

MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG

Data Driven Model Order Reduction

Peter Benner, Melina Freitag, Sara Grundel, Nils Hornung, Matthias Voigt

August 9, 2017

Questions

1. What kind of Data?

Questions

- 1. What kind of Data?
- 2. What kind of Model?

Solution Official Contract Con

Questions

- 1. What kind of Data?
- 2. What kind of Model?
- 3. What kind of Simulation Tool?

Data Assimilation - Weather Forecast

Met Office seasonal and climate models

The Met Office Hadley Centre develops configurations of the Unified Model which are suitable for seasonal, decadal and centennial climate predictions.

These are usually lower resolution than the models used for day to day weather forecasting, and include occas and seaice components coupled to the atmosphere model in order to represent the full coupled climate system. Additional processes associated with atmosphere chemistry and the ecosystem are included in "Earth System" configurations only (due to computational cost).

Seasonal and climate configurations of the Unified Modelling system

Current operational seasonal and climate configurations of the Unified Model are indicated in the table below, with higher horizontal and vertical resolution versions under development.

"Big Data"

"In 2010, Google CEO Eric Schmidt observed that we now generate as much data in two days as we did from the start of human history through 2003."

"Big Data"

"In 2010, Google CEO Eric Schmidt observed that we now generate as much data in two days as we did from the start of human history through 2003."

MOR

- PMOR and UQ
- Data Driven Methods
- nonlinear MOR

"Big Data"

"In 2010, Google CEO Eric Schmidt observed that we now generate as much data in two days as we did from the start of human history through 2003."

MOR

- PMOR and UQ
- Data Driven Methods
- nonlinear MOR

Potential

Data-Driven Methods for Reduced-Order Modeling

🧇 Review Classical MOR

Input-Output-System

ROM

$$\dot{x} = f(x, u)$$

 $y = h(x, u)$
 $u(t) \in \mathbb{R}^m$
 $y(t) \in \mathbb{R}^p$
 $x(t) \in \mathbb{R}^n$
 $m, p \ll n$

f, h known functions **Find:** f_r, h_r such that $||y - y_r||$ small for a given u $\begin{aligned} \dot{x}_r = & f_r(x_r, u) \\ & y_r = & h_r(x_r, u) \\ & u(t) \in \mathbb{R}^m \\ & y_r(t) \in \mathbb{R}^p \\ & x_r(t) \in \mathbb{R}^r \\ & r \ll n \end{aligned}$

Techniques

- 1. IRKA, BT and Versions [BEATTIE, BENNER, BREITEN, DAMM, STYKEL,...]
- 2. POD, RB, ... [Fehr, Haasdonk, Himpe, Urban,...]
- 3. Löwner [Antoulas, Lefteriu, ...]

- 1. Interpolation
- 2. Response Surfaces
- 3. Kriging
- 4. Gradient-Enhanced Kriging (GEK),
- 5. Support Vector Machines,
- 6. Space Mapping,
- 7. Artificial Neural Networks
- 8. Dynamic Mode Decomposition (DMD)

Data in Time Series $x_i \in \mathbb{R}^N$, i = 0, ..., nAssume there is an A such that $x_{i+1} \approx Ax_i$

$$X = \begin{bmatrix} x_0 & x_1 & \dots & x_{n-1} \end{bmatrix}$$
$$Y = \begin{bmatrix} x_1 & \dots & x_{n-1} & x_n \end{bmatrix}$$
$$Y \approx AX$$

Want the eigendecomposition of A to compute time series solution fast and study behaviour

Keep in Mind

Y = AX

Algorithm

1.
$$X = U\Sigma V^*$$

2. $Y = AX = AU\Sigma V^*$
 $\tilde{A} := U^*AU = U^*YV\Sigma^{-1}$
3. $\tilde{A}W = W\Lambda$
4. $\Phi = YV\Sigma^{-1}W$
 $x(t) = A^t x_0$

$$x(t+1) \approx A\hat{x}(t) = \Phi \Lambda^t z_0$$

- Optimized DMD [K.K. CHEN, J.H. TU, AND C.W. ROWLEY,] 2012
- Optimal Mode Decomposition [A. Wynn, D. S. PEARSON, B. GANAPATHISUBRAMANI AND P. J. GOULART,] 2013
- **Exact DMD**: [Tu, Rowley, Luchtenburg, Brunton, and Kutz] 2014
- Sparsity Promoting DMD: [M.R. JOVANOVIC, P.J. SCHMID, AND J.W. NICHOLS] 2014
- Multi-Resolution DMD: [J.N. KUTZ, X. FU, AND S.L. BRUNTON] 2015
- Extended DMD: [M.O. WILLIAMS , I.G. KEVREKIDIS, C.W. ROWLEY,] 2015
- DMD with Control [J.L. PROCTOR, S.L. BRUNTON, AND J.N. KUTZ] 2014:
- Total Least Squares DMD: [M.S. Hemati, C.W. Rowley, E.A. Deem, and L.N. Cattafesta] 2015

Pros

- Time Series Data
- Efficient and Easy
- No assumption on the model

Cons

- Linear (local)
- No error evaluation

Given

Guess of Initial State: \hat{x}_0 Observation: y_0, \dots, y_n Model $x_{i+1} = \mathcal{M}(x_i)$ State to Observation map $y_i = \mathcal{H}(x_i)$

Trying to find a minimum of

$$J(x) = ||x_0 - \hat{x}_0|| + \sum_i ||y_i - H(x_i)|| + \text{others}$$

such that $x_{i+1} = \mathcal{M}(x_i) + \text{others.}$

Goal

Find best starting vector and possibly update model to make the best possible forecast.

🞯 Toy Data Assimilation

Linear model

$$x_{k+1} = Mx_k$$
$$y_k = Hx_k$$

- Assumption: model is accurate
- Data: noisy measurements y_1, \ldots, y_k (covariance R)
- startvalue distribution $x_0 \sim \mathcal{N}(x^b, B_0)$.

The best unbiased linear estimate for the start value is then given by minimizing the following cost functional:

$$J(x_0) = \frac{1}{2}(x_0 - x^b)^T B_0^{-1}(x_0 - x^b) + \frac{1}{2} \sum_{k=1}^N (Hx_k - y_k)^T R^{-1}(Hx_k - y_k)$$

We assume that two projection matrices W and V are given such that we can reduce the entire system to

$$\hat{x}_{k+1} = \hat{M}\hat{x}_k \tag{1}$$

$$\hat{y}_k = \hat{H}\hat{x}_k \tag{2}$$

where $\hat{M} = W^T M V$, $\hat{H} = H V$ and $\hat{x}_0 \sim \mathcal{N}(W^T x^b, W^T B_0 W)$ and the noisy measurements stay the same with covariance R.

As before we find the best linear unbiased estimate by mimizing

$$\hat{J}(\hat{x}_0) = \frac{1}{2}(\hat{x}_0 - W^T x^b)^T \hat{B}_0^{-1}(\hat{x}_0 - W^T x^b) + \frac{1}{2} \sum_{k=1}^{N} (\hat{H}\hat{x}_k - y_k)^T R^{-1}(\hat{H}\hat{x}_k - y_k)$$

How to pick V, W Optimal Solution:

$$(B_0^{-1} + \sum_{k=1}^N (M^k)^T H^T R^{-1} H M^k) x_0 = (B_0^{-1} x^b + \sum_{k=1}^N (M^k)^T H^T R^{-1} y_k)$$

The same would be true for the reduced system and therefore we want to compare $||x_0 - V\hat{x}_0||$. In order to write things more consice we define \mathcal{H} :

$$\mathcal{H} = \begin{bmatrix} HM & HM^2 & \dots & HM^N \end{bmatrix}$$

This means

$$\begin{split} \|x_o - V\hat{x}_0\| &= \|(B_0^{-1} + \mathcal{H}^T R^{-1} \mathcal{H})^{-1} (B_0^{-1} x^b + \mathcal{H}^T R^{-1} y) \\ &- V(\hat{B}_0^{-1} + \hat{\mathcal{H}}^T R^{-1} \hat{\mathcal{H}})^{-1} (\hat{B}_0^{-1} W^T x^b + \hat{\mathcal{H}}^T R^{-1} y) \| \\ &\leq \|(B_0^{-1} + \mathcal{H}^T R^{-1} \mathcal{H})^{-1} B_0^{-1} x^b - V(\hat{B}_0^{-1} + \hat{\mathcal{H}}^T R^{-1} \hat{\mathcal{H}})^{-1} \hat{B}_0^{-1} W^T x^b \| \\ &+ \|(B_0^{-1} + \mathcal{H}^T R^{-1} \mathcal{H})^{-1} \mathcal{H}^T R^{-1} y - V(\hat{B}_0^{-1} + \hat{\mathcal{H}}^T R^{-1} \hat{\mathcal{H}})^{-1} \hat{\mathcal{H}}^T R^{-1} y \| \end{split}$$

To summarize in order to get a good reduced order estimate the reduced order model needs to satisfy the following conditions:

$$VW^{\mathsf{T}}x^b \approx x^b \tag{3}$$

$$\mathcal{H}V \approx \hat{\mathcal{H}}$$
 (4)

$$B_0^{-1} V \hat{B}_0 \hat{\mathcal{H}}^{\mathsf{T}} \approx \mathcal{H}^{\mathsf{T}}$$
(5)

One could write this conditions also as

Conditions

$$VW^{T}x^{b} \approx x^{b}$$
(6)
$$\mathcal{H}V \approx \hat{\mathcal{H}}$$
(7)

$$V\hat{B}_0V^T = W^T B_0 W V^T \approx B_0 \tag{8}$$

$$\hat{M} = W^T M V$$
 $\hat{H} = H V$ $\mathcal{H} = [H M H M^2 \dots H M^N]$

Solution Science Interest Science Action Science Ac

Problem type

Linear Input-output system:

Data:

 $\dot{x}(t) = A(\theta)x(t) + B(\theta)u(t)$ $y(t) = C(\theta)x(t)$

 y_1,\ldots,y_n $\theta_1,\ldots,\theta_n \quad u_1,\ldots,u_n$

The world is mostly nonlinear!

Use of linear models

- Local Analysis
- Control
- Optimization

🥯 Data Driven Method

A modified challenge

Data

We assume that the data is given in form of frequencies ξ_1, \ldots, ξ_N and frequency response data H_1, \ldots, H_N .

Let Y and U be the Laplace Transforms of y and u.

$$Y(\xi) = H(\xi)U(\xi) = C(\xi I - A)^{-1}BU(\xi)$$

- H_i is from measurements $(H(\xi_i) \neq H_i)$
- Matrices A, B, C, D are given but may have a model error
- Create a reduced linear system $\hat{A}, \hat{B}, \hat{C}, \hat{D}$ that is a good approximation of the true system

Error between the true and the reduced output,

$$\operatorname{ess\,}\sup_{t>0}|y(t)-\hat{y}(t)|\leq \|H-\hat{H}\|_{\mathcal{H}_2}\|u\|_{\mathcal{L}_2},$$

where the \mathcal{H}_2 -norm is defined as

$$\|H - \hat{H}\|_{\mathcal{H}_2}^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\iota\omega) - \hat{H}(\iota\omega)|^2 d\omega.$$
(9)

Theorem

Given a stable dynamical system. For a reduced order system of order r to minimize (9), it is necessary that at its mirror poles the reduced system be a Hermite interpolant of the original system.

Reduction via Projection

$$\hat{A} = W^T A V \quad \hat{B} = W^T B \quad \hat{C} = C V$$

If $(\sigma_i I - A)^{-1}B \in \operatorname{im}(V)$, $(\sigma_i I - A)^{-T}C^T \in \operatorname{im}(W)$, for $i = 1, \ldots, r$ the reduced transfer function interpolates the full transfer function at $\sigma_1, \ldots, \sigma_r$

Solution \Rightarrow Iterative Rational Krylov Algorithm (IRKA)

Reduction via Projection

$$\hat{A} = W^T A V \quad \hat{B} = W^T B \quad \hat{C} = C V$$

If $(\sigma_i I - A)^{-1}B \in \operatorname{im}(V)$, $(\sigma_i I - A)^{-T}C^T \in \operatorname{im}(W)$, for $i = 1, \ldots, r$ the reduced transfer function interpolates the full transfer function at $\sigma_1, \ldots, \sigma_r$

Solution \Rightarrow Iterative Rational Krylov Algorithm (IRKA)

given optimal interpolation points we can create the projection matrix

Reduction via Projection

$$\hat{A} = W^T A V \quad \hat{B} = W^T B \quad \hat{C} = C V$$

If $(\sigma_i I - A)^{-1}B \in \operatorname{im}(V)$, $(\sigma_i I - A)^{-T}C^T \in \operatorname{im}(W)$, for $i = 1, \ldots, r$ the reduced transfer function interpolates the full transfer function at $\sigma_1, \ldots, \sigma_r$

Solution \Rightarrow Iterative Rational Krylov Algorithm (IRKA)

given optimal interpolation points we can create the projection matrix

optimal interpolation points are not known

Reduction via Projection

$$\hat{A} = W^T A V \quad \hat{B} = W^T B \quad \hat{C} = C V$$

If $(\sigma_i I - A)^{-1}B \in \operatorname{im}(V)$, $(\sigma_i I - A)^{-T}C^T \in \operatorname{im}(W)$, for $i = 1, \ldots, r$ the reduced transfer function interpolates the full transfer function at $\sigma_1, \ldots, \sigma_r$

Solution \Rightarrow Iterative Rational Krylov Algorithm (IRKA)

- given optimal interpolation points we can create the projection matrix
- optimal interpolation points are not known
- fixed point iteration is used

Reduction via Projection

$$\hat{A} = W^T A V \quad \hat{B} = W^T B \quad \hat{C} = C V$$

If $(\sigma_i I - A)^{-1}B \in \operatorname{im}(V)$, $(\sigma_i I - A)^{-T}C^T \in \operatorname{im}(W)$, for $i = 1, \ldots, r$ the reduced transfer function interpolates the full transfer function at $\sigma_1, \ldots, \sigma_r$

Solution \Rightarrow Iterative Rational Krylov Algorithm (IRKA)

- given optimal interpolation points we can create the projection matrix
- optimal interpolation points are not known
- fixed point iteration is used
- upon convergence a local minimizer is found

Loewner

Given frequencies together with the value of the transfer function at those frequencies, a data driven approach to MOR is to create a state space system which interpolates there. Given interpolation points $(\xi_1, \ldots, \xi_N, \sigma_1, \ldots, \sigma_r)$, and its transfer function values $W = [H(\sigma_1), \ldots, H(\sigma_r)]$ and $V^T = [H(\xi_1), \ldots, H(\xi_N)]$, we can define the Loewner matrices $\mathbb{L}, \sigma \mathbb{L}$ and the symmetric Loewner matrices $\mathbb{L}^s, \sigma \mathbb{L}^s$

$$\mathbb{L}_{ij} = \frac{V_i - W_j}{\xi_i - \sigma_j}, \qquad \sigma \mathbb{L}_{ij} = \frac{\xi_i V_i - \sigma_j W_j}{\xi_i - \sigma_j}, \\
\mathbb{L}_{ij}^s = \begin{cases} \frac{W_i - W_j}{\sigma_i - \sigma_j} & \text{if } i \neq j \\ H'(\sigma_i) & \text{if } i = j \end{cases} \sigma \mathbb{L}_{ij}^s = \begin{cases} \frac{\sigma_i W_i - \sigma_j W_j}{\sigma_i - \sigma_j} & \text{if } i \neq j \\ H(\sigma_i) + \sigma_i H'(\sigma_i) & \text{if } i = j \end{cases}$$

🥯 Data and Model

Loewner

If N = r the order r reduced state space system that interpolates:

$$\tilde{H}(s) = W(\sigma \mathbb{L} - s \mathbb{L})^{-1} V.$$
(10)

We will now look at this problem as a rational interpolation problem from the setup of barycentric interpolation. Here we know that the function

$$\tilde{G}(s) = \frac{\sum_{k=1}^{r} \frac{\alpha_k W_k}{s - \sigma_k}}{\sum_{k=1}^{r} \frac{\alpha_k}{s - \sigma_k} + 1}.$$
(11)

is a strictly proper rational function that interpolates H at σ_k for all $\alpha_1, \ldots, \alpha_k$, as long as they are not all zero.

Lemma

The two transfer functions \tilde{H} and \tilde{G} as in (10) and (11) are identical exactly when $\mathbb{L}\alpha + V = 0$.

Loewner

Let N > r, the strictly proper rational function interpolating σ_k :

$$\tilde{G}(s) = \frac{\sum_{k=1}^{r} \frac{\alpha_k W_k}{s - \sigma_k}}{\sum_{k=1}^{r} \frac{\alpha_k}{s - \sigma_k} + 1}.$$
(12)

We want to pick α such that $\tilde{G}(\xi_i) \approx H(\xi_i)$. Let \mathbb{L} be the Loewner matrix:

$$\tilde{G}(\xi_i) - H(\xi_i) = \frac{\sum_{k=1}^r \frac{\alpha_k W_k}{\xi_i - \sigma_k}}{\sum_{k=1}^r \frac{\alpha_k}{\xi_i - \sigma_k} + 1} - V_i = \frac{(-\mathbb{L}\alpha - V)_i}{\sum_{k=1}^r \frac{\alpha_k}{\xi_i - \sigma_k} + 1},$$
(13)

Lemma

A state space system that has the transfer function \tilde{G} as in (12) with $\mathbb{L}^*\mathbb{L}\alpha + \mathbb{L}^*V = 0$ is given by: (Z denote the first r singular vectors of \mathbb{L})

$$\tilde{E} = -Z^* \mathbb{L}, \quad \tilde{A} = -Z^* \sigma \mathbb{L}, \quad \tilde{C} = W, \quad \tilde{B} = Z^* V$$

- \blacksquare Compute σ from the inaccurate model by IRKA
- Use $\xi_1, \ldots, \xi_n, H_i, \ldots, H_n$ to determine α
- Used reduced rational function as your model

Offline Phase

- Compute optimal \mathcal{H}_2 interpolation points $\sigma_1, \ldots, \sigma_r$ from the model
- **INPUT**: reduced order *r*, interpolation points $\sigma_1, \ldots, \sigma_r$,

• Data:
$$\xi_1, \ldots, \xi_N, H_i, \ldots, H_N$$

• Define
$$V_i = H_i$$
, Compute $W_j = H(\sigma_j)$,

• Setup
$$\mathbb{L}_{ij} = \frac{V_i - W_j}{\xi_i - \sigma_j}$$
, $\sigma \mathbb{L}_{ij} = \frac{\xi_i V_i - \sigma_j W_j}{\xi_i - \sigma_j}$

• Compute the SVD of $\mathbb{L} = U\Sigma V^T$

■
$$Z = U(:, 1: r)$$

■ $\hat{A} = -Z^* \mathbb{L}, \ \hat{E} = -Z^* \sigma \mathbb{L}, \ \hat{B} = W, \ \hat{C} = Z^* V$

Solution Numerical Results

UQ example

Matlab Code

A=Q*diag(-10*rand(n,1))*Q'; B=ones(n,1); C=ones(1,n); D=0; E=eye(n);

r	Ν	IRKA		DataMOR		Hermite		Loewner		
		err	#	err	#	err	#	err	#	#
4	8	0.01	142	0.02	12	0.02	8	10	(5)	8
4	16	0.01	142	0.01	20	0.02	8	0.2	(5)	16
6	12	2E-5	134	5E-5	18	2E-4	12	15	(4)	12
6	24	2E-5	134	3E-5	30	2E-4	12	4E-3	(5)	24
10	20	2E-11	151	2E-10	30	2E-5	20	_	(0)	20
10	40	2E-11	151	1E-10	50	2E-5	20	2E-6	(1)	40

Table : Average over 5 runs

Solution Numerical Results

Synthetic Model

In benchmark collection http://www.modelreduction.org,

Matlab Code function [A,B,C,D,E]=ParaModel(p) n = 100; ... Ae = spdiags(aa,0,n,n); A0 = spdiags([0;bb],1,n,n) + spdiags(-bb,-1,n,n); B = 2*sparse(mod([1:n],2)).'; C(1:2:n-1) = c.'; C(2:2:n) = d.'; C = sparse(C); A=A0+p*Ae; D=0; E=eye(n);

Setup

Take model at p = 1 as the known but inexact model. Take measurements from different parameter models

Synthetic Model

Figure : Bode plot for different values of the parameter

Synthetic Model

Figure : Error plot (left)

Iteration Times DataMOR: r + N = 120 large systems. IRKA directly: 2rIRKAiteration = 2r20 = 800,

Sara Grundel, grundel@mpi-magdeburg.mpg.de

PMOR or UQ

What are we solving?

$$\min_{\alpha} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$$

DMD as model adjustment technique, linear correction technique

Sara Grundel, grundel@mpi-magdeburg.mpg.de

PMOR or UQ

What are we solving?

$$\min_{\alpha} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$$

Not even that exactly

DMD as model adjustment technique, linear correction technique

Sara Grundel, grundel@mpi-magdeburg.mpg.de

PMOR or UQ

What are we solving?

$$\min_{\alpha} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$$

Not even that exactly

Does is make sense to pick the given σ?

DMD as model adjustment technique, linear correction technique

What are we solving?

$$\min_{\alpha} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$$

Not even that exactly

Does is make sense to pick the given σ?

 $\min_{\alpha,\sigma} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$

DMD as model adjustment technique, linear correction technique

What are we solving?

$$\min_{\alpha} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$$

Not even that exactly

Does is make sense to pick the given σ?

$$\min_{\alpha,\sigma} \|H^{\alpha}_{\sigma}(\xi_i) - H_i\|$$

$$\min_{\alpha,\sigma} \|H^{\alpha}_{\sigma}(\xi_i) - H_i + e_i\| + \|e_i\| + \|H - H^{\alpha}_{\sigma}\|_{\mathcal{H}_2}$$

DMD as model adjustment technique, linear correction technique

🥹 Questions and Remarks

Thank you for your attention.

 Peter Benner, Sara Grundel. Model Order Reduction for a family of linear systems with applications in parametric and uncertain systems. Applied Mathematics Letters,2015