The generalised singular perturbation approximation for bounded-real and positive-real control systems

Chris Guiver
London Mathematical Society - EPSRC Durham Symposium
Model Order Reduction

UNIVERSITY OF
BATH

14th August 2017

Overview

- I shall present recent research on model order reduction of bounded real and positive real linear control systems by the generalised singular perturbation approximation

Model order reduction

- Model order reduction refers to approximating an elaborate model with a simpler one which is close to the original
- Simpler means of the same form, but with lower state-space dimension $r<n$
- Close refers to qualitative properties: (stab dissipativity etc) of the system and quant maps $u \mapsto y$ "close" in some sense
- Model reduction is important for simulati

Model order reduction

- Model order reduction refers to approximating an elaborate model with a simpler one which is close to the original
- Simpler means of the same form, but with lower state-space dimension $r<n$
- Close refers to qualitative properties: dissipativity etc) of the system and
maps $u \mapsto y$ "close" in some sense
- Model reduction is important for simulati

Model order reduction

- Model order reduction refers to approximating an elaborate model with a simpler one which is close to the original
- Simpler means of the same form, but with lower state-space dimension $r<n$
- Close refers to qualitative properties: (stability, minimality, dissipativity etc) of the system and quantitatively: the input-output maps $u \mapsto y$ "close" in some sense
- Model reduction is important for simulati

Model order reduction

- Model order reduction refers to approximating an elaborate model with a simpler one which is close to the original
- Simpler means of the same form, but with lower state-space dimension $r<n$
- Close refers to qualitative properties: (stability, minimality, dissipativity etc) of the system and quantitatively: the input-output maps $u \mapsto y$ "close" in some sense
- Model reduction is important for simulation and controller design

Linear control systems

- We shall consider linear control systems

$$
\left.\begin{array}{l}
\dot{x}=A x+B u, \quad x(0)=x^{0} \tag{1}\\
y=C x+D u,
\end{array}\right\}
$$

where for $n, m, p \in \mathbb{N}$

$$
(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}
$$

- We shall assume that A is stable (or Hurwite)
- Transfer function of (1) is

$$
\mathbf{G}(s)=C(s /-A)
$$

Linear control systems

- We shall consider linear control systems

$$
\left.\begin{array}{l}
\dot{x}=A x+B u, \quad x(0)=x^{0} \tag{1}\\
y=C x+D u,
\end{array}\right\}
$$

where for $n, m, p \in \mathbb{N}$

$$
(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}
$$

- We shall assume that A is stable (or Hurwitz), meaning $\alpha(A)<0$
- Transfer function of (1) is

$$
\mathbf{G}(s)=C(s l-A)
$$

Linear control systems

- We shall consider linear control systems

$$
\left.\begin{array}{l}
\dot{x}=A x+B u, \quad x(0)=x^{0} \tag{1}\\
y=C x+D u,
\end{array}\right\}
$$

where for $n, m, p \in \mathbb{N}$

$$
(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}
$$

- We shall assume that A is stable (or Hurwitz), meaning $\alpha(A)<0$
- Transfer function of (1) is

$$
\mathbf{G}(s)=C(s l-A)^{-1} B+D
$$

Linear control systems

- We shall consider linear control systems

$$
\left.\begin{array}{l}
\dot{x}=A x+B u, \quad x(0)=x^{0} \tag{1}\\
y=C x+D u,
\end{array}\right\}
$$

where for $n, m, p \in \mathbb{N}$

$$
(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}
$$

- We shall assume that A is stable (or Hurwitz), meaning $\alpha(A)<0$
- Transfer function of (1) is

$$
\mathbf{G}(s)=C(s I-A)^{-1} B+D,
$$

- maps $\hat{u} \mapsto \hat{y}$ via $\hat{y}(s)=\mathbf{G}(s) \hat{u}(s)$ and is defined for $s \in \mathbb{C}_{\alpha}$ for some $\alpha \in \mathbb{R}$
- is rational and proper

Linear control systems

- We shall consider linear control systems

$$
\left.\begin{array}{l}
\dot{x}=A x+B u, \quad x(0)=x^{0} \tag{1}\\
y=C x+D u,
\end{array}\right\}
$$

where for $n, m, p \in \mathbb{N}$

$$
(A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times n} \times \mathbb{R}^{p \times m}
$$

- We shall assume that A is stable (or Hurwitz), meaning $\alpha(A)<0$
- Transfer function of (1) is

$$
\mathbf{G}(s)=C(s I-A)^{-1} B+D,
$$

- maps $\hat{u} \mapsto \hat{y}$ via $\hat{y}(s)=\mathbf{G}(s) \hat{u}(s)$ and is defined for $s \in \mathbb{C}_{\alpha}$ for some $\alpha \in \mathbb{R}$
- is rational and proper

Linear control systems

- Conversely, given G: $\mathbb{C}_{0} \rightarrow \mathbb{C}^{p \times m}$ proper rational, we can find a realisation of the form (1), denoted by (A, B, C, D)
- Realisations are never unique
- Indeed, if (A, B, C, D) is a realisation of \mathbf{G}, ($\left.T^{-1} A T, T^{-1} B, C T, D\right)$ for every invertible

Linear control systems

- Conversely, given G: $\mathbb{C}_{0} \rightarrow \mathbb{C}^{p \times m}$ proper rational, we can find a realisation of the form (1), denoted by (A, B, C, D)
- Realisations are never unique
- Indeed, if (A, B, C, D) is a realisation of \mathbf{G},
$\left(T^{-1} A T, T^{-1} B, C T, D\right)$ for every invertible

Linear control systems

- Conversely, given G: $\mathbb{C}_{0} \rightarrow \mathbb{C}^{p \times m}$ proper rational, we can find a realisation of the form (1), denoted by (A, B, C, D)
- Realisations are never unique
- Indeed, if (A, B, C, D) is a realisation of \mathbf{G}, then so is ($\left.T^{-1} A T, T^{-1} B, C T, D\right)$ for every invertible $T \in \mathbb{C}^{n \times n}$

Properties of the transfer function

- There are many!
- For input $u \in L^{2}$ and output $y \in L^{2}$, we have

$$
\|y\|_{L^{2}} \leq\|\mathbf{G}\|_{H^{\infty}}\|u\|_{L^{2}},
$$

where

$$
\|\mathbf{G}\|_{H^{\infty}}:=\sup _{z \in \mathbb{C}_{0}}\|\mathbf{G}(z)\|_{2}=\sup _{\omega \in \mathbb{R}} \| \mathbf{G}(i
$$

- In the SISO case, if $u(t)=\sin (\omega t)$ for $\omega \in$

$$
y(t) \approx|\mathbf{G}(i \omega)| \sin (\omega \mid t+
$$

- If $u(t)$ has a limit as $t \rightarrow \infty$, then for al

$$
\lim _{t \rightarrow \infty} y(t)=\mathbf{G}(0) \lim _{t \rightarrow \infty}
$$

- Plays a crucial role in stability theory when connecting versions of (1), or when (1) is in feedback connection with a nonfinear tern

Properties of the transfer function

- There are many!
- For input $u \in L^{2}$ and output $y \in L^{2}$, we have

$$
\|y\|_{L^{2}} \leq\|\mathbf{G}\|_{H^{\infty}}\|u\|_{L^{2}},
$$

where

$$
\|\mathbf{G}\|_{H^{\infty}}:=\sup _{z \in \mathbb{C}_{0}}\|\mathbf{G}(z)\|_{2}=\sup _{\omega \in \mathbb{R}}\|\mathbf{G}(i \omega)\|_{2} .
$$

- In the SISO case, if $u(t)=\sin (\omega t)$ for

$$
y(t) \approx|\mathbf{G}(i \omega)|
$$

- If $u(t)$ has a limit as $t \rightarrow \infty$, then for all

- Plays a crucial role in stability theory when

Properties of the transfer function

- There are many!
- For input $u \in L^{2}$ and output $y \in L^{2}$, we have

$$
\|y\|_{L^{2}} \leq\|\mathbf{G}\|_{H^{\infty}}\|u\|_{L^{2}}
$$

where

$$
\|\mathbf{G}\|_{H^{\infty}}:=\sup _{z \in \mathbb{C}_{0}}\|\mathbf{G}(z)\|_{2}=\sup _{\omega \in \mathbb{R}}\|\mathbf{G}(i \omega)\|_{2} .
$$

- In the SISO case, if $u(t)=\sin (\omega t)$ for $\omega \in \mathbb{R}$, then for large t

$$
y(t) \approx|\mathbf{G}(i \omega)| \sin (\omega(t+\arg \mathbf{G}(i \omega)))
$$

- If $u(t)$ has a limit as $t \rightarrow \infty$, then for al
- Plays a crucial role in stability theory when of (1), or when (1) is in feedback connection

Properties of the transfer function

- There are many!
- For input $u \in L^{2}$ and output $y \in L^{2}$, we have

$$
\|y\|_{L^{2}} \leq\|\mathbf{G}\|_{H^{\infty}}\|u\|_{L^{2}}
$$

where

$$
\|\mathbf{G}\|_{H^{\infty}}:=\sup _{z \in \mathbb{C}_{0}}\|\mathbf{G}(z)\|_{2}=\sup _{\omega \in \mathbb{R}}\|\mathbf{G}(i \omega)\|_{2} .
$$

- In the SISO case, if $u(t)=\sin (\omega t)$ for $\omega \in \mathbb{R}$, then for large t

$$
y(t) \approx|\mathbf{G}(i \omega)| \sin (\omega(t+\arg \mathbf{G}(i \omega)))
$$

- If $u(t)$ has a limit as $t \rightarrow \infty$, then for all $x_{0} \in \mathbb{R}^{n}$

$$
\lim _{t \rightarrow \infty} y(t)=\mathbf{G}(0) \lim _{t \rightarrow \infty} u(t) .
$$

- Plays a crucial role in stability theory whent of (1), or when (1) is in feedback connectio

Properties of the transfer function

- There are many!
- For input $u \in L^{2}$ and output $y \in L^{2}$, we have

$$
\|y\|_{L^{2}} \leq\|\mathbf{G}\|_{H^{\infty}}\|u\|_{L^{2}}
$$

where

$$
\|\mathbf{G}\|_{H^{\infty}}:=\sup _{z \in \mathbb{C}_{0}}\|\mathbf{G}(z)\|_{2}=\sup _{\omega \in \mathbb{R}}\|\mathbf{G}(i \omega)\|_{2} .
$$

- In the SISO case, if $u(t)=\sin (\omega t)$ for $\omega \in \mathbb{R}$, then for large t

$$
y(t) \approx|\mathbf{G}(i \omega)| \sin (\omega(t+\arg \mathbf{G}(i \omega)))
$$

- If $u(t)$ has a limit as $t \rightarrow \infty$, then for all $x_{0} \in \mathbb{R}^{n}$

$$
\lim _{t \rightarrow \infty} y(t)=\mathbf{G}(0) \lim _{t \rightarrow \infty} u(t) .
$$

- Plays a crucial role in stability theory when connecting versions of (1), or when (1) is in feedback connection with a nonlinear term.

Model reduction

- We approximate \mathbf{G} by approximating a state-space realisation of G
- Given (A, B, C, D) partition

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

with $A_{11} \in \mathbb{C}^{r \times r}, r<n$ and B_{1}, C_{1} conformly sized

- To connect with prevailing notation of workshom

$$
A_{11}=W^{\top} A V=\left[\begin{array}{lll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(although I tend to think that

$$
x=x_{1} \oplus x_{2} \text { and } A_{11}=\left.P_{X_{1}} A\right|_{X_{1}}
$$

- Many model reduction schemes build a these components, somehow.
- Note that the components may change with realisation'

Model reduction

- We approximate \mathbf{G} by approximating a state-space realisation of \mathbf{G}
- Given (A, B, C, D) partition

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

with $A_{11} \in \mathbb{C}^{r \times r}, r<n$ and B_{1}, C_{1} conformly sized

- To connect with prevailing notation of workshop
$A_{11}=W^{\top} A V=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(although I tend to think that
- Many model reduction schemes build a these components, somehow.
- Note that the components may change with Fealisation

Model reduction

- We approximate \mathbf{G} by approximating a state-space realisation of \mathbf{G}
- Given (A, B, C, D) partition

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

with $A_{11} \in \mathbb{C}^{r \times r}, r<n$ and B_{1}, C_{1} conformly sized

- To connect with prevailing notation of workshop

$$
A_{11}=W^{T} A V=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
I \\
0
\end{array}\right], \quad B_{1}=W^{\top} B, \quad C_{1}=C V,
$$

(although I tend to think that

$$
\left.X=X_{1} \oplus X_{2} \quad \text { and } \quad A_{11}=\left.P_{X_{1}} A\right|_{X_{1}}: X_{1} \hookrightarrow X \xrightarrow{A} X \xrightarrow{P_{X_{1}}} X \approx X_{1}\right)
$$

- Many model reduction schemes build a reduced order n
these components, somehow.
- Note that the components may change with realisation

Model reduction

- We approximate \mathbf{G} by approximating a state-space realisation of \mathbf{G}
- Given (A, B, C, D) partition

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

with $A_{11} \in \mathbb{C}^{r \times r}, r<n$ and B_{1}, C_{1} conformly sized

- To connect with prevailing notation of workshop

$$
A_{11}=W^{T} A V=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad B_{1}=W^{T} B, \quad C_{1}=C V,
$$

(although I tend to think that

$$
\left.X=X_{1} \oplus X_{2} \quad \text { and } \quad A_{11}=\left.P_{X_{1}} A\right|_{X_{1}}: X_{1} \hookrightarrow X \xrightarrow{A} X \xrightarrow{P_{X_{1}}} X \approx X_{1}\right)
$$

- Many model reduction schemes build a reduced order model from these components, somehow.

Model reduction

- We approximate \mathbf{G} by approximating a state-space realisation of \mathbf{G}
- Given (A, B, C, D) partition

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

with $A_{11} \in \mathbb{C}^{r \times r}, r<n$ and B_{1}, C_{1} conformly sized

- To connect with prevailing notation of workshop

$$
A_{11}=W^{T} A V=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad B_{1}=W^{\top} B, \quad C_{1}=C V,
$$

(although I tend to think that $X=X_{1} \oplus X_{2} \quad$ and $\left.\quad A_{11}=\left.P_{X_{1}} A\right|_{X_{1}}: X_{1} \hookrightarrow X \xrightarrow{A} X \xrightarrow{P_{X_{1}}} X \approx X_{1}\right)$.

- Many model reduction schemes build a reduced order model from these components, somehow.
- Note that the components may change with realisation

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$. provided $\xi \notin \sigma\left(A_{22}\right)$

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Obvious questions are
- why definition? role of ξ ?
- what properties does it have?

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Obvious questions are
- why definition? role of ξ ?
- how to choose decomposition of A, B, C ?

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Obvious questions are
- why definition? role of ξ ?
- how to choose decomposition of A, B, C ?
- what properties does it have?

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Defining property: for $\xi \notin \sigma\left(A_{\xi}\right)$

$$
\mathbf{G}(\xi)=\mathbf{G}^{\xi}(\xi)
$$

that is, GSPA interpolates original transfer function at ξ

- Proven by algebraic manipulation

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Defining property: for $\xi \notin \sigma\left(A_{\xi}\right)$

$$
\mathbf{G}(\xi)=\mathbf{G}^{\xi}(\xi)
$$

that is, GSPA interpolates original transfer function at ξ

- Proven by algebraic manipulation

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Key disadvantage: If $\operatorname{Im}(\xi) \neq 0$, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ will have non-real components in general
- However, if $\xi \in \mathbb{R}$ and $\xi \geq 0$, then

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- Key disadvantage: If $\operatorname{Im}(\xi) \neq 0$, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ will have non-real components in general
- However, if $\xi \in \mathbb{R}$ and $\xi \geq 0$, then

$$
\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{r \times m} \times \mathbb{R}^{p \times r} \times \mathbb{R}^{p \times m}
$$

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- From a state-space perspective we have

$$
\left.\begin{array}{rl}
\dot{x}_{1} & =A_{11} x_{1}+A_{12} x_{2}+B_{1} u \\
\dot{x}_{2} & =A_{21} x_{1}+A_{22} x_{2}+B_{2} u \\
y & =C_{1} x_{1}+C_{2} x_{2}+D u
\end{array}\right\}
$$

The GSPA aris
eliminating x_{2}

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- From a state-space perspective we have

$$
\left.\begin{array}{rl}
\dot{x}_{1} & =A_{11} x_{1}+A_{12} x_{2}+B_{1} u \\
\dot{x}_{2} & =A_{21} x_{1}+A_{22} x_{2}+B_{2} u \\
y & =C_{1} x_{1}+C_{2} x_{2}+D u
\end{array}\right\}
$$

- The GSPA arises by assuming that $\dot{\chi}_{2}=\xi x_{2}$ above and subsequently eliminating x_{2}

The generalised singular perturbation approximation

- For $\xi \in \mathbb{C}, \operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the generalised singular perturbation approximation (GSPA) is given by
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$
- The case $\xi=0$ corresponds to x_{2} at equilibrium and so is the (usual) singular perturbation approximation (SPA)

$$
\begin{array}{ll}
A_{0}:=A_{11}-A_{12} A_{22}^{-1} A_{21}, & B_{0}:=B_{1}-A_{12} A_{22}^{-1} B_{2} \\
C_{0}:=C_{1}-C_{2} A_{22}^{-1} A_{21}, & D_{0}:=D-C_{2} A_{22}^{-1} B_{2}
\end{array}
$$

- The SPA has the property that $\mathbf{G}(0)=\mathbf{G}^{0}(0)$ - interpolation at zero - the steady-state gains coincide

The generalised singular perturbation approximation

- As mentioned, key question is how to choose realisation and decomposition to give

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

- To answer that, first look at the case gives reduced order system
- Here state-space interpretation is that order model

The generalised singular perturbation approximation

- As mentioned, key question is how to choose realisation and decomposition to give

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

- To answer that, first look at the case $|\xi| \rightarrow \infty$ in the GSPA which gives reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

- Here state-space interpretation is that order model

The generalised singular perturbation approximation

- As mentioned, key question is how to choose realisation and decomposition to give

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]
$$

- To answer that, first look at the case $|\xi| \rightarrow \infty$ in the GSPA which gives reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

- Here state-space interpretation is that x_{2} is simply omitted in reduced order model

Balanced realisations

- Recall the controllability \mathcal{Q} and observability \mathcal{O} Gramians,

$$
\mathcal{Q}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A t} B B^{*} \mathrm{e}^{A^{*} t} d t, \quad \mathcal{O}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A^{*} t} C^{*} C \mathrm{e}^{A t} d t
$$

- Note these quantities depend on the realisation
- The Gramians of $\tilde{\mathcal{Q}}, \tilde{\mathcal{O}}$ of $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(T^{-1} A T, T^{-1} B, C T, D\right)$ given by

and so the eigenvalues of $\mathcal{Q O}$ are similarity linvaria
- It is well-known that it is always possible to construct a balanced
realisation from a given one via a state-space-similarity transformation

Balanced realisations

- Recall the controllability \mathcal{Q} and observability \mathcal{O} Gramians,

$$
\mathcal{Q}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A t} B B^{*} \mathrm{e}^{A^{*} t} d t, \quad \mathcal{O}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A^{*} t} C^{*} C \mathrm{e}^{A t} d t
$$

- Note these quantities depend on the realisation

The Gramians of $\tilde{\mathcal{Q}}, \tilde{O}$ of $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(T^{-1} A T\right.$ given by

and so the eigenvalues of $\mathcal{Q O}$ are similarity

- It is well-known that it is always possible to construct balanced
realisation from a given one via a state-space-similarity transformation

Balanced realisations

- Recall the controllability \mathcal{Q} and observability \mathcal{O} Gramians,

$$
\mathcal{Q}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A t} B B^{*} \mathrm{e}^{A^{*} t} d t, \quad \mathcal{O}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A^{*} t} C^{*} C \mathrm{e}^{A t} d t
$$

- Note these quantities depend on the realisation
- The Gramians of $\tilde{\mathcal{Q}}, \tilde{\mathcal{O}}$ of $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(T^{-1} A T, T^{-1} B, C T, D\right)$ are given by

$$
\tilde{\mathcal{Q}}=T^{-1} \mathcal{Q} T^{-*}, \quad \tilde{\mathcal{O}}=T^{*} \mathcal{O} T \Rightarrow \tilde{\mathcal{Q}} \tilde{\mathcal{O}}=T^{-1} \mathcal{Q} \mathcal{O} T,
$$

and so the eigenvalues of $\mathcal{Q O}$ are similarity invariants

- It is well-known that it is always possible to
realisation from a given one via a state-space

Balanced realisations

- Recall the controllability \mathcal{Q} and observability \mathcal{O} Gramians,

$$
\mathcal{Q}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A t} B B^{*} \mathrm{e}^{A^{*} t} d t, \quad \mathcal{O}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A^{*} t} C^{*} C \mathrm{e}^{A t} d t
$$

- Note these quantities depend on the realisation
- The Gramians of $\tilde{\mathcal{Q}}, \tilde{\mathcal{O}}$ of $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(T^{-1} A T, T^{-1} B, C T, D\right)$ are given by

$$
\tilde{\mathcal{Q}}=T^{-1} \mathcal{Q} T^{-*}, \quad \tilde{\mathcal{O}}=T^{*} \mathcal{O} T \Rightarrow \tilde{\mathcal{Q}} \tilde{\mathcal{O}}=T^{-1} \mathcal{Q} \mathcal{O} T
$$

and so the eigenvalues of $\mathcal{Q O}$ are similarity invariants
Definition
The realisation (A, B, C, D) is Lyapunov balanced if $\mathcal{Q}=\mathcal{O}=: \Sigma$

- It is well-known that it is always possible
realisation from a given one via a state-space-similarity transformation

Balanced realisations

- Recall the controllability \mathcal{Q} and observability \mathcal{O} Gramians,

$$
\mathcal{Q}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A t} B B^{*} \mathrm{e}^{A^{*} t} d t, \quad \mathcal{O}=\int_{\mathbb{R}_{+}} \mathrm{e}^{A^{*} t} C^{*} C \mathrm{e}^{A t} d t
$$

- Note these quantities depend on the realisation
- The Gramians of $\tilde{\mathcal{Q}}, \tilde{\mathcal{O}}$ of $(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})=\left(T^{-1} A T, T^{-1} B, C T, D\right)$ are given by

$$
\tilde{\mathcal{Q}}=T^{-1} \mathcal{Q} T^{-*}, \quad \tilde{\mathcal{O}}=T^{*} \mathcal{O} T \Rightarrow \tilde{\mathcal{Q}} \tilde{\mathcal{O}}=T^{-1} \mathcal{Q} \mathcal{O} T
$$

and so the eigenvalues of $\mathcal{Q O}$ are similarity invariants

Definition

The realisation (A, B, C, D) is Lyapunov balanced if $\mathcal{Q}=\mathcal{O}=: \Sigma$

- It is well-known that it is always possible to construct a balanced realisation from a given one via a state-space similarity transformation

Hankel operators and singular values

- The Hankel operator H of (1) is given by

$$
H=\mathfrak{C B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right)
$$

where

$$
\begin{aligned}
\mathfrak{B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow \mathbb{C}^{n}, & \mathfrak{B} u=\int_{-\infty}^{0} \mathrm{e}^{-A s} B u(s) d s \\
\mathfrak{C}: \mathbb{C}^{n} \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right), & \left(\mathfrak{C} x_{0}\right)(t)=C \mathrm{e}^{A t} x_{0}
\end{aligned}
$$

- The maps \mathbb{B} and \mathbb{C} satisfy

- The transfer function determines the Hanke
- The converse is true un to an additive constan (the feedthroughio) an

Hankel operators and singular values

- The Hankel operator H of (1) is given by

$$
H=\mathfrak{C B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right)
$$

where

$$
\begin{aligned}
\mathfrak{B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow \mathbb{C}^{n}, & \mathfrak{B} u=\int_{-\infty}^{0} \mathrm{e}^{-A s} B u(s) d s \\
\mathfrak{C}: \mathbb{C}^{n} \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right), & \left(\mathfrak{C} x_{0}\right)(t)=C \mathrm{e}^{A t} x_{0}
\end{aligned}
$$

- The maps \mathbb{B} and \mathbb{C} satisfy

$$
\mathcal{Q}=\mathfrak{B} \mathfrak{B}^{*}, \quad \mathcal{O}=\mathfrak{C}^{*} \mathfrak{C}
$$

- The transfer function determines the Hanke
- The converse is true up to an additive constan

Hankel operators and singular values

- The Hankel operator H of (1) is given by

$$
H=\mathfrak{C B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right)
$$

where

$$
\begin{aligned}
\mathfrak{B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow \mathbb{C}^{n}, & \mathfrak{B} u=\int_{-\infty}^{0} \mathrm{e}^{-A s} B u(s) d s \\
\mathfrak{C}: \mathbb{C}^{n} \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right), & \left(\mathfrak{C} x_{0}\right)(t)=C \mathrm{e}^{A t} x_{0},
\end{aligned}
$$

- The maps \mathbb{B} and \mathbb{C} satisfy

$$
\mathcal{Q}=\mathfrak{B} \mathfrak{B}^{*}, \quad \mathcal{O}=\mathfrak{C}^{*} \mathfrak{C}
$$

- The transfer function determines the Hankel operator

Hankel operators and singular values

- The Hankel operator H of (1) is given by

$$
H=\mathfrak{C B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right)
$$

where

$$
\begin{aligned}
\mathfrak{B}: L^{2}\left(\mathbb{R}_{-} ; \mathbb{C}^{m}\right) \rightarrow \mathbb{C}^{n}, & \mathfrak{B} u=\int_{-\infty}^{0} \mathrm{e}^{-A s} B u(s) d s \\
\mathfrak{C}: \mathbb{C}^{n} \rightarrow L^{2}\left(\mathbb{R}_{+} ; \mathbb{C}^{p}\right), & \left(\mathfrak{C} x_{0}\right)(t)=C \mathrm{e}^{A t} x_{0},
\end{aligned}
$$

- The maps \mathbb{B} and \mathbb{C} satisfy

$$
\mathcal{Q}=\mathfrak{B} \mathfrak{B}^{*}, \quad \mathcal{O}=\mathfrak{C}^{*} \mathfrak{C}
$$

- The transfer function determines the Hankel operator
- The converse is true up to an additive constant (the feedthrough D)

Hankel singular values continued

- We see that apart from zero

$$
\sigma\left(H^{*} H\right)=\sigma\left(\mathfrak{B}^{*} \mathfrak{C}^{*} \mathfrak{C} \mathfrak{B}\right)=\sigma\left(\mathfrak{B} \mathfrak{B}^{*} \mathfrak{C}^{*} \mathfrak{C}\right)=\sigma(\mathcal{Q O})
$$

and so there are only finitely many (non-zero) singular values

- Thus, the singular values of H are the squareropts of
of $\mathcal{Q O}$, denoted by σ_{k}. They are ordered
(each with a multiplicity possibly bigger
- The Hankel singular values are invariant transforms

Hankel singular values continued

- We see that apart from zero

$$
\sigma\left(H^{*} H\right)=\sigma\left(\mathfrak{B}^{*} \mathfrak{C}^{*} \mathfrak{C} \mathfrak{B}\right)=\sigma\left(\mathfrak{B} \mathfrak{B}^{*} \mathfrak{C}^{*} \mathfrak{C}\right)=\sigma(\mathcal{Q O})
$$

and so there are only finitely many (non-zero) singular values

- Thus, the singular values of H are the squareroots of the eigenvalues of $\mathcal{Q O}$, denoted by σ_{k}. They are ordered

$$
\sigma_{1}>\sigma_{2}>\cdots>\sigma_{k} \geq 0
$$

(each with a multiplicity possibly bigger than one)

- The Hankel singular values are invariant transforms

Hankel singular values continued

- We see that apart from zero

$$
\sigma\left(H^{*} H\right)=\sigma\left(\mathfrak{B}^{*} \mathfrak{C}^{*} \mathfrak{C}^{\mathfrak{B}}\right)=\sigma\left(\mathfrak{B} \mathfrak{B}^{*} \mathfrak{C}^{*} \mathfrak{C}\right)=\sigma(\mathcal{Q O})
$$

and so there are only finitely many (non-zero) singular values

- Thus, the singular values of H are the squareroots of the eigenvalues of $\mathcal{Q O}$, denoted by σ_{k}. They are ordered

$$
\sigma_{1}>\sigma_{2}>\cdots>\sigma_{k} \geq 0
$$

(each with a multiplicity possibly bigger than one)

- The Hankel singular values are invariant under state-space similarity transforms

Energy interpretation

- If (1) is controllable, then

$$
\inf _{u \in L^{2}}\|u\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{Q}^{-1} x_{f}\right\rangle=: C_{x_{f}},
$$

subject to (1) with $x(-\infty)=0$ and $x(0)=x_{f}$

- Morally, $C_{x_{f}}$ captures how "hard" it is to reachp
- Similarly, the "energy" of the uncontrolled starting at state $x(0)=x_{f}$ is
- So $E_{x_{f}}$ captures how much the state x_{f} the output

Energy interpretation

- If (1) is controllable, then

$$
\inf _{u \in L^{2}}\|u\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{Q}^{-1} x_{f}\right\rangle=: C_{x_{f}},
$$

subject to (1) with $x(-\infty)=0$ and $x(0)=x_{f}$

- Morally, $C_{x_{f}}$ captures how "hard" it is to reach the state x_{f}
- Similarly, the "energy" of the
starting at state $x(0)=x_{f}$ is

$$
\|y\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{O} x_{f}\right\rangle
$$

- So $E_{X_{f}}$ captures how much the state \times the output

Energy interpretation

- If (1) is controllable, then

$$
\inf _{u \in L^{2}}\|u\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{Q}^{-1} x_{f}\right\rangle=: C_{x_{f}}
$$

subject to (1) with $x(-\infty)=0$ and $x(0)=x_{f}$

- Morally, $C_{x_{f}}$ captures how "hard" it is to reach the state x_{f}
- Similarly, the "energy" of the uncontrolled output in forwards time starting at state $x(0)=x_{f}$ is

$$
\|y\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{O} x_{f}\right\rangle=: E_{x_{f}} .
$$

- So $E_{X_{f}}$ captures how much the state \times the output

Energy interpretation

- If (1) is controllable, then

$$
\inf _{u \in L^{2}}\|u\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{Q}^{-1} x_{f}\right\rangle=: C_{x_{f}},
$$

subject to (1) with $x(-\infty)=0$ and $x(0)=x_{f}$

- Morally, $C_{x_{f}}$ captures how "hard" it is to reach the state x_{f}
- Similarly, the "energy" of the uncontrolled output in forwards time starting at state $x(0)=x_{f}$ is

$$
\|y\|_{L^{2}}^{2}=\left\langle x_{f}, \mathcal{O} x_{f}\right\rangle=: E_{x_{f}} .
$$

- So $E_{X_{f}}$ captures how much the state x_{f} contributes to the energy of the output

Energy interpretation

- Suppose the system (1) is Lyapunov balanced with simple singular values, so

$$
\mathcal{Q}=\mathcal{O}=\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}
$$

with respect to the orthonormal basis $\left\{v_{i}\right\}_{1 \leq i \leq n}$

- Then
- States v_{i} with singular values equal to one reach as yield when observed
- Further, states corresponding to small sing energy to reach and yield little energy from

Energy interpretation

- Suppose the system (1) is Lyapunov balanced with simple singular values, so

$$
\mathcal{Q}=\mathcal{O}=\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}
$$

with respect to the orthonormal basis $\left\{v_{i}\right\}_{1 \leq i \leq n}$

- Then

$$
\begin{aligned}
& C_{v_{i}}=\left\langle v_{i}, \mathcal{Q}^{-1} v_{i}\right\rangle=\sigma_{i}^{-1}, \\
& E_{v_{i}}=\left\langle v_{i}, \mathcal{O} v_{i}\right\rangle=\sigma_{i}
\end{aligned}
$$

- States v_{i} with singular values equal to onk reach as yield when observed
- Further, states corresponding to small sirs energy to reach and yield little energy from

Energy interpretation

- Suppose the system (1) is Lyapunov balanced with simple singular values, so

$$
\mathcal{Q}=\mathcal{O}=\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}
$$

with respect to the orthonormal basis $\left\{v_{i}\right\}_{1 \leq i \leq n}$

- Then

$$
\begin{aligned}
& C_{v_{i}}=\left\langle v_{i}, \mathcal{Q}^{-1} v_{i}\right\rangle=\sigma_{i}^{-1}, \\
& E_{v_{i}}=\left\langle v_{i}, \mathcal{O} v_{i}\right\rangle=\sigma_{i}
\end{aligned}
$$

- States v_{i} with singular values equal to one cost the same energy to reach as yield when observed
- Further, states corresponding to small sing energy to reach and yield little energy from

Energy interpretation

- Suppose the system (1) is Lyapunov balanced with simple singular values, so

$$
\mathcal{Q}=\mathcal{O}=\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}
$$

with respect to the orthonormal basis $\left\{v_{i}\right\}_{1 \leq i \leq n}$

- Then

$$
\begin{aligned}
& C_{v_{i}}=\left\langle v_{i}, \mathcal{Q}^{-1} v_{i}\right\rangle=\sigma_{i}^{-1}, \\
& E_{v_{i}}=\left\langle v_{i}, \mathcal{O} v_{i}\right\rangle=\sigma_{i},
\end{aligned}
$$

- States v_{i} with singular values equal to one cost the same energy to reach as yield when observed
- Further, states corresponding to small singular values require lots of energy to reach and yield little energy from observing

Lyapunov balanced truncation

- Lyapunov balanced truncation is to truncate states that correspond to small singular values
- Suppose we keep $\sigma_{1}, \ldots, \sigma_{r}$. The reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

(the GSPA with $\xi \rightarrow \infty$) is called the Lyapunov balanced truncation

- Balanced truncations inherit stability and minimality from (1)
- Lyapunov balanced truncations may be computed solutions of Lyapunov equations

- An appealing facet of balanced truncation

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|
$$

Lyapunov balanced truncation

- Lyapunov balanced truncation is to truncate states that correspond to small singular values
- Suppose we keep $\sigma_{1}, \ldots, \sigma_{r}$. The reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

(the GSPA with $\xi \rightarrow \infty$) is called the Lyapunov balanced truncation

- An appealing facet of balanced truncation

Lyapunov balanced truncation

- Lyapunov balanced truncation is to truncate states that correspond to small singular values
- Suppose we keep $\sigma_{1}, \ldots, \sigma_{r}$. The reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

(the GSPA with $\xi \rightarrow \infty$) is called the Lyapunov balanced truncation

- Balanced truncations inherit stability and minimality from (1) solutions of Lyapunov equations

- An appealing facet of balanced truncation

Lyapunov balanced truncation

- Lyapunov balanced truncation is to truncate states that correspond to small singular values
- Suppose we keep $\sigma_{1}, \ldots, \sigma_{r}$. The reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

(the GSPA with $\xi \rightarrow \infty$) is called the Lyapunov balanced truncation

- Balanced truncations inherit stability and minimality from (1)
- Lyapunov balanced truncations may be computed by computing the solutions of Lyapunov equations

$$
A \mathcal{Q}+\mathcal{Q} A^{*}+B B^{*}=0 \quad \text { and } \quad A^{*} \mathcal{O}+\mathcal{O} A+C^{*} C=0
$$

- An appealing facet of balanced truncation

Lyapunov balanced truncation

- Lyapunov balanced truncation is to truncate states that correspond to small singular values
- Suppose we keep $\sigma_{1}, \ldots, \sigma_{r}$. The reduced order system

$$
\left(A_{11}, B_{1}, C_{1}, D\right)
$$

(the GSPA with $\xi \rightarrow \infty$) is called the Lyapunov balanced truncation

- Balanced truncations inherit stability and minimality from (1)
- Lyapunov balanced truncations may be computed by computing the solutions of Lyapunov equations

$$
A \mathcal{Q}+\mathcal{Q} A^{*}+B B^{*}=0 \quad \text { and } \quad A^{*} \mathcal{O}+\mathcal{O} A+C^{*} C=0
$$

- An appealing facet of balanced truncation is the a priori error bound

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{\mathcal{H}^{\infty}} \leq 2 \sum_{i=r+1}^{k} \sigma_{i}
$$

proved independently by Enns and Glover in 1984.

Lyapunov balanced truncation

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{H^{\infty}} \leq 2 \sum_{i=r+1}^{k} \sigma_{i}
$$

Lyapunov balanced truncation

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{H^{\infty}} \leq 2 \sum_{i=r+1}^{k} \sigma_{i}
$$

- The above error bound is sharp for symmetric SISO systems
- The lower bound

was derived in [Opmeer, Reis 2015] for MII systems, where m_{i} is the multiplicity of σ

Lyapunov balanced truncation

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{H^{\infty}} \leq 2 \sum_{i=r+1}^{k} \sigma_{i}
$$

- The above error bound is sharp for symmetric SISO systems
- The lower bound

$$
2 \sum_{i=r+1}^{k} \frac{m_{i}}{m} \sigma_{i} \leq\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{H^{\infty}}
$$

was derived in [Opmeer, Reis 2015] for MIMO $(m>1)$ symmetric systems, where m_{i} is the multiplicity of σ_{i} as a singular value.

Lyapunov balanced truncation

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{H^{\infty}} \leq 2 \sum_{i=r+1}^{k} \sigma_{i}
$$

- Trivially, when $\operatorname{rank}\left(H_{r}\right)=r$, the lower bound

$$
\sigma_{r+1} \leq\left\|H-H_{r}\right\| \leq\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{H^{\infty}},
$$

always holds

- Glover,'84 Hankel operator \tilde{H} satisfies
for some D_{0}, where

Lyapunov balanced truncation

$$
\left\|\mathbf{G}-\mathbf{G}_{1}\right\|_{H^{\infty}} \leq 2 \sum_{i=r+1}^{k} \sigma_{i}
$$

- Trivially, when $\operatorname{rank}\left(H_{r}\right)=r$, the lower bound

$$
\sigma_{r+1} \leq\left\|H-H_{r}\right\| \leq\left\|\mathbf{G}-\mathbf{G}_{r}\right\|_{H^{\infty}},
$$

always holds

- [Glover, '84] showed that the transfer function $\tilde{\mathbf{G}}$ corresponding to the Hankel operator \tilde{H} satisfies

$$
\left\|\mathbf{G}-\tilde{\mathbf{G}}-D_{0}\right\|_{H^{\infty}} \leq \sum_{i=r+1}^{k} \sigma_{i}
$$

for some D_{0}, where

$$
\sigma_{r+1}=\|H-\tilde{H}\| .
$$

Generalised singular perturbation approximation

Theorem
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, balanced quadruple (A, B, C, D), assume that the Hankel singular values are simple.

Generalised singular perturbation approximation

Theorem

Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, balanced quadruple (A, B, C, D), assume that the Hankel singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and:
(i) A_{ξ} is Hurwitz and $\left(A_{\xi}, B_{\xi}, C_{\xi}\right)$ is minimal.
(ii) If $\xi \in i \mathbb{R}$, then $\left(A_{\xi}, B_{\xi}, C_{\xi}\right)$ is balanced.

Generalised singular perturbation approximation

Theorem

Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, balanced quadruple (A, B, C, D), assume that the Hankel singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and:
(i) A_{ξ} is Hurwitz and $\left(A_{\xi}, B_{\xi}, C_{\xi}\right)$ is minimal.
(ii) If $\xi \in \mathbb{R}$, then $\left(A_{\xi}, B_{\xi}, C_{\xi}\right)$ is balanced.

Let \mathbf{G}_{r}^{ξ} denote the transfer function of the GSPA. Then
$\mathbf{G}_{r}^{\xi} \in H^{\infty}\left(\mathbb{C}_{0}, \mathbb{C}^{p \times m}\right)$ has McMillan degree $r, \mathbf{G}_{r}^{\xi}(\xi)=\mathbf{G}(\xi)$ and

$$
\begin{equation*}
\left\|\mathbf{G}-\mathbf{G}_{r}^{\xi}\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j} \tag{2}
\end{equation*}
$$

Generalised singular perturbation approximation

GSPA proposed in a control theoretic setting in [1]-[2] and properties studied across [3]-[6].
[1] K. V. Fernando and H. Nicholson. Singular perturbational model reduction of balanced systems, IEEE Trans. Automat. Control, 27 (1982), 466-468.
[2] K. V. Fernando and H. Nicholson. Singular perturbational model reduction in the frequency domain, IEEE Trans. Automat. Control, 27 (1982), 969-970.
[3] U. M. Al-Saggaf and G. F. Franklin. Model reduction via balanced realizations: an extension and frequency weighting techniques, IEEE Trans. Automat. Control, 33 (1988), 687-692.
[4] Y. Liu and B. D. O. Anderson. Singular perturbation approximation of balanced systems, Internat. J. Control, 50 (1989), 1379-1405.
[5] P. Heuberger. A family of reduced order models based on open-loop balancing, in Selected Topics in Identification, Modelling and Control, Delft University Press, 1990, 1-10.
[6] G. Muscato and G. Nunnari. On the σ-reciprocal system for model order reduction, Math. Model. Systems, 1 (1995), 261-271.

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been and positive-real systems and make use of positive-real balanced realisations. Shown

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA tractuding balanced truncation and SPA)
- Balanced truncation and SPA have been and positive-real systems and make use of positive-real balanced realisations. Shown

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been e and positive-real systems and make use of positive-real balanced realisations. Shown

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been extended to bounded-real and positive-real systems and make use of bounded-real and positive-real balanced realisations. Shown that:
- stability inherited
- minimality inherited
- respective dissipativity property holds
* interpolation at infinity and zero, respectiv
- error bounds hold

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been extended to bounded-real and positive-real systems and make use of bounded-real and positive-real balanced realisations. Shown that:
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, respectiv
- error bounds hold

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been extended to bounded-real and positive-real systems and make use of bounded-real and positive-real balanced realisations. Shown that:
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, respecti
- error bounds hold

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been extended to bounded-real and positive-real systems and make use of bounded-real and positive-real balanced realisations. Shown that:
- stability inherited
- minimality inherited
- respective dissipativity property holds
> interpolation at infinity and zero, respect
- error bounds hold

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been extended to bounded-real and positive-real systems and make use of bounded-real and positive-real balanced realisations. Shown that:
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, respectively
- error bounds hold

Model reduction for dissipative systems

- Bounded-realness and positive-realness are important qualitative properties pertaining to dissipation of energy in control systems
- May well be desirable for these properties to be retained in a reduced order model
- Need not be preserved in Lyapunov balanced GSPA (including balanced truncation and SPA)
- Balanced truncation and SPA have been extended to bounded-real and positive-real systems and make use of bounded-real and positive-real balanced realisations. Shown that:
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, respectively
- error bounds hold

Signpost for remainder of talk

- When the GSPA is defined in terms of bounded-real or positive-real balanced realisations, then

```
* stability inherited
- minimality inherited
- respective dissipativity property holds
 interpolation at infinity and zoro recpe
* error bounds hold
```


Signpost for remainder of talk

- When the GSPA is defined in terms of bounded-real or positive-real balanced realisations, then
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero respe
- error bounds hold

Signpost for remainder of talk

- When the GSPA is defined in terms of bounded-real or positive-real balanced realisations, then
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, resp
- error bounds hold

Signpost for remainder of talk

- When the GSPA is defined in terms of bounded-real or positive-real balanced realisations, then
- stability inherited
- minimality inherited
- respective dissipativity property holds
- error bounds hold

Signpost for remainder of talk

- When the GSPA is defined in terms of bounded-real or positive-real balanced realisations, then
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, respectively at ξ

Signpost for remainder of talk

- When the GSPA is defined in terms of bounded-real or positive-real balanced realisations, then
- stability inherited
- minimality inherited
- respective dissipativity property holds
- interpolation at infinity and zero, respectively at ξ
- error bounds hold

Bounded-real systems

- $\mathbf{G} \in H^{\infty}$ is bounded real if $\|\mathbf{G}\|_{H^{\infty}} \leq 1$ (and so $\|y\|_{L^{2}} \leq\|u\|_{L^{2}}$)
- $\mathbf{G} \in H^{\infty}$ is strictly bounded real if $\|\mathbf{G}\|_{H^{\infty}}<1$
- Let (A, B, C, D) denote a minimal realisation of G. The following are equivalent.

Bounded-real systems

- $\mathbf{G} \in H^{\infty}$ is bounded real if $\|\mathbf{G}\|_{H^{\infty}} \leq 1$ (and so $\|y\|_{L^{2}} \leq\|u\|_{L^{2}}$)
- $\mathbf{G} \in H^{\infty}$ is strictly bounded real if $\|\mathbf{G}\|_{H^{\infty}}<1$
- Let (A, B, C, D) denote a minimal realisation of \mathbf{G}. The following are equivalent.

Bounded-real systems

- $\mathbf{G} \in H^{\infty}$ is bounded real if $\|\mathbf{G}\|_{H^{\infty}} \leq 1$ (and so $\|y\|_{L^{2}} \leq\|u\|_{L^{2}}$)
- $\mathbf{G} \in H^{\infty}$ is strictly bounded real if $\|\mathbf{G}\|_{H^{\infty}}<1$
- Let (A, B, C, D) denote a minimal realisation of \mathbf{G}. The following are equivalent.
(i) G is bounded real
(ii) There exists a triple (P, K, W) with $P=$ the bounded-real Lur'e equations

Bounded-real systems

- $\mathbf{G} \in H^{\infty}$ is bounded real if $\|\mathbf{G}\|_{H^{\infty}} \leq 1$ (and so $\|y\|_{L^{2}} \leq\|u\|_{L^{2}}$)
- $\mathbf{G} \in H^{\infty}$ is strictly bounded real if $\|\mathbf{G}\|_{H^{\infty}}<1$
- Let (A, B, C, D) denote a minimal realisation of \mathbf{G}. The following are equivalent.
(i) \mathbf{G} is bounded real the bounded-real Lur'e equations

Bounded-real systems

- $\mathbf{G} \in H^{\infty}$ is bounded real if $\|\mathbf{G}\|_{H^{\infty}} \leq 1$ (and so $\|y\|_{L^{2}} \leq\|u\|_{L^{2}}$)
- $\mathbf{G} \in H^{\infty}$ is strictly bounded real if $\|\mathbf{G}\|_{H^{\infty}}<1$
- Let (A, B, C, D) denote a minimal realisation of \mathbf{G}. The following are equivalent.
(i) \mathbf{G} is bounded real
(ii) There exists a triple (P, K, W) with $P=P^{*}$ positive-definite satisfying the bounded-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A+C^{*} C & =-K^{*} K \\
P B+C^{*} D & =-K^{*} W \\
I-D^{*} D & =W^{*} W
\end{aligned}
$$

Bounded-real systems

- The previous equivalences are often called the bounded-real lemma
- If $I-D^{*} D$ is invertible and P solves

then P solves the bounded-real algebraic $A^{*} P+P A+C^{*} C+\left(P B+C^{*} D\right)(1$

Bounded-real systems

- The previous equivalences are often called the bounded-real lemma
- If $I-D^{*} D$ is invertible and P solves

$$
\left.\begin{array}{rl}
A^{*} P+P A+C^{*} C & =-K^{*} K \\
P B+C^{*} D & =-K^{*} W \tag{3}\\
I-D^{*} D & =W^{*} W
\end{array}\right\}
$$

then P solves the bounded-real algebraic Riccati equation

$$
A^{*} P+P A+C^{*} C+\left(P B+C^{*} D\right)\left(I-D^{*} D\right)^{-1}\left(B^{*} P+D^{*} C\right)=0
$$

Bounded-real systems

- If (i) or (ii) hold, then (3) has extremal solutions P_{m}, P_{M} in the sense that any $P=P^{*} \geq 0$ solving (3) satisfies

$$
0<P_{m} \leq P \leq P_{M}
$$

- The extremal operators P_{m}, P_{M} are the optimal cost pperatars of the bounded real optimal control problems:

both subject to (1) (and appropriate initial

Bounded-real systems

- If (i) or (ii) hold, then (3) has extremal solutions P_{m}, P_{M} in the sense that any $P=P^{*} \geq 0$ solving (3) satisfies

$$
0<P_{m} \leq P \leq P_{M}
$$

- The extremal operators P_{m}, P_{M} are the optimal cost operators of the bounded real optimal control problems:

$$
\begin{aligned}
\left\langle P_{M x_{0}}, x_{0}\right\rangle_{\mathscr{X}} & =\inf _{u \in L^{2}\left(\mathbb{R}_{-}\right)} \int_{\mathbb{R}_{-}}\|u(s)\|^{2}-\|y(s)\|^{2} d s \\
-\left\langle P_{m} x_{0}, x_{0}\right\rangle_{\mathscr{X}} & =\inf _{u \in L^{2}\left(\mathbb{R}_{+}\right)} \int_{\mathbb{R}_{+}}\|u(s)\|^{2}-\|y(s)\|^{2} d s
\end{aligned}
$$

both subject to (1) (and appropriate initial/final state conditions)

Bounded-real balanced realisations

Definition

The realisation (A, B, C, D) is bounded-real balanced if $P_{m}=P_{M}^{-1}=\Sigma$.

- If P solves (3), then P^{-1} solves the dual equations

$$
\begin{aligned}
A Q+Q A^{*}+B B^{*} & =-L L^{*}, \\
Q C^{*}+B D^{*} & =-L X^{*}, \\
I-D D^{*} & =X X^{*},
\end{aligned}
$$

for some L, X, or the dual Riccati equation

$$
A Q+Q A^{*}+B B^{*}+\left(Q C^{*}+B D^{*}\right)\left(I-D D^{*}\right)^{-1}\left(C Q+D B^{*}\right)=0
$$

Bounded-real balanced realisations

Definition

The realisation (A, B, C, D) is bounded-real balanced if $P_{m}=P_{M}^{-1}=\Sigma$.

- If P solves (3), then P^{-1} solves the dual equations

$$
\begin{aligned}
A Q+Q A^{*}+B B^{*} & =-L L^{*}, \\
Q C^{*}+B D^{*} & =-L X^{*}, \\
I-D D^{*} & =X X^{*},
\end{aligned}
$$

for some L, X, or the dual Riccati equation

$$
A Q+Q A^{*}+B B^{*}+\left(Q C^{*}+B D^{*}\right)\left(I-D D^{*}\right)^{-1}\left(C Q+D B^{*}\right)=0 .
$$

- Since $P_{M}^{-1}=Q_{m}$, the realisation (A, B, C, D) is bounded-real balanced if

$$
P_{m}=Q_{m}=\Sigma
$$

Bounded-real balanced realisations

- It is always possible to construct a bounded-real balanced realisation via a state-space transformation of a given realisation
- The eigenvalues of Σ are called the bounded-real singular values or bounded-real characteristic values
- Truncation takes place according to the size of
- Given a bounded real balanced realisation $\operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the as before
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}$
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}$
provided $\xi \notin \sigma\left(A_{22}\right)$

Bounded-real balanced realisations

- It is always possible to construct a bounded-real balanced realisation via a state-space transformation of a given realisation
- The eigenvalues of Σ are called the bounded-real singular values or bounded-real characteristic values
- Truncation takes place according to the size of
- Given a bounded real balanced realisation $\operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-$
as before
$A_{\xi}:=A_{11}+A_{12}\left(\xi 1-A_{22}\right)^{-1} A_{21}$ $C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}$
provided $\xi \notin \sigma\left(A_{22}\right)$

Bounded-real balanced realisations

- It is always possible to construct a bounded-real balanced realisation via a state-space transformation of a given realisation
- The eigenvalues of Σ are called the bounded-real singular values or bounded-real characteristic values
- Truncation takes place according to the size of these singular values
- Given a bounded real balanced realisation $\operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the as before
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}$

provided $\xi \notin \sigma\left(A_{22}\right)$

Bounded-real balanced realisations

- It is always possible to construct a bounded-real balanced realisation via a state-space transformation of a given realisation
- The eigenvalues of Σ are called the bounded-real singular values or bounded-real characteristic values
- Truncation takes place according to the size of these singular values
- Given a bounded real balanced realisation $(A, B, C, D), \xi \in \mathbb{C}$, $\operatorname{Re}(\xi) \geq 0$ and $r \in\{1,2, \ldots, n-1\}$, the bounded-real GSPA is given as before
$A_{\xi}:=A_{11}+A_{12}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad B_{\xi}:=B_{1}+A_{12}\left(\xi I-A_{22}\right)^{-1} B_{2}$,
$C_{\xi}:=C_{1}+C_{2}\left(\xi I-A_{22}\right)^{-1} A_{21}, \quad D_{\xi}:=D+C_{2}\left(\xi I-A_{22}\right)^{-1} B_{2}$.
provided $\xi \notin \sigma\left(A_{22}\right)$

Bounded-real GSPA

Theorem (G.'17)
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and bounded real balanced quadruple (A, B, C, D), assume that the bounded real singular values are simple.

Bounded-real GSPA

Theorem (G.'17)
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and bounded real balanced quadruple (A, B, C, D), assume that the bounded real singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the bounded real generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and
(i) $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is bounded real, and is bounded real balanced if $\xi \in i \mathbb{R}$.
(ii) A_{ξ} is Hurwitz.
(iii) If (A, B, C, D) is strictly bounded real, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is minimal and strictly bounded real.

Bounded-real GSPA

Theorem (G.'17)
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and bounded real balanced quadruple (A, B, C, D), assume that the bounded real singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the bounded real generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and
(i) $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is bounded real, and is bounded real balanced if $\xi \in i \mathbb{R}$.
(ii) A_{ξ} is Hurwitz.
(iii) If (A, B, C, D) is strictly bounded real, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is minimal and strictly bounded real.
The transfer function \mathbf{G}_{r}^{ξ} of the GSPA is bounded-real and

$$
\left\|\mathbf{G}-\mathbf{G}_{r}^{\xi}\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j} .
$$

Bounded-real GSPA

Theorem (G.'17)
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and bounded real balanced quadruple (A, B, C, D), assume that the bounded real singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the bounded real generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and
(i) $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is bounded real, and is bounded real balanced if $\xi \in i \mathbb{R}$.
(ii) A_{ξ} is Hurwitz.
(iii) If (A, B, C, D) is strictly bounded real, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is minimal and strictly bounded real.
The transfer function \mathbf{G}_{r}^{ξ} of the GSPA is bounded-real and

$$
\left\|\mathbf{G}-\mathbf{G}_{r}^{\xi}\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j} .
$$

If $\|\mathbf{G}\|_{H^{\infty}}<1$, then $\left\|\mathbf{G}_{r}^{\xi}\right\|_{H^{\infty}}<1$.

Spectral factors

- Recall the bounded-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A+C^{*} C & =-K^{*} K \\
P B+C^{*} D & =-K^{*} W \\
I-D^{*} D & =W^{*} W
\end{aligned}
$$

- If G is realised by (A, B, C, D) and R realised

$$
I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s
$$

- \mathbf{R} is a so-called spectral factor of $I-\mathbf{G}$
- Using dual equations, can also obtain a sb $I-\mathrm{GG}^{*}=\mathrm{SS}^{*}$ on imaginary axis

Spectral factors

- Recall the bounded-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A+C^{*} C & =-K^{*} K \\
P B+C^{*} D & =-K^{*} W \\
I-D^{*} D & =W^{*} W
\end{aligned}
$$

- If \mathbf{G} is realised by (A, B, C, D) and \mathbf{R} realised by (A, B, K, W), then

$$
I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s) \quad \forall s \in i \mathbb{R}
$$

Spectral factors

- Recall the bounded-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A+C^{*} C & =-K^{*} K \\
P B+C^{*} D & =-K^{*} W \\
I-D^{*} D & =W^{*} W
\end{aligned}
$$

- If \mathbf{G} is realised by (A, B, C, D) and \mathbf{R} realised by (A, B, K, W), then

$$
I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s) \quad \forall s \in i \mathbb{R}
$$

- \mathbf{R} is a so-called spectral factor of $I-\mathbf{G}^{*} \mathbf{G}$
- Using dual equations, can also obt
$I-\mathrm{GG}^{*}=\mathrm{SS}^{*}$ on imaginary axis

Spectral factors

- Recall the bounded-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A+C^{*} C & =-K^{*} K \\
P B+C^{*} D & =-K^{*} W \\
I-D^{*} D & =W^{*} W
\end{aligned}
$$

- If \mathbf{G} is realised by (A, B, C, D) and \mathbf{R} realised by (A, B, K, W), then

$$
I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s) \quad \forall s \in i \mathbb{R}
$$

- \mathbf{R} is a so-called spectral factor of $I-\mathbf{G}^{*} \mathbf{G}$
- Using dual equations, can also obtain a spectral factor \mathbf{S} such that I-GG* $=\mathbf{S S}^{*}$ on imaginary axis

Bounded-real GSPA also approximates spectral factors

Proposition (G.'17)
Imposing notation and assumptions of previous theorem, assume that $\xi \in \mathbb{R}$, there exists $\mathbf{R}, \mathbf{R}_{r}^{\xi} \in H^{\infty}$ such that
(i) $I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s)$ for all $s \in i \mathbb{R}$
(ii) $I-\left(\mathbf{G}_{r}^{\xi}(s)\right)^{*} \mathbf{G}_{r}^{\xi}(s)=\left(\mathbf{R}_{r}^{\xi}(s)\right)^{*} \mathbf{R}_{r}^{\xi}(s)$ for all $s \in i \mathbb{R}$

(iv) \mathbf{R}_{r}^{ξ} may be chosen with the interpolation property $\mathbf{R}(\xi)=\mathbf{R}_{r}^{\xi}(\xi)$

- Similar statements apply to other spectra
- Obtain sub-spectral factors when $\operatorname{Re}(\xi)$

Bounded-real GSPA also approximates spectral factors

Proposition (G.'17)
Imposing notation and assumptions of previous theorem, assume that $\xi \in i \mathbb{R}$, there exists $\mathbf{R}, \mathbf{R}_{r}^{\xi} \in H^{\infty}$ such that
(i) $I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s)$ for all $s \in i \mathbb{R}$
(ii) $I-\left(\mathbf{G}_{r}^{\xi}(s)\right)^{*} \mathbf{G}_{r}^{\xi}(s)=\left(\mathbf{R}_{r}^{\xi}(s)\right)^{*} \mathbf{R}_{r}^{\xi}(s)$ for all $s \in i \mathbb{R}$

[^0]- Similar statements apply to other spectra
- Obtain sub-spectral factors when $\operatorname{Re}(\xi)$

Bounded-real GSPA also approximates spectral factors

Proposition (G.'17)
Imposing notation and assumptions of previous theorem, assume that $\xi \in i \mathbb{R}$, there exists $\mathbf{R}, \mathbf{R}_{r}^{\xi} \in H^{\infty}$ such that
(i) $I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s)$ for all $s \in i \mathbb{R}$
(ii) $I-\left(\mathbf{G}_{r}^{\xi}(s)\right)^{*} \mathbf{G}_{r}^{\xi}(s)=\left(\mathbf{R}_{r}^{\xi}(s)\right)^{*} \mathbf{R}_{r}^{\xi}(s)$ for all $s \in i \mathbb{R}$
(iii)

$$
\left\|\left[\begin{array}{l}
\mathbf{G}-\mathbf{G}_{r}^{\xi} \\
\mathbf{R}-\mathbf{R}_{r}^{\xi}
\end{array}\right]\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j},
$$

(iv) \mathbf{R}_{r}^{ξ} may be chosen with the interpolation property $\mathbf{R}(\xi)=\mathbf{R}_{饣}^{\xi}(\xi)$

- Similar statements apply to other spectral
- Obtain sub-spectral factors when $\operatorname{Re}(\xi)$

Bounded-real GSPA also approximates spectral factors

Proposition (G.'17)
Imposing notation and assumptions of previous theorem, assume that $\xi \in i \mathbb{R}$, there exists $\mathbf{R}, \mathbf{R}_{r}^{\xi} \in H^{\infty}$ such that
(i) $I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s)$ for all $s \in i \mathbb{R}$
(ii) $I-\left(\mathbf{G}_{r}^{\xi}(s)\right)^{*} \mathbf{G}_{r}^{\xi}(s)=\left(\mathbf{R}_{r}^{\xi}(s)\right)^{*} \mathbf{R}_{r}^{\xi}(s)$ for all $s \in i \mathbb{R}$
(iii)

$$
\left\|\left[\begin{array}{l}
\mathbf{G}-\mathbf{G}_{r}^{\xi} \\
\mathbf{R}-\mathbf{R}_{r}^{\xi}
\end{array}\right]\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j},
$$

(iv) \mathbf{R}_{r}^{ξ} may be chosen with the interpolation property $\mathbf{R}(\xi)=\mathbf{R}_{r}^{\xi}(\xi)$

- Similar statements apply to other spectral
- Obtain sub-spectral factors when Re (ξ)

Bounded-real GSPA also approximates spectral factors

Proposition (G.'17)
Imposing notation and assumptions of previous theorem, assume that $\xi \in i \mathbb{R}$, there exists $\mathbf{R}, \mathbf{R}_{r}^{\xi} \in H^{\infty}$ such that
(i) $I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s)$ for all $s \in i \mathbb{R}$
(ii) $I-\left(\mathbf{G}_{r}^{\xi}(s)\right)^{*} \mathbf{G}_{r}^{\xi}(s)=\left(\mathbf{R}_{r}^{\xi}(s)\right)^{*} \mathbf{R}_{r}^{\xi}(s)$ for all $s \in i \mathbb{R}$
(iii)

$$
\left\|\left[\begin{array}{l}
\mathbf{G}-\mathbf{G}_{r}^{\xi} \\
\mathbf{R}-\mathbf{R}_{r}^{\xi}
\end{array}\right]\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j},
$$

(iv) \mathbf{R}_{r}^{ξ} may be chosen with the interpolation property $\mathbf{R}(\xi)=\mathbf{R}_{r}^{\xi}(\xi)$

- Similar statements apply to other spectral factor \mathbf{S} and \mathbf{S}_{r}^{ξ}
- Obtain sub-spectral factors when $\operatorname{Re}(\xi)$

Bounded-real GSPA also approximates spectral factors

Proposition (G.'17)
Imposing notation and assumptions of previous theorem, assume that $\xi \in i \mathbb{R}$, there exists $\mathbf{R}, \mathbf{R}_{r}^{\xi} \in H^{\infty}$ such that
(i) $I-(\mathbf{G}(s))^{*} \mathbf{G}(s)=(\mathbf{R}(s))^{*} \mathbf{R}(s)$ for all $s \in i \mathbb{R}$
(ii) $I-\left(\mathbf{G}_{r}^{\xi}(s)\right)^{*} \mathbf{G}_{r}^{\xi}(s)=\left(\mathbf{R}_{r}^{\xi}(s)\right)^{*} \mathbf{R}_{r}^{\xi}(s)$ for all $s \in i \mathbb{R}$
(iii)

$$
\left\|\left[\begin{array}{l}
\mathbf{G}-\mathbf{G}_{r}^{\xi} \\
\mathbf{R}-\mathbf{R}_{r}^{\xi}
\end{array}\right]\right\|_{H^{\infty}} \leq 2 \sum_{j=r+1}^{n} \sigma_{j},
$$

(iv) \mathbf{R}_{r}^{ξ} may be chosen with the interpolation property $\mathbf{R}(\xi)=\mathbf{R}_{r}^{\xi}(\xi)$

- Similar statements apply to other spectral factor \mathbf{S} and \mathbf{S}_{r}^{ξ}
- Obtain sub-spectral factors when $\operatorname{Re}(\xi)>0$

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathrm{G}(s)+(\mathbf{G}(s))^{*} \geq \delta /$ for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of \mathbf{G}. The following are equivalent

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq \delta /$ for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of \mathbf{G}. The following are equivalent

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq \delta$ I for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of G . The following are equivalent

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq \delta /$ for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of \mathbf{G}. The following are equivalent

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq \delta /$ for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of \mathbf{G}. The following are equivalent
(i) \mathbf{G} is positive real

There exists a triple (P, K, W)
the positive-real Lur'e equations

For input $u \in L^{2}$ and output $y \in L^{2}$ with

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq \delta /$ for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of \mathbf{G}. The following are equivalent
(i) \mathbf{G} is positive real
(ii) There exists a triple (P, K, W) with $P=P^{*}$ positive-definite satisfying the positive-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A & =-K^{*} K \\
P B-C^{*} & =-K^{*} W \\
D+D^{*} & =W^{*} W
\end{aligned}
$$

\square

Positive-real systems

- \mathbf{G} is positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq 0$ for all $s \in \mathbb{C}_{0}$
- \mathbf{G} is strongly positive real if $\mathbf{G}(s)+(\mathbf{G}(s))^{*} \geq \delta$ I for all $s \in \mathbb{C}_{0}$
- Positive-real functions need not be stable $s \mapsto 1 / s$ or proper $s \mapsto s$
- Let (A, B, C, D) denote a stable, minimal realisation of \mathbf{G}. The following are equivalent
(i) \mathbf{G} is positive real
(ii) There exists a triple (P, K, W) with $P=P^{*}$ positive-definite satisfying the positive-real Lur'e equations

$$
\begin{aligned}
A^{*} P+P A & =-K^{*} K \\
P B-C^{*} & =-K^{*} W \\
D+D^{*} & =W^{*} W
\end{aligned}
$$

(iii) For input $u \in L^{2}$ and output $y \in L^{2}$ with initial condition $x_{0}=0$

$$
\int_{0}^{t} 2 \operatorname{Re}\langle u(s), y(s)\rangle d s \geq 0, \quad \forall t \geq 0
$$

Positive-real balanced realisations

- The previous equivalences are often called the positive-real lemma or KYP lemma
- Positive-real balanced realisations are morally the same as the bounded-real versions.
- ...now balance extremal solutions of positive-reathin positive-real algebraic Riccati equation
- Can either work from first principles or use Cayley transform

$$
\mathbf{G} \mapsto(I-\mathbf{G})(I
$$

which (roughly) maps positive real functions vice-versa

Positive-real balanced realisations

- The previous equivalences are often called the positive-real lemma or KYP lemma
- Positive-real balanced realisations are morally the same as the bounded-real versions...
- ...now balance extremal solutions of positive-rent in positive-real algebraic Riccati equation
- Can either work from first principles or usi Cayley transform

which (roughly) maps positive real functions vice-versa

Positive-real balanced realisations

- The previous equivalences are often called the positive-real lemma or KYP lemma
- Positive-real balanced realisations are morally the same as the bounded-real versions...
- ...now balance extremal solutions of positive-real Lur'e equations or positive-real algebraic Riccati equation
- Can either work from first principles or use Cayley transform
which (roughly) maps positive real function vice-versa

Positive-real balanced realisations

- The previous equivalences are often called the positive-real lemma or KYP lemma
- Positive-real balanced realisations are morally the same as the bounded-real versions...
- ...now balance extremal solutions of positive-real Lur'e equations or positive-real algebraic Riccati equation
- Can either work from first principles or use bounded-real case and Cayley transform

$$
\mathbf{G} \mapsto(I-\mathbf{G})(I+\mathbf{G})^{-1}
$$

which (roughly) maps positive real functions to bounded real, and vice-versa

Positive-real GSPA

Theorem (G.'17)
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and positive real balanced quadruple (A, B, C, D), assume that the positive real singular values are simple.

Positive-real GSPA

Theorem (G.'17)
Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and positive real balanced quadruple (A, B, C, D), assume that the positive real singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the positive real generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and
(i) $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is positive real, and is positive real balanced if $\xi \in i \mathbb{R}$
(ii) A_{ξ} is Hurwitz
(iii) If (A, B, C, D) is strictly positive real, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is minimal and strictly positive real

Positive-real GSPA

Theorem (G.'17)

Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and positive real balanced quadruple (A, B, C, D), assume that the positive real singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the positive real generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and
(i) $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is positive real, and is positive real balanced if $\xi \in i \mathbb{R}$
(ii) A_{ξ} is Hurwitz
(iii) If (A, B, C, D) is strictly positive real, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is minimal and strictly positive real
The transfer function \mathbf{G}_{r}^{ξ} of the GSPA is positive-real and

$$
\delta\left(\mathbf{G}, \mathbf{G}_{r}^{\xi}\right) \leq 2 \sum_{j=r+1}^{n} \sigma_{j} .
$$

Positive-real GSPA

Theorem (G.'17)

Given $\xi \in \mathbb{C}$ with $\operatorname{Re}(\xi) \geq 0$ and stable, minimal, and positive real balanced quadruple (A, B, C, D), assume that the positive real singular values are simple. Then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$, the positive real generalised singular perturbation approximation of order $r \in \underline{n-1}$, is well-defined and
(i) $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is positive real, and is positive real balanced if $\xi \in i \mathbb{R}$
(ii) A_{ξ} is Hurwitz
(iii) If (A, B, C, D) is strictly positive real, then $\left(A_{\xi}, B_{\xi}, C_{\xi}, D_{\xi}\right)$ is minimal and strictly positive real
The transfer function \mathbf{G}_{r}^{ξ} of the GSPA is positive-real and

$$
\delta\left(\mathbf{G}, \mathbf{G}_{r}^{\xi}\right) \leq 2 \sum_{j=r+1}^{n} \sigma_{j} .
$$

If \mathbf{G} is strongly positive real, then so is $\mathbf{G}{ }_{r}^{\xi}$

Summary

- Model order reduction for linear control systems by the generalised singular perturbation approximation has been revisited
- Specifically, the GSPA preserves the same properties of bounded-real and positive-real systems as SPA and balanced truncation when defined in terms of dissipative balannced realisations
- The defining property of the GSPA is that the reduced order transfer function interpolates the original at ξ with $\operatorname{Re}(\xi) \geq 0$ - Lyapunov balanced truncation and the SPA are special cases of this
- The usual error bounds hold
- Possible application is to choose ξ to trade off interpolating at zero, or at infinity

[^0]: (iv) \mathbf{R}_{r}^{ξ} may be chosen with the interpolation property $\mathbf{R}(\xi)=\mathbf{R}_{r}^{\xi}(\xi)$

