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Overview

I shall present recent research on model order reduction of bounded
real and positive real linear control systems by the generalised singular
perturbation approximation
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Model order reduction

Model order reduction refers to approximating an elaborate model
with a simpler one which is close to the original

Simpler means of the same form, but with lower state-space
dimension r < n

Close refers to qualitative properties: (stability, minimality,
dissipativity etc) of the system and quantitatively: the input-output
maps u 7→ y “close” in some sense

Model reduction is important for simulation and controller design
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Linear control systems

We shall consider linear control systems

ẋ = Ax + Bu, x(0) = x0

y = Cx + Du,

}
(1)

where for n,m, p ∈ N

(A,B,C ,D) ∈ Rn×n × Rn×m × Rp×n × Rp×m .

We shall assume that A is stable (or Hurwitz), meaning α(A) < 0

Transfer function of (1) is

G(s) = C (sI − A)−1B + D,

I maps û 7→ ŷ via ŷ(s) = G(s)û(s) and is defined for s ∈ Cα for some
α ∈ R

I is rational and proper
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Linear control systems

Conversely, given G : C0 → Cp×m proper rational, we can find a
realisation of the form (1), denoted by (A,B,C ,D)

Realisations are never unique

Indeed, if (A,B,C ,D) is a realisation of G, then so is
(T−1AT ,T−1B,CT ,D) for every invertible T ∈ Cn×n
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Properties of the transfer function

There are many!

For input u ∈ L2 and output y ∈ L2, we have

‖y‖L2 ≤ ‖G‖H∞‖u‖L2 ,

where
‖G‖H∞ := sup

z∈C0

‖G(z)‖2 = sup
ω∈R
‖G(iω)‖2 .

In the SISO case, if u(t) = sin(ωt) for ω ∈ R, then for large t

y(t) ≈ |G(iω)| sin(ω(t + argG(iω))) .

If u(t) has a limit as t →∞, then for all x0 ∈ Rn

lim
t→∞

y(t) = G(0) lim
t→∞

u(t) .

Plays a crucial role in stability theory when connecting versions
of (1), or when (1) is in feedback connection with a nonlinear term.
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Model reduction

We approximate G by approximating a state-space realisation of G

Given (A,B,C ,D) partition

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C = [ C1 C2 ]

with A11 ∈ Cr×r , r < n and B1, C1 conformly sized

To connect with prevailing notation of workshop

A11 = W TAV = [ I 0 ]
[
A11 A12
A21 A22

] [
I
0

]
, B1 = W TB, C1 = CV ,

(although I tend to think that

X = X1 ⊕ X2 and A11 = PX1A|X1 : X1 ↪→ X
A−→ X

PX1−−→ X ≈ X1) .

Many model reduction schemes build a reduced order model from
these components, somehow.

Note that the components may change with realisation
Chris Guiver Generalised SPA 7 / 32
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The generalised singular perturbation approximation

For ξ ∈ C, Re(ξ) ≥ 0 and r ∈ {1, 2, . . . , n − 1}, the generalised
singular perturbation approximation (GSPA) is given by

Aξ := A11 + A12(ξI − A22)−1A21 , Bξ := B1 + A12(ξI − A22)−1B2 ,

Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)
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Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)

Obvious questions are
I why definition? role of ξ?
I how to choose decomposition of A,B,C?
I what properties does it have?
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Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)

Defining property: for ξ 6∈ σ(Aξ)

G(ξ) = Gξ(ξ) ,

that is, GSPA interpolates original transfer function at ξ

Proven by algebraic manipulation
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Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)

Key disadvantage: If Im (ξ) 6= 0, then (Aξ,Bξ,Cξ,Dξ) will have
non-real components in general

However, if ξ ∈ R and ξ ≥ 0, then

(Aξ,Bξ,Cξ,Dξ) ∈ Rr×r × Rr×m × Rp×r × Rp×m
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Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)

From a state-space perspective we have

ẋ1 = A11x1 + A12x2 + B1u

ẋ2 = A21x1 + A22x2 + B2u

y = C1x1 + C2x2 + Du


The GSPA arises by assuming that ẋ2 = ξx2 above and subsequently
eliminating x2
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The generalised singular perturbation approximation

For ξ ∈ C, Re(ξ) ≥ 0 and r ∈ {1, 2, . . . , n − 1}, the generalised
singular perturbation approximation (GSPA) is given by

Aξ := A11 + A12(ξI − A22)−1A21 , Bξ := B1 + A12(ξI − A22)−1B2 ,

Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)

The case ξ = 0 corresponds to x2 at equilibrium and so is the (usual)
singular perturbation approximation (SPA)

A0 := A11 − A12A
−1
22 A21 , B0 := B1 − A12A

−1
22 B2 ,

C0 := C1 − C2A
−1
22 A21 , D0 := D − C2A

−1
22 B2 ,

The SPA has the property that G(0) = G0(0) — interpolation at zero
— the steady-state gains coincide
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The generalised singular perturbation approximation

As mentioned, key question is how to choose realisation and
decomposition to give

A =
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C = [ C1 C2 ]

To answer that, first look at the case |ξ| → ∞ in the GSPA which
gives reduced order system

(A11,B1,C1,D)

Here state-space interpretation is that x2 is simply omitted in reduced
order model
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Balanced realisations

Recall the controllability Q and observability O Gramians,

Q =

∫
R+

eAtBB∗eA
∗t dt, O =

∫
R+

eA
∗tC ∗CeAt dt .

Note these quantities depend on the realisation

The Gramians of Q̃, Õ of (Ã, B̃, C̃ , D̃) = (T−1AT ,T−1B,CT ,D) are
given by

Q̃ = T−1QT−∗, Õ = T ∗OT ⇒ Q̃Õ = T−1QOT ,

and so the eigenvalues of QO are similarity invariants

Definition

The realisation (A,B,C ,D) is Lyapunov balanced if Q = O =: Σ

It is well-known that it is always possible to construct a balanced
realisation from a given one via a state-space similarity transformation
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Definition

The realisation (A,B,C ,D) is Lyapunov balanced if Q = O =: Σ

It is well-known that it is always possible to construct a balanced
realisation from a given one via a state-space similarity transformation
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Hankel operators and singular values

The Hankel operator H of (1) is given by

H = CB : L2(R−;Cm)→ L2(R+;Cp)

where

B : L2(R−;Cm)→ Cn, Bu =

∫ 0

−∞
e−AsBu(s) ds,

C : Cn → L2(R+;Cp), (Cx0)(t) = CeAtx0,

The maps B and C satisfy

Q = BB∗, O = C∗C .

The transfer function determines the Hankel operator

The converse is true up to an additive constant (the feedthrough D)

Chris Guiver Generalised SPA 11 / 32



Hankel operators and singular values

The Hankel operator H of (1) is given by

H = CB : L2(R−;Cm)→ L2(R+;Cp)

where

B : L2(R−;Cm)→ Cn, Bu =

∫ 0

−∞
e−AsBu(s) ds,

C : Cn → L2(R+;Cp), (Cx0)(t) = CeAtx0,

The maps B and C satisfy

Q = BB∗, O = C∗C .

The transfer function determines the Hankel operator

The converse is true up to an additive constant (the feedthrough D)

Chris Guiver Generalised SPA 11 / 32



Hankel operators and singular values

The Hankel operator H of (1) is given by

H = CB : L2(R−;Cm)→ L2(R+;Cp)

where

B : L2(R−;Cm)→ Cn, Bu =

∫ 0

−∞
e−AsBu(s) ds,

C : Cn → L2(R+;Cp), (Cx0)(t) = CeAtx0,

The maps B and C satisfy

Q = BB∗, O = C∗C .

The transfer function determines the Hankel operator

The converse is true up to an additive constant (the feedthrough D)

Chris Guiver Generalised SPA 11 / 32



Hankel operators and singular values

The Hankel operator H of (1) is given by

H = CB : L2(R−;Cm)→ L2(R+;Cp)

where

B : L2(R−;Cm)→ Cn, Bu =

∫ 0

−∞
e−AsBu(s) ds,

C : Cn → L2(R+;Cp), (Cx0)(t) = CeAtx0,

The maps B and C satisfy

Q = BB∗, O = C∗C .

The transfer function determines the Hankel operator

The converse is true up to an additive constant (the feedthrough D)

Chris Guiver Generalised SPA 11 / 32



Hankel singular values continued

We see that apart from zero

σ(H∗H) = σ(B∗C∗CB) = σ(BB∗C∗C) = σ(QO),

and so there are only finitely many (non-zero) singular values

Thus, the singular values of H are the squareroots of the eigenvalues
of QO, denoted by σk . They are ordered

σ1 > σ2 > · · · > σk ≥ 0 ,

(each with a multiplicity possibly bigger than one)

The Hankel singular values are invariant under state-space similarity
transforms
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Energy interpretation

If (1) is controllable, then

inf
u∈L2
‖u‖2L2 = 〈xf ,Q−1xf 〉 =: Cxf ,

subject to (1) with x(−∞) = 0 and x(0) = xf

Morally, Cxf captures how “hard” it is to reach the state xf

Similarly, the “energy” of the uncontrolled output in forwards time
starting at state x(0) = xf is

‖y‖2L2 = 〈xf ,Oxf 〉 =: Exf .

So Exf captures how much the state xf contributes to the energy of
the output
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Energy interpretation

Suppose the system (1) is Lyapunov balanced with simple singular
values, so

Q = O = Σ = diag {σ1, . . . , σn},

with respect to the orthonormal basis {vi}1≤i≤n
Then

Cvi = 〈vi ,Q−1vi 〉 = σ−1i ,

Evi = 〈vi ,Ovi 〉 = σi ,

States vi with singular values equal to one cost the same energy to
reach as yield when observed

Further, states corresponding to small singular values require lots of
energy to reach and yield little energy from observing
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Lyapunov balanced truncation

Lyapunov balanced truncation is to truncate states that correspond to
small singular values
Suppose we keep σ1, . . . , σr . The reduced order system

(A11,B1,C1,D)

(the GSPA with ξ →∞) is called the Lyapunov balanced truncation
Balanced truncations inherit stability and minimality from (1)
Lyapunov balanced truncations may be computed by computing the
solutions of Lyapunov equations

AQ+QA∗ + BB∗ = 0 and A∗O +OA + C ∗C = 0 .

An appealing facet of balanced truncation is the a priori error bound

‖G− G1‖H∞ ≤ 2
k∑

i=r+1

σi ,

proved independently by Enns and Glover in 1984.
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Lyapunov balanced truncation

‖G− G1‖H∞ ≤ 2
k∑

i=r+1

σi ,

The above error bound is sharp for symmetric SISO systems

The lower bound

2
k∑

i=r+1

mi

m
σi ≤ ‖G− G1‖H∞ ,

was derived in [Opmeer, Reis 2015] for MIMO (m > 1) symmetric
systems, where mi is the multiplicity of σi as a singular value.
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Lyapunov balanced truncation

‖G− G1‖H∞ ≤ 2
k∑

i=r+1

σi ,

Trivially, when rank (Hr ) = r , the lower bound

σr+1 ≤ ‖H − Hr‖ ≤ ‖G− Gr‖H∞ ,

always holds

[Glover,‘84] showed that the transfer function G̃ corresponding to the
Hankel operator H̃ satisfies

‖G− G̃− D0‖H∞ ≤
k∑

i=r+1

σi ,

for some D0, where
σr+1 = ‖H − H̃‖ .
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Generalised singular perturbation approximation

Theorem

Given ξ ∈ C with Re(ξ) ≥ 0 and stable, minimal, balanced quadruple

(A,B,C ,D), assume that the Hankel singular values are simple.

Then

(Aξ,Bξ,Cξ,Dξ), the generalised singular perturbation approximation of

order r ∈ n − 1, is well-defined and:

(i) Aξ is Hurwitz and (Aξ,Bξ,Cξ) is minimal.

(ii) If ξ ∈ iR, then (Aξ,Bξ,Cξ) is balanced.

Let Gξr denote the transfer function of the GSPA. Then

Gξr ∈ H∞(C0,Cp×m) has McMillan degree r , Gξr (ξ) = G(ξ) and

‖G− Gξr ‖H∞ ≤ 2
n∑

j=r+1

σj . (2)
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Generalised singular perturbation approximation

GSPA proposed in a control theoretic setting in [1]–[2] and properties
studied across [3]–[6].

[1] K. V. Fernando and H. Nicholson. Singular perturbational model reduction of
balanced systems, IEEE Trans. Automat. Control, 27 (1982), 466–468.

[2] K. V. Fernando and H. Nicholson. Singular perturbational model reduction in the
frequency domain, IEEE Trans. Automat. Control, 27 (1982), 969–970.

[3] U. M. Al-Saggaf and G. F. Franklin. Model reduction via balanced realizations: an
extension and frequency weighting techniques, IEEE Trans. Automat. Control, 33
(1988), 687–692.

[4] Y. Liu and B. D. O. Anderson. Singular perturbation approximation of balanced
systems, Internat. J. Control, 50 (1989), 1379–1405.

[5] P. Heuberger. A family of reduced order models based on open-loop balancing, in
Selected Topics in Identification, Modelling and Control, Delft University Press,
1990, 1–10.

[6] G. Muscato and G. Nunnari. On the σ-reciprocal system for model order
reduction, Math. Model. Systems, 1 (1995), 261–271.
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Model reduction for dissipative systems

Bounded-realness and positive-realness are important qualitative
properties pertaining to dissipation of energy in control systems

May well be desirable for these properties to be retained in a reduced
order model

Need not be preserved in Lyapunov balanced GSPA (including
balanced truncation and SPA)

Balanced truncation and SPA have been extended to bounded-real
and positive-real systems and make use of bounded-real and
positive-real balanced realisations. Shown that:

I stability inherited
I minimality inherited
I respective dissipativity property holds
I interpolation at infinity and zero, respectively
I error bounds hold
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Signpost for remainder of talk

When the GSPA is defined in terms of bounded-real or positive-real
balanced realisations, then

I stability inherited
I minimality inherited
I respective dissipativity property holds
I interpolation at infinity and zero, respectively at ξ
I error bounds hold
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Bounded-real systems

G ∈ H∞ is bounded real if ‖G‖H∞ ≤ 1 (and so ‖y‖L2 ≤ ‖u‖L2)

G ∈ H∞ is strictly bounded real if ‖G‖H∞ < 1

Let (A,B,C ,D) denote a minimal realisation of G. The following are
equivalent.

(i) G is bounded real
(ii) There exists a triple (P,K ,W ) with P = P∗ positive-definite satisfying

the bounded-real Lur’e equations

A∗P + PA + C∗C = −K∗K ,

PB + C∗D = −K∗W ,

I − D∗D = W ∗W .
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Bounded-real systems

The previous equivalences are often called the bounded-real lemma

If I − D∗D is invertible and P solves

A∗P + PA + C ∗C = −K ∗K
PB + C ∗D = −K ∗W
I − D∗D = W ∗W

 (3)

then P solves the bounded-real algebraic Riccati equation

A∗P + PA + C ∗C + (PB + C ∗D)(I − D∗D)−1(B∗P + D∗C ) = 0 .
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Bounded-real systems

If (i) or (ii) hold, then (3) has extremal solutions Pm, PM in the sense
that any P = P∗ ≥ 0 solving (3) satisfies

0 < Pm ≤ P ≤ PM .

The extremal operators Pm, PM are the optimal cost operators of the
bounded real optimal control problems:

〈PMx0, x0〉X = inf
u∈L2(R−)

∫
R−
‖u(s)‖2 − ‖y(s)‖2 ds ,

−〈Pmx0, x0〉X = inf
u∈L2(R+)

∫
R+

‖u(s)‖2 − ‖y(s)‖2 ds ,

both subject to (1) (and appropriate initial/final state conditions)
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Bounded-real balanced realisations

Definition

The realisation (A,B,C ,D) is bounded-real balanced if Pm = P−1M = Σ.

If P solves (3), then P−1 solves the dual equations

AQ + QA∗ + BB∗ = −LL∗,
QC ∗ + BD∗ = −LX ∗,

I − DD∗ = XX ∗,

for some L, X , or the dual Riccati equation

AQ + QA∗ + BB∗ + (QC ∗ + BD∗)(I − DD∗)−1(CQ + DB∗) = 0 .

Since P−1M = Qm, the realisation (A,B,C ,D) is bounded-real
balanced if

Pm = Qm = Σ .
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Bounded-real balanced realisations

It is always possible to construct a bounded-real balanced realisation
via a state-space transformation of a given realisation

The eigenvalues of Σ are called the bounded-real singular values or
bounded-real characteristic values

Truncation takes place according to the size of these singular values

Given a bounded real balanced realisation (A,B,C ,D), ξ ∈ C,
Re(ξ) ≥ 0 and r ∈ {1, 2, . . . , n − 1}, the bounded-real GSPA is given
as before

Aξ := A11 + A12(ξI − A22)−1A21 , Bξ := B1 + A12(ξI − A22)−1B2 ,

Cξ := C1 + C2(ξI − A22)−1A21 , Dξ := D + C2(ξI − A22)−1B2 .

provided ξ 6∈ σ(A22)
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Bounded-real GSPA

Theorem (G.‘17)

Given ξ ∈ C with Re(ξ) ≥ 0 and stable, minimal, and bounded real balanced
quadruple (A,B,C ,D), assume that the bounded real singular values are simple.

Then (Aξ,Bξ,Cξ,Dξ), the bounded real generalised singular perturbation
approximation of order r ∈ n − 1, is well-defined and

(i) (Aξ,Bξ,Cξ,Dξ) is bounded real, and is bounded real balanced if ξ ∈ iR.

(ii) Aξ is Hurwitz.

(iii) If (A,B,C ,D) is strictly bounded real, then (Aξ,Bξ,Cξ,Dξ) is minimal and
strictly bounded real.

The transfer function Gξ
r of the GSPA is bounded-real and

‖G− Gξ
r ‖H∞ ≤ 2

n∑
j=r+1

σj .

If ‖G‖H∞ < 1, then ‖Gξ
r ‖H∞ < 1

.
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Spectral factors

Recall the bounded-real Lur’e equations

A∗P + PA + C ∗C = −K ∗K
PB + C ∗D = −K ∗W
I − D∗D = W ∗W

If G is realised by (A,B,C ,D) and R realised by (A,B,K ,W ), then

I − (G(s))∗G(s) = (R(s))∗R(s) ∀ s ∈ iR .

R is a so-called spectral factor of I − G∗G

Using dual equations, can also obtain a spectral factor S such that
I − GG∗ = SS∗ on imaginary axis
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Bounded-real GSPA also approximates spectral factors

Proposition (G.‘17)

Imposing notation and assumptions of previous theorem, assume that ξ ∈ iR,
there exists R,Rξ

r ∈ H∞ such that

(i) I − (G(s))∗G(s) = (R(s))∗R(s) for all s ∈ iR

(ii) I − (Gξ
r (s))∗Gξ

r (s) = (Rξ
r (s))∗Rξ

r (s) for all s ∈ iR

(iii) ∥∥∥∥[G− Gξ
r

R− Rξ
r

]∥∥∥∥
H∞

≤ 2
n∑

j=r+1

σj ,

(iv) Rξ
r may be chosen with the interpolation property R(ξ) = Rξ

r (ξ)

Similar statements apply to other spectral factor S and Sξr

Obtain sub-spectral factors when Re (ξ) > 0
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Positive-real systems

G is positive real if G(s) + (G(s))∗ ≥ 0 for all s ∈ C0

G is strongly positive real if G(s) + (G(s))∗ ≥ δI for all s ∈ C0

Positive-real functions need not be stable s 7→ 1/s or proper s 7→ s

Let (A,B,C ,D) denote a stable, minimal realisation of G. The
following are equivalent

(i) G is positive real
(ii) There exists a triple (P,K ,W ) with P = P∗ positive-definite satisfying

the positive-real Lur’e equations

A∗P + PA = −K∗K ,
PB − C∗ = −K∗W ,

D + D∗ = W ∗W .

(iii) For input u ∈ L2 and output y ∈ L2 with initial condition x0 = 0∫ t

0

2Re 〈u(s), y(s)〉 ds ≥ 0, ∀ t ≥ 0.
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Let (A,B,C ,D) denote a stable, minimal realisation of G. The
following are equivalent

(i) G is positive real
(ii) There exists a triple (P,K ,W ) with P = P∗ positive-definite satisfying

the positive-real Lur’e equations

A∗P + PA = −K∗K ,
PB − C∗ = −K∗W ,

D + D∗ = W ∗W .

(iii) For input u ∈ L2 and output y ∈ L2 with initial condition x0 = 0∫ t

0

2Re 〈u(s), y(s)〉 ds ≥ 0, ∀ t ≥ 0.
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Positive-real balanced realisations

The previous equivalences are often called the positive-real lemma or
KYP lemma

Positive-real balanced realisations are morally the same as the
bounded-real versions...

...now balance extremal solutions of positive-real Lur’e equations or
positive-real algebraic Riccati equation

Can either work from first principles or use bounded-real case and
Cayley transform

G 7→ (I − G)(I + G)−1

which (roughly) maps positive real functions to bounded real, and
vice-versa
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Positive-real GSPA

Theorem (G.‘17)

Given ξ ∈ C with Re(ξ) ≥ 0 and stable, minimal, and positive real balanced
quadruple (A,B,C ,D), assume that the positive real singular values are simple.

Then (Aξ,Bξ,Cξ,Dξ), the positive real generalised singular perturbation
approximation of order r ∈ n − 1, is well-defined and

(i) (Aξ,Bξ,Cξ,Dξ) is positive real, and is positive real balanced if ξ ∈ iR
(ii) Aξ is Hurwitz

(iii) If (A,B,C ,D) is strictly positive real, then (Aξ,Bξ,Cξ,Dξ) is minimal and
strictly positive real

The transfer function Gξ
r of the GSPA is positive-real and

δ(G,Gξ
r ) ≤ 2

n∑
j=r+1

σj .

If G is strongly positive real, then so is Gξ
r
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Summary

Model order reduction for linear control systems by the generalised
singular perturbation approximation has been revisited

Specifically, the GSPA preserves the same properties of bounded-real
and positive-real systems as SPA and balanced truncation when
defined in terms of dissipative balannced realisations

The defining property of the GSPA is that the reduced order transfer
function interpolates the original at ξ with Re (ξ) ≥ 0 — Lyapunov
balanced truncation and the SPA are special cases of this

The usual error bounds hold

Possible application is to choose ξ to trade off interpolating at zero,
or at infinity
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