.
2. Fori=0,1,2, ..., imax

2.1 If |r;|| < tol®®, return s;.

2.2 Compute h; = (ﬁ + AI)d;.

2.3 a; = <I‘»L',I‘i>/<di, h1>

2.4 Si+1 = 84 + Dtidi

25 riy1 =r; — Oé»;hi

2.6 dit1 =711 + % d;

If eigenvalues fi1 = ... > fix = figs1=...=0 of H, then Algorithm 1 converges in
k + 1 iterations.

If ro € R(W), then d; € R(W) for all 4.
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Numerical Results

Model problem with 8 = 1074, v = 0.5, Q, = Q = (0,1)3
discretized by P1 elements on a 30 x 30 x 30 spatial grid
—-+n=29791,Q=Qr=M, R=5M

Desired state computed using initial state

2 Ell o (12

s(z) =2e10la=m1l3 4 o~5la—al3
_ 2 _ 2
+ 2e 50]|lz—z3(3 + 2e 40z —z4]3

+ e 100le—asl3
where 1 = (0.2,0.2,0.2),
x9 = (0.8,0.8,0.8), x3 = (0.5,0.5,0.5),
24 = (0.2,0.8,0.8), 25 = (0.8,0.2,0.2).

Implicit Euler method in time with 50 steps.
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Model Problem with Symmetric A (k = 0.1, v = (0,0)7)

Solve linear system using CG with ROM & = 20 Hessians and two CG tolerances.

10°

relative error squared
=

0

—5-basicROM
—*%—augmROM

x\q&i‘k,»_\)‘ s

—5—basicROM
—<—augmROM

M

relative error squared
5

50 100 150 200 0 50 100 150 200
size of ROM size of ROM
(a) tol*® = 107?|g|m (b) tol°® = 10~*|g|m

» Augmented ROM Hessians produce better results

» Coarse CG tolerance can negatively impact improvement achieved by ROM
augmentation

Matthias Heinkenschloss

August 12, 2017

19



Model Problem with Symmetric A

Solve model problem with ROM size k = 20 and tol®? = 10~*||g|m.
CG ROM PDE solves

J [VJ]| iters  size  full / ROM rel err
atsg =0 1.46e —2 5.9le—2
Full Hessian  1.75e —5 5.6le—6 24 50/0
Hbse 1.82e+1 847e—1 11 20 2/22 5.44e + 3
H*"¢, a=g 527e—5 8.68¢—4 9 21 2 /18 3.59e — 2
H*® a=d, 527e—5 8.68¢—14 9 21 2/18 3.59e — 2

» Solution by augmented ROM is much better than by basic ROM (failed)
» Computation using augmented ROM much cheaper than full Hessian

Experiments with Nonsymmetric A (v # 0)

» Augmented ROM \/7&\7,\7 gives better results than basic ROM
» Benefit of ROM augmentation increases for more advection-dominated prob.
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Outline

Sequential ROMs for Initial Value Control Problems
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Sequential Reduced Order Modeling

ROM augmentation provides substantial improvement over basic ROM, but
resulting s approximation may still not be sufficiently accurate

— Apply ROM approach sequentially

» Each iteration uses a small sized ROM that works on a different subspace

» Isolate subspaces by projections

For an approximation s'*) of the OCP solution s,
ROM results in Hessian approximation H(),
correction As solves

(HO + M'R)As = —VJ(s)

and yields new approximation s(*1) = s(O) 4+ As.
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Sequential ROM for Decoupled Problem

Consider diagonalizable case:
» A is symmetric (i.e. no advection) W=V
»Q=Qr=M, R=M, >0
» Generalized eigenvectors V,, of (A, M)
— OCP decouples in n scalar OCPs with initial data §:= VI Ms (by y =V,.3).

(H + S)AS = —V.J ()
3D =30 1 A3

» After initial (¢ = 0) solution with basic ROM:
first k components of $(1) are exact, first k& components of gradient are zero.

» In step ¢: Repeat procedure on subsystem with indices ¢k + 1 to n.

» Use projection P to essentially remove first /k equations and unknowns
(needed to compute augmentation).
Use projection Q to essentially solve equations ¢k +1,..., (¢ + 1)k.
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Optimization with Sequential ROM Hessians

Algorithm 2:

0. Given tol € (0,1), s, k, VM =[], P=1, Q=1
1. Generate V,,, i.e. eigenvectors of (A, M).
2. For£=0,1,2,... ,lmax

2.1 If [VJI(s')|m < tol, return s,
2.2 Choose ROM V¥¢:

2.2.1 Either basic ROM V¢ = [(Vi)skt1, -+ (Va)(eq1ys) € RP¥E
2.2.2 or this basic ROM augmented by P*V.J(s(9)) which gives

Ve =[(Va)eks1s - » (Va)r1yr V] € R (k+1)

2.3 Compute orthogonal projection on subspace V¢: Q = V¢(V*)TM.
2.4 For the Hessian approximation HE obtained by V¢ solve

Q*(H + M 'R)QAs = —Q*VJ(s")

2.5 Update s“FD = s 4 As
2.6 Set VO = [V V§ . V] e RMCHDF

2.7 Compute orthogonal projection on (Vo9)L: P =1 — Vo4 (Vo)TM.

Matthias Heinkenschloss August 12, 2017
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iter J IVJ CG iters  full / ROM solves
full Hessian 0 1.4578e-02  5.9128e-02 2/0
(size n = 29,791) 1 1.7529e-05 5.6103e-06 24 48 /0
basic ROM 0  1.4578e-02 5.9128e-02 2/0
(size 20) 1 55260e-04 4379703 11 2/ 22
2 1.7462e-04  1.9109e-03 7 2/14
3 6.9784e-05 8.5360e-04 5 2 /10
4  6.0665e-05 7.2887e-04 5 2 /10
14 2.3966e-05 1.7130e-04 3 2/6
15  2.1713e-05 1.2443e-04 4 2/8
augmented ROM 0  1.4578e-02 5.9128e-02 2/0
(size 21) 1 5.2692e-05 8.6795e-04 12 2/24
2 2.4754e-05 3.3800e-04 7 2/14
3 1.9291e-05 1.5485e-04 6 2 /12
4 1.8066e-05 6.7495e-05 5 2 /10
8 1.7542e-05 6.0700e-06 4 2/8
9 1.7527e-05 2.4308e-06 4 2/8
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Numerical Results

0.5

0 1

0 05 5 05
exact one step of augmented
ROM
50 full PDE solves 4 full PDE solves
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Outline

ROMs for Problems with Initial Value and Right Hand Side Controls
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Problem with Controls

Recall: n,, is small = No model order reduction wrt u
n is large — Model order reduction wrt y

T
min J(s, u) :L %y(t)TQy(t) + c(t)Ty(t)dt + %y(T)TQTy(T) + c%y(T)

s,u

T
+1s"Rs + g L u(t)u(t)dt,

where for given s, u the state y € H'(0,T; IR™) solves

M%y(t) + Ay(t) =f(t) + Bu(t), My(0) = Ms.

Weighted inner product in IR" "™« with matrix ( M I )
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Hessian Computation & Reduced Order Modeling
()= (i ) (s

First and second row are

T T

q(0) + M~ 'Rv  and —JO B(t)Tq(t)dt—i-aL d(t)dt
where z and q solve
th (t) + Az(t) = Bd(t), Mz(0) — My,
ML q(r) + ATa(r) = Qa(r), Maq(T) = Qra(T).

Modified basic ROM: Add columns of B to basic ROM.

Now in setting as before.

Control inputs included since range(B) < range(W).

But, outputs not fully captured - are working on better ‘control ROM’ (rigorous
incorporation of final time observation).
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Numerical Results

» Model problem with symmetric A

» Control regularization ¢ = 102 and controls are acting on
p1 = (0.6,0.3), p2=(0.2,0.5), p3=(0.70.6).
— n = 841 and 150 discrete control variables

k = 30, tol®d = 10~4|g|

J IVJ| CGiters ROM size full/ROM
at (0,0) 1.ldel 2121
full Hess 2.67e-4  1.67e-5 33 68 /0
H>  378e+0 4.3le-1 26 33 2 /52

ﬁ,a:g 3.00e-4  1.42e-3 21 33+1 2 /42
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Summary

» Optimal control problems with controls in initial conditions arise often
— large number of control variables makes these problems expensive to solve
» Use ROMs to reduce computational expense
— initial data vary in IR", n. » 1
— no single ROM provides good approximation
» Introduced ROM augmentation for inexpensive, but good Hessian approx.
— substantially improves ROM quality for variable initial data / right hand
side,
— computationally inexpensive,
— complete analysis for important diagonalizable case.
» Sequential application of augmented ROMs gives approximate optimizer with
same accuracy as the full model approach but at a faction of cost.
» Introduced augmented ROMs for OCPs with controls in initial conditions and
right hand side.
» Extensions still needed:
— to time varying problems A — A(t),
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