Introducing IR Tools

Silvia Gazzola
Joint work with P. C. Hansen and J. Nagy

Department of Mathematical Sciences

UNIVERSITY OF
 BATH

LMS - EPSRC Durham Symposium, Model Order Reduction August 15, 2017

Outline

1 Introduction
■ Discrete inverse problems
■ Putting IR Tools into place
2 Test problems
■ Image deblurring

- Computed tomography

■ Inverse Interpolation
3 Iterative Solvers
■ Enhancing classical iterative methods

- Regularization, projection, hybrid methods

4 Conclusions

Some backrgound

Some backrgound

Numerical solution of $A x^{*}+e=b$
■ discretization of Fredholm integral equation of the first kind

- $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$
- e unknown noise

Some backrgound

Numerical solution of $A x^{*}+e=b$
■ discretization of Fredholm integral equation of the first kind

- $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$

■ e unknown noise

- ill-posed

Some backrgound

Numerical solution of $A x^{*}+e=b$

- discretization of Fredholm integral equation of the first kind
- $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$
- e unknown noise
- ill-posed (looking at the SVD of $A=U \Sigma V^{T}$)

Some backrgound

Numerical solution of $A x^{*}+e=b$

- discretization of Fredholm integral equation of the first kind
- $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$
- e unknown noise

■ ill-posed (looking at the SVD of $A=U \Sigma V^{T}$)

Some backrgound

Numerical solution of $A x^{*}+e=b$
■ discretization of Fredholm integral equation of the first kind

- $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$
- e unknown noise

■ ill-posed (looking at the SVD of $A=U \Sigma V^{T}$)

Some backrgound

Numerical solution of $A x^{*}+e=b$
■ discretization of Fredholm integral equation of the first kind

- $A \in \mathbb{R}^{M \times N}, b \in \mathbb{R}^{M}$
- e unknown noise

■ ill-posed (looking at the SVD of $A=U \Sigma V^{T}$)

Applying some regularization

Applying some regularization

■ "small-scale" problems (direct)
■ TSVD

- Tikhonov-regularization

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x)\right\}, \quad \Omega(x)=\|x\|_{2}^{2},\|L x\|_{2}^{2}
$$

Applying some regularization

■ "small-scale" problems (direct)
■ TSVD

- Tikhonov-regularization

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x)\right\}, \quad \Omega(x)=\|x\|_{2}^{2},\|L x\|_{2}^{2}
$$

■ "large-scale" problems (iterative)

Applying some regularization

■ "small-scale" problems (direct)
■ TSVD

- Tikhonov-regularization

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x)\right\}, \quad \Omega(x)=\|x\|_{2}^{2},\|L x\|_{2}^{2}
$$

■ "large-scale" problems (iterative)
■ iterative regularization: semi-convergence and early stopping

Applying some regularization

■ "small-scale" problems (direct)

- TSVD

■ Tikhonov-regularization

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x)\right\}, \quad \Omega(x)=\|x\|_{2}^{2},\|L x\|_{2}^{2}
$$

■ "large-scale" problems (iterative)
■ iterative regularization: semi-convergence and early stopping

■ Tikhonov(-like) regularization, solved iteratively

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x)\right\}, \quad \Omega(x)=\|x\|_{2}^{2},\|L x\|_{2}^{2},\|x\|_{1}, \operatorname{TV}(x)
$$

Here IR Tools comes...

Here IR Tools comes...

"state-of-the-art":

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems. Numer. Algo., 1994 till 2007.
- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems.

Numer. Algo., 1994 till 2007.

small problems

- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
image deblurring problems only.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.
tomography problems only

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems.

Numer. Algo., 1994 till 2007.
small problems

- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
image deblurring problems only.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.
tomography problems only
Features and goals of IR Tools:

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems.

Numer. Algo., 1994 till 2007.
small problems

- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
image deblurring problems only.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.
tomography problems only
Features and goals of IR Tools:
■ model implementation of a variety of "new" iterative regularization methods;

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems.

Numer. Algo., 1994 till 2007.
small problems

- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
image deblurring problems only.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.
tomography problems only
Features and goals of IR Tools:
■ model implementation of a variety of "new" iterative regularization methods;
- new realistic 2D test problems;

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems.

Numer. Algo., 1994 till 2007.
small problems

- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
image deblurring problems only.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.
tomography problems only
Features and goals of IR Tools:
■ model implementation of a variety of "new" iterative regularization methods;
- new realistic 2D test problems;

■ easy to use: almost identical calls to iterative solvers and test-problem generators; naming convention for all functions; default options;

Here IR Tools comes...

"state-of-the-art":

- Regularization Tools
P. C. Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete III-Posed Problems.

Numer. Algo., 1994 till 2007.
small problems

- Restore Tools
J. G. Nagy, K. Palmer, and L. Perrone. Iterative methods for image deblurring: A Matlab object oriented approach. Numer. Algo., 2004 till 2012.
image deblurring problems only.
- AIR Tools (II)
P. C. Hansen and M. S. Hansen. AIR Tools - A MATLAB package of algebraic iterative reconstruction methods. JCAM, 2012.
P. C. Hansen and J. S. Jorgensen. AIR Tools II: Algebraic iterative reconstruction meth- ods, improved implementation. Numer. Algo. (submitted), 2017.
tomography problems only
Features and goals of IR Tools:
■ model implementation of a variety of "new" iterative regularization methods;
- new realistic 2D test problems;

■ easy to use: almost identical calls to iterative solvers and test-problem generators; naming convention for all functions; default options;
■ flexible (control over the parameters) and expandable.

Test problems: the PRxxx functions

Generating a test problem:
1 Define A, b^{*}, x^{*}.

2 Add noise to $b^{*}=A x^{*}: b=b^{*}+e$.

3 Visualise the data.

Test problems: the PRxxx functions

Generating a test problem:
1 Define A, b^{*}, x^{*}.

- PRblur image deblurring: spatially (in)variant blur
- PRtomo, PRspherical, PRseismic computed tomography: X-ray, spherical, seismic travel-time
- PRinvinterp2
inverse interpolation
- PRnmr
nuclear magnetic resonance (NMR)
2 Add noise to $b^{*}=A x^{*}: b=b^{*}+e$.

3 Visualise the data.

Test problems: the PRxxx functions

Generating a test problem:
1 Define A, b^{*}, x^{*}.

- PRblur image deblurring: spatially (in)variant blur
- PRtomo, PRspherical, PRseismic
computed tomography: X-ray, spherical, seismic travel-time
- PRinvinterp2
inverse interpolation
- PRnmr
nuclear magnetic resonance (NMR)
2 Add noise to $b^{*}=A x^{*}: b=b^{*}+e$. PRnoise (Gauss, Poisson, Multiplicative)
3 Visualise the data.

Test problems: the PRxxx functions

Generating a test problem:
1 Define A, b^{*}, x^{*}.

- PRblur image deblurring: spatially (in)variant blur
- PRtomo, PRspherical, PRseismic computed tomography: X-ray, spherical, seismic travel-time
- PRinvinterp2
inverse interpolation
- PRnmr
nuclear magnetic resonance (NMR)

2 Add noise to $b^{*}=A x^{*}: b=b^{*}+e$. PRnoise (Gauss, Poisson, Multiplicative)
3 Visualise the data. PRshowb, PRshowx

Something more about PRblur

Something more about PRblur

Something more about PRblur

PSF

$+$

available

Something more about PRblur

PSF *

noise

available

Basic call:

$[\mathrm{A}, \mathrm{b}, \mathrm{x}, \operatorname{ProbInfo} \mathrm{C}=$ PRblur;

Something more about PRblur

PSF
Basic call:

$+$

ProbInfo is a struct:

$$
\begin{aligned}
\text { problemType : } & \text { 'deblurring' } \\
\text { xType }: & \text { 'image2D } \\
\text { xSize }: & {[256256] } \\
\text { bType }: & \text { 'image2D } \\
\text { bSize }: & {[256256] } \\
\text { psf }: & {[256 \times 256 \text { double }] }
\end{aligned}
$$

Something more about PRblur

PSF

Basic call:

ProbInfo is a struct:

$$
\begin{aligned}
\text { problemType : } & \text { 'deblurring' } \\
\text { xType }: & \text { 'image2D } \\
\text { xSize : } & {[256256] } \\
\text { bType }: & \text { 'image2D } \\
\text { bSize }: & {[256256] } \\
\text { psf }: & {[256 \times 256 \text { double }] }
\end{aligned}
$$

More advanced call:

$$
[\mathrm{A}, \mathrm{~b}, \mathrm{x}, \operatorname{ProbInf} \mathrm{o}]=\text { PRblur(n, options) }
$$

Exploring the PRblur options

Exploring the PRblur options

■ default options (spatially invariant, medium level, reflective b.c.)

PSF

Exploring the PRblur options

■ default options (spatially invariant, medium level, reflective b.c.)

b^{*}
PSF

■ shaking blur (spatially variant, mild level, zero b.c.)

Exploring the PRblur options

■ default options (spatially invariant, medium level, reflective b.c.)

b^{*}

PSF

■ shaking blur (spatially variant, mild level, zero b.c.)

- rotation blur (spatially variant, severe level, periodic b.c.)
[Hansen, Nagy, and Tigkos. Rotational image deblurring with sparse matrices, BIT, 2014] x^{*}

b^{*}

Something more about PRtomo, PRspherical, PRseismic

Something more about PRtomo, PRspherical, PRseismic

■ X-ray computed tomography (image courtesy: Hansen, Jorgensen, AIR Tools II)

fan, curved

Something more about PRtomo, PRspherical, PRseismic

■ X-ray computed tomography (image courtesy: Hansen, Jorgensen, AIR Tools II)

fan, curved

- Spherical means tomography (image courtesy: Hansen, Jorgensen, AIR Tools II)

Something more about PRtomo, PRspherical, PRseismic

■ X-ray computed tomography (image courtesy: Hansen, Jorgensen, AIR Tools I/)
parallel

fan, curved

- Spherical means tomography (image courtesy: Hansen, Jorgensen, AIR Tools II)
- Seismic travel-time tomography (image courtesy: Hansen, Jorgensen, AIR Tools II)

Exploring the tomographic problems' options

Exploring the tomographic problems' options

For all the problems: opt.phantomImage

Exploring the tomographic problems' options

For all the problems: opt.phantomImage
■ [A, b, x, ProbInfo] = PRtomo(n, opt); choosing CTtype, angles, p...
Shepp-Logan parallel (over)
 parallel (under)

Exploring the tomographic problems' options

For all the problems: opt. phantomImage
■ [A, b, x, ProbInfo] = PRtomo(n, opt); choosing CTtype, angles, p...
Shepp-Logan
parallel (over)
parallel (under)

■ [A, b, x, ProbInfo] = PRspherical(n, opt); choosing angles,numCircles threephases

Exploring the tomographic problems' options

For all the problems: opt.phantomImage
■ [A, b, x, ProbInfo] = PRtomo(n, opt); choosing CTtype, angles, p...

Shepp-Logan

parallel (over)

parallel (under)

■ [A, b, x, ProbInfo] = PRspherical(n, opt); choosing angles,numCircles threephases

■ [A, b, x, ProbInfo] = PRseismic(n, opt); choosing wavemodel, p... smooth

Something more about PRinvinterp

Something more about PRinvinterp

Something more about PRinvinterp

Something more about PRinvinterp

Something more about PRinvinterp

Something more about PRinvinterp

Something more about PRinvinterp

options.InterpMethod: 'linear', 'nearest', 'cubic', 'spline'.

Iterative Solvers: the IRxxx functions

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}\\
& \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x) \tag{cLS}
\end{align*}
$$

Iterative Solvers: the IRxxx functions

$$
\begin{align*}
& \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}\\
& \min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2}+\lambda^{2} \Omega(x) \tag{cLS}
\end{align*}
$$

solver	problem	notes		
IRart	$($ LS $)$			
IRsirt	$($ LS $)$			
IRmrnsd	$($ LS $)$	$x \geq 0$		
IRfista	$(c L S)$	$x \in \mathcal{C}, \Omega(x)=\\|x\\|_{1}$		

Krylov methods

IRcgls	$\left.\begin{array}{l}(\mathrm{LS}) \\ (c L S\end{array}\right)$	$x \in \hat{\mathcal{K}}_{k}$ $x \in \hat{\mathcal{K}}_{k}, \Omega(x)=\\|(L) x\\|_{2}^{2}$
IRenrich	(LS)	$x \in \mathcal{K}_{k}+\mathcal{W}_{p}$
IRrrgmres	(LS)	$M=N, x \in \hat{\mathcal{K}}_{k}$
IRnnfcgls	(LS)	$x \geq 0$
IRhybrid_\{1sqr\}\{gmres\}	(cLS)	$x \in \hat{\mathcal{K}}_{k}$
IRhybrid_fgmres	$(c L S)$	$\Omega(x)=\\|x\\|_{1}, x \in \hat{\mathcal{K}}_{k}$
IRrestart	$(c L S)$	$x \in \mathcal{C} \cap \hat{\mathcal{K}}_{k}$

Main ideas behind Krylov-subspace-based regularization

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

A classical justification: regularization happens if

$$
x_{k} \in \hat{\mathcal{K}}_{k}, \quad x_{k} \longrightarrow x^{*} \quad \text { when } \quad\|e\| \rightarrow 0
$$

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

A classical justification: regularization happens if

$$
x_{k} \in \hat{\mathcal{K}}_{k}, \quad x_{k} \longrightarrow x^{*} \quad \text { when } \quad\|e\| \rightarrow 0
$$

Often more can be said:

- Krylov methods "mimic" the TSVD;
- they are efficient as $\hat{\mathcal{K}}_{k} \simeq \hat{\mathcal{K}}_{k+1}$ for $k \ll N$.

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

A classical justification: regularization happens if

$$
x_{k} \in \hat{\mathcal{K}}_{k}, \quad x_{k} \longrightarrow x^{*} \quad \text { when } \quad\|e\| \rightarrow 0
$$

Often more can be said:
■ Krylov methods "mimic" the TSVD;

- they are efficient as $\hat{\mathcal{K}}_{k} \simeq \hat{\mathcal{K}}_{k+1}$ for $k \ll N$.

But sometimes this is not enough!

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

A classical justification: regularization happens if

$$
x_{k} \in \hat{\mathcal{K}}_{k}, \quad x_{k} \longrightarrow x^{*} \quad \text { when } \quad\|e\| \rightarrow 0
$$

Often more can be said:

- Krylov methods "mimic" the TSVD;
- they are efficient as $\hat{\mathcal{K}}_{k} \simeq \hat{\mathcal{K}}_{k+1}$ for $k \ll N$.

But sometimes this is not enough!
■ "preconditioning"
[Hanke and Hansen. Regularization methods for large-scale problems. Surveys Math. Industry, 1993]
In the CGLS case: $x_{k} \in \mathcal{K}_{k}\left(L^{-1} L^{-T} A^{T} A, L^{-1} L^{-T} A^{T} b\right)$

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

A classical justification: regularization happens if

$$
x_{k} \in \hat{\mathcal{K}}_{k}, \quad x_{k} \longrightarrow x^{*} \quad \text { when } \quad\|e\| \rightarrow 0
$$

Often more can be said:

- Krylov methods "mimic" the TSVD;
- they are efficient as $\hat{\mathcal{K}}_{k} \simeq \hat{\mathcal{K}}_{k+1}$ for $k \ll N$.

But sometimes this is not enough!
■ "preconditioning"
[Hanke and Hansen. Regularization methods for large-scale problems. Surveys Math. Industry, 1993]
In the CGLS case: $x_{k} \in \mathcal{K}_{k}\left(L^{-1} L^{-T} A^{T} A, L^{-1} L^{-T} A^{T} b\right)$

- enriching
[Calvetti, Reichel, and Shuibi. Enriched Krylov subspace methods for ill-posed problems. Lin. Alg. Appl., 2003]
In the CGLS case: $x_{k} \in \mathcal{K}_{k}\left(A^{T} A, A^{\top} b\right) \cup \mathcal{R}(W)$

Main ideas behind Krylov-subspace-based regularization

Consider:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2}^{2} \tag{LS}
\end{equation*}
$$

A classical justification: regularization happens if

$$
x_{k} \in \hat{\mathcal{K}}_{k}, \quad x_{k} \longrightarrow x^{*} \quad \text { when } \quad\|e\| \rightarrow 0
$$

Often more can be said:

- Krylov methods "mimic" the TSVD;
- they are efficient as $\hat{\mathcal{K}}_{k} \simeq \hat{\mathcal{K}}_{k+1}$ for $k \ll N$.

But sometimes this is not enough!
■ "preconditioning"
[Hanke and Hansen. Regularization methods for large-scale problems. Surveys Math. Industry, 1993]
In the CGLS case: $x_{k} \in \mathcal{K}_{k}\left(L^{-1} L^{-T} A^{T} A, L^{-1} L^{-T} A^{T} b\right)$

- enriching
[Calvetti, Reichel, and Shuibi. Enriched Krylov subspace methods for ill-posed problems. Lin. Alg. Appl., 2003]
In the CGLS case: $x_{k} \in \mathcal{K}_{k}\left(A^{T} A, A^{\top} b\right) \cup \mathcal{R}(W)$
- nonnegativty
[G. and Wiaux. Fast nonnegative least squares through flexible Krylov subspaces, SISC, 2017]
Apply flexible CGLS to: $X A^{T}(A x-b), x \geq 0$.

Interplay of regularization and projection

Interplay of regularization and projection

Starting from

$$
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \quad(\mathrm{LS})
$$

Interplay of regularization and projection

Starting from

$$
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \quad(\mathrm{LS})
$$

1 first regularize, then project:

Interplay of regularization and projection

Starting from

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

1 first regularize, then project:
■ consider

$$
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{2}^{2}\right\}=\min _{x \in \mathbb{R}^{N}}\left\|\left[\begin{array}{c}
A \tag{cLS}\\
\lambda I
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

Interplay of regularization and projection

Starting from

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

1 first regularize, then project:
■ consider

$$
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{2}^{2}\right\}=\min _{x \in \mathbb{R}^{N}}\left\|\left[\begin{array}{c}
A \tag{cLS}\\
\lambda I
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

■ look for $x_{\lambda, k}=V_{k} y_{\lambda, k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ for (cLS).

Interplay of regularization and projection

Starting from

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

1 first regularize, then project:
■ consider

$$
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{2}^{2}\right\}=\min _{x \in \mathbb{R}^{N}}\left\|\left[\begin{array}{c}
A \tag{cLS}\\
\lambda I
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

■ look for $x_{\lambda, k}=V_{k} y_{\lambda, k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ for (cLS).
2 first project, then regularize:

Interplay of regularization and projection

Starting from

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

1 first regularize, then project:
■ consider

$$
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{2}^{2}\right\}=\min _{x \in \mathbb{R}^{N}}\left\|\left[\begin{array}{c}
A \tag{cLS}\\
\lambda I
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

■ look for $x_{\lambda, k}=V_{k} y_{\lambda, k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ for (cLS).
2 first project, then regularize:
■ look for $x_{k}=V_{k} y_{k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ approximating the solution of (LS)

$$
\min _{y \in \mathbb{R}^{k}}\left\|A V_{k} y-b\right\|_{2}
$$

Interplay of regularization and projection

Starting from

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

1 first regularize, then project:

- consider

$$
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{2}^{2}\right\}=\min _{x \in \mathbb{R}^{N}}\left\|\left[\begin{array}{c}
A \tag{cLS}\\
\lambda I
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

■ look for $x_{\lambda, k}=V_{k} y_{\lambda, k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ for (cLS).
2 first project, then regularize:
■ look for $x_{k}=V_{k} y_{k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ approximating the solution of (LS)

$$
\min _{y \in \mathbb{R}^{k}}\left\|A V_{k} y-b\right\|_{2}
$$

- apply some regularization

$$
\min _{y \in \mathbb{R}^{k}}\left\|\left[\begin{array}{c}
A V_{k} \tag{cLS}\\
\lambda I
\end{array}\right] y-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

so to get $y_{\lambda, k} \in \mathbb{R}^{k}$ and $x_{\lambda, k}=V_{k} y_{\lambda, k}$.

Interplay of regularization and projection

Starting from

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{N}}\|A x-b\|_{2} \tag{LS}
\end{equation*}
$$

1 first regularize, then project:

- consider

$$
\min _{x \in \mathbb{R}^{N}}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{2}^{2}\right\}=\min _{x \in \mathbb{R}^{N}}\left\|\left[\begin{array}{c}
A \tag{cLS}\\
\lambda I
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

■ look for $x_{\lambda, k}=V_{k} y_{\lambda, k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ for (cLS).
2 first project, then regularize:
■ look for $x_{k}=V_{k} y_{k} \in \mathcal{V}_{k}\left(\mathcal{V}_{k}=\mathcal{R}\left(V_{k}\right)\right)$ approximating the solution of (LS)

$$
\min _{y \in \mathbb{R}^{k}}\left\|A V_{k} y-b\right\|_{2}
$$

- apply some regularization

$$
\min _{y \in \mathbb{R}^{k}}\left\|\left[\begin{array}{c}
A V_{k} \tag{cLS}\\
\lambda I
\end{array}\right] y-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|_{2}
$$

so to get $y_{\lambda, k} \in \mathbb{R}^{k}$ and $x_{\lambda, k}=V_{k} y_{\lambda, k}$.
These two approaches are equivalent!

The hybrid approach

The hybrid approach

The main idea:
[O'Leary and Simmons, A bidiag.-regularization procedure for large scale ill-posed problems, SIAM Stat.Comp., 1981] consider additional direct regularization within the Krylov iterations.

The hybrid approach

The main idea:
[O'Leary and Simmons, A bidiag.-regularization procedure for large scale ill-posed problems, SIAM Stat.Comp., 1981] consider additional direct regularization within the Krylov iterations.

1 Generating the approximation subspace, by Arnoldi (Symmetric Lanczos), Lanczos bidiagonalization, Flexible Arnoldi algorithms:

The hybrid approach

The main idea:
[O'Leary and Simmons, A bidiag.-regularization procedure for large scale ill-posed problems, SIAM Stat.Comp., 1981] consider additional direct regularization within the Krylov iterations.

1 Generating the approximation subspace, by Arnoldi (Symmetric Lanczos), Lanczos bidiagonalization, Flexible Arnoldi algorithms:

$$
A V_{k}=Z_{k+1} \hat{c}_{k}, \quad \text { where } \quad \widehat{C}_{k} \in \mathbb{R}^{(k+1) \times k}, \mathcal{R}\left(V_{k}\right)=\mathcal{K}_{k}
$$

The hybrid approach

The main idea:
[O'Leary and Simmons, A bidiag.-regularization procedure for large scale ill-posed problems, SIAM Stat.Comp., 1981] consider additional direct regularization within the Krylov iterations.

1 Generating the approximation subspace, by Arnoldi (Symmetric Lanczos), Lanczos bidiagonalization, Flexible Arnoldi algorithms:

$$
A V_{k}=Z_{k+1} \hat{C}_{k}, \quad \text { where } \quad \widehat{C}_{k} \in \mathbb{R}^{(k+1) \times k}, \mathcal{R}\left(V_{k}\right)=\mathcal{K}_{k}
$$

At the k-th iteration:

$$
\min _{y \in \mathbb{R}^{k}}\left\{\left\|\hat{C}_{k} y-c_{k}\right\|_{2}^{2}+\lambda_{k}^{2}\left\|L_{k} y\right\|_{2}^{2}\right\}
$$

The hybrid approach

The main idea:
[O'Leary and Simmons, A bidiag.-regularization procedure for large scale ill-posed problems, SIAM Stat.Comp., 1981] consider additional direct regularization within the Krylov iterations.

1 Generating the approximation subspace, by Arnoldi (Symmetric Lanczos), Lanczos bidiagonalization, Flexible Arnoldi algorithms:

$$
A V_{k}=Z_{k+1} \hat{C}_{k}, \quad \text { where } \quad \widehat{C}_{k} \in \mathbb{R}^{(k+1) \times k}, \mathcal{R}\left(V_{k}\right)=\mathcal{K}_{k}
$$

At the k-th iteration:

$$
\min _{y \in \mathbb{R}^{k}}\left\{\left\|\hat{C}_{k} y-c_{k}\right\|_{2}^{2}+\lambda_{k}^{2}\left\|L_{k} y\right\|_{2}^{2}\right\}
$$

2 Adaptively set a regularization parameter: discrepancy principle, generalized cross validation (GCV).

The hybrid approach

The main idea:
[O'Leary and Simmons, A bidiag.-regularization procedure for large scale ill-posed problems, SIAM Stat.Comp., 1981] consider additional direct regularization within the Krylov iterations.

1 Generating the approximation subspace, by Arnoldi (Symmetric Lanczos), Lanczos bidiagonalization, Flexible Arnoldi algorithms:

$$
A V_{k}=Z_{k+1} \hat{C}_{k}, \quad \text { where } \quad \widehat{C}_{k} \in \mathbb{R}^{(k+1) \times k}, \mathcal{R}\left(V_{k}\right)=\mathcal{K}_{k}
$$

At the k-th iteration:

$$
\min _{y \in \mathbb{R}^{k}}\left\{\left\|\hat{C}_{k} y-c_{k}\right\|_{2}^{2}+\lambda_{k}^{2}\left\|L_{k} y\right\|_{2}^{2}\right\}
$$

2 Adaptively set a regularization parameter: discrepancy principle, generalized cross validation (GCV).
3 Adaptively set a regularization matrix

Parameter choice strategies for hybrid methods

Parameter choice strategies for hybrid methods

- The discrepancy principle (secant update method)
[G. and Novati, Automatic parameter setting for Arnoldi-Tikhonov methods, JCAM, 2014]

$$
r_{k}(\lambda):=\left\|b-A x_{k, \lambda}\right\|_{2} \leq \eta \cdot\|e\|_{2}, \quad \eta>1
$$

Parameter choice strategies for hybrid methods

- The discrepancy principle (secant update method)
[G. and Novati, Automatic parameter setting for Arnoldi-Tikhonov methods, JCAM, 2014]

$$
r_{k}(\lambda):=\left\|b-A x_{k, \lambda}\right\|_{2} \leq \eta \cdot\|e\|_{2}, \quad \eta>1
$$

Handling the two parameters:

$$
\lambda_{k}^{2}=\frac{\eta\|e\|_{2}-r_{k}(0)}{r_{k}\left(\lambda_{k-1}\right)-r_{k}(0)} \lambda_{k-1}^{2}
$$

Parameter choice strategies for hybrid methods

- The discrepancy principle (secant update method)
[G. and Novati, Automatic parameter setting for Arnoldi-Tikhonov methods, JCAM, 2014]

$$
r_{k}(\lambda):=\left\|b-A x_{k, \lambda}\right\|_{2} \leq \eta \cdot\|e\|_{2}, \quad \eta>1
$$

Handling the two parameters:

$$
\lambda_{k}^{2}=\frac{\eta\|e\|_{2}-r_{k}(0)}{r_{k}\left(\lambda_{k-1}\right)-r_{k}(0)} \lambda_{k-1}^{2}
$$

- Generalized cross validation (GCV)
[Chung, Nagy and O'Leary, A weighted-GCV method for Lanczos-hybrid regularization, ETNA, 2008]

$$
\min _{\lambda} G(\lambda), \quad G(\lambda)=\frac{\left\|\left(I-A A_{\lambda}^{\sharp}\right) b\right\|_{2}^{2}}{\left(\operatorname{trace}\left(I-A A_{\lambda}^{\sharp}\right)\right)^{2}}
$$

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{1}\right\}, \quad A \in \mathbb{R}^{N \times N} .
$$

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{1}\right\}, \quad A \in \mathbb{R}^{N \times N}
$$

With an iteratively reweighted-norm approach:

$$
\|x\|_{1} \approx\|\mathcal{W} x\|_{2}^{2}=\left\|\mathcal{W}_{m} x\right\|_{2}^{2}, \quad \text { with } \quad \mathcal{W}_{m}=L_{m}=\operatorname{diag}\left(\frac{1}{\sqrt{\left|x_{m-1}\right|}}\right)
$$

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{1}\right\}, \quad A \in \mathbb{R}^{N \times N}
$$

With an iteratively reweighted-norm approach:

$$
\begin{aligned}
& \|x\|_{1} \approx\|\mathcal{W} x\|_{2}^{2}=\left\|\mathcal{W}_{m} x\right\|_{2}^{2}, \quad \text { with } \quad \mathcal{W}_{m}=L_{m}=\operatorname{diag}\left(\frac{1}{\sqrt{\left|x_{m-1}\right|}}\right) . \\
& \min _{x}\left\{\|b-A x\|_{2}^{2}+\lambda\left\|L_{m}\left(x-x^{*}\right)\right\|_{2}^{2}\right\}
\end{aligned}
$$

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{1}\right\}, \quad A \in \mathbb{R}^{N \times N}
$$

With an iteratively reweighted-norm approach:

$$
\|x\|_{1} \approx\|\mathcal{W} x\|_{2}^{2}=\left\|\mathcal{W}_{m} x\right\|_{2}^{2}, \quad \text { with } \quad \mathcal{W}_{m}=L_{m}=\operatorname{diag}\left(\frac{1}{\sqrt{\left|x_{m-1}\right|}}\right)
$$

Consider a standard form transformation

$$
\begin{array}{cl}
\min _{x}\left\{\|b-A x\|_{2}^{2}+\lambda\left\|L_{m}\left(x-x^{*}\right)\right\|_{2}^{2}\right\} & \text { ■ } \widetilde{A}_{m}=A L_{m}^{-1} \\
\min _{\widetilde{x}}\left\{\left\|b-\widetilde{A}_{m} \widetilde{x}\right\|_{2}^{2}+\widetilde{\lambda}\left\|\widetilde{x}-\widetilde{x}^{*}\right\|_{2}^{2}\right\} & \text { ■ } \widetilde{x}^{*}=L_{m} x^{*} \\
\text { ■ } \widetilde{x}=L_{m} x
\end{array}
$$

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{1}\right\}, \quad A \in \mathbb{R}^{N \times N}
$$

With an iteratively reweighted-norm approach:

$$
\|x\|_{1} \approx\|\mathcal{W} x\|_{2}^{2}=\left\|\mathcal{W}_{m} x\right\|_{2}^{2}, \quad \text { with } \quad \mathcal{W}_{m}=L_{m}=\operatorname{diag}\left(\frac{1}{\sqrt{\left|x_{m-1}\right|}}\right)
$$

Consider a standard form transformation

$$
\begin{array}{cl}
\min _{x}\left\{\|b-A x\|_{2}^{2}+\lambda\left\|L_{m}\left(x-x^{*}\right)\right\|_{2}^{2}\right\} & \text { ■ } \widetilde{A}_{m}=A L_{m}^{-1} \\
\min _{\widetilde{x}}\left\{\left\|b-\widetilde{A}_{m} \widetilde{x}\right\|_{2}^{2}+\widetilde{\lambda}\left\|\widetilde{x}-\widetilde{x}^{*}\right\|_{2}^{2}\right\} & \text { ■ } \widetilde{x}^{*}=L_{m} x^{*} \\
& \text { ■ } \widetilde{x}=L_{m} x
\end{array}
$$

Efficiently handled by Flexible Arnoldi, in a hybrid fashion.
[G. and Nagy, Generalized AT method for sparse reconstruction, SISC, 2014]

Regularization matrix choice for hybrid methods

A notable example: enforcing sparsity (ℓ_{1}-norm penalization):

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|x\|_{1}\right\}, \quad A \in \mathbb{R}^{N \times N}
$$

With an iteratively reweighted-norm approach:

$$
\|x\|_{1} \approx\|\mathcal{W} x\|_{2}^{2}=\left\|\mathcal{W}_{m} x\right\|_{2}^{2}, \quad \text { with } \quad \mathcal{W}_{m}=L_{m}=\operatorname{diag}\left(\frac{1}{\sqrt{\left|x_{m-1}\right|}}\right)
$$

Consider a standard form transformation

$$
\begin{array}{cc}
\min _{x}\left\{\|b-A x\|_{2}^{2}+\lambda\left\|L_{m}\left(x-x^{*}\right)\right\|_{2}^{2}\right\} & ■ \widetilde{A}_{m}=A L_{m}^{-1} \\
\min _{\sim}\left\{\left\|b-\widetilde{A}_{m} \widetilde{x}\right\|_{2}^{2}+\widetilde{\lambda}\left\|\widetilde{x}-\widetilde{x}^{*}\right\|_{2}^{2}\right\} & ■ \widetilde{x}^{*}=L_{m} x^{*} \\
& \widetilde{x}=I_{m} x
\end{array}
$$

Efficiently handled by Flexible Arnoldi, in a hybrid fashion.
[G. and Nagy, Generalized AT method for sparse reconstruction, SISC, 2014]
Other possible approaches: restarted Krylov methods.

Wrapping up...

This was just a test of $I R$ Tools:

Wrapping up...

This was just a test of IR Tools:
■ "new" iterative solvers...

Wrapping up...

This was just a test of $I R$ Tools:

- "new" iterative solvers...much more to explore (and to code!)

Wrapping up...

This was just a test of IR Tools:
■ "new" iterative solvers...much more to explore (and to code!)
■ "new" test problems...

Wrapping up...

This was just a test of $I R$ Tools:

- "new" iterative solvers...much more to explore (and to code!)
- "new" test problems...much more to explore (and to code!)

Wrapping up...

This was just a test of IR Tools:

- "new" iterative solvers...much more to explore (and to code!)
- "new" test problems...much more to explore (and to code!)

Some references:
P. C. Hansen.

Discrete Inverse Problems: Insight and Algorithms.
SIAM, 2010.
S. Gazzola, P. Novati, and M. R. Russo.

On Krylov projection methods and Tikhonov regularization.
ETNA, 2015.

Wrapping up...

This was just a test of IR Tools:
■ "new" iterative solvers...much more to explore (and to code!)
■ "new" test problems...much more to explore (and to code!)
Some references:
P. C. Hansen.

Discrete Inverse Problems: Insight and Algorithms.
SIAM, 2010.
國 S. Gazzola, P. Novati, and M. R. Russo.
On Krylov projection methods and Tikhonov regularization.
ETNA, 2015.

THANKS FOR YOUR ATTENTION!

