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Stochastic partial differential equation

Uncertainty quantification (UQ)
Subsurface flow

Calibration

Fluid dynamics

→ ⊗ ⊗ ⊗ · · ·⊗

Example: −∇xκ(x, θ1, . . . , θd)∇xu = f

Many uncertain quantities → many dimensions
Discretize: n DOFs for each θk → nd elements in total.
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High-dimensional problem → low-dimensional output

However, the output of interest is low-dimensional.

Eliminate space Q(θ) = Q [u(x ,θ)].
Eliminate parameters by computing

moments EQp,
distribution function/event probabilities P(Q < ξ),
quantiles ξ : P(Q < ξ) > 0.95

Approximate the solution by a low-dimensional representation.
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Mathematical insights for data compression

Low-rank tensor decomposition ⇔ separation of variables:

n  

Approximate: u(i1, . . . , id)︸ ︷︷ ︸
tensor

≈
∑
α

u(1)α (i1)u
(2)
α (i2) · · · u(d)α (id)︸ ︷︷ ︸

tensor product decomposition

.

Goals:

Store and integrate u O(dn) cost instead of O(nd).
Solve equations Au = f O(dn2) cost instead of O(n2d).
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Stochastic PDEs: solution methods

Cost vs. accuracy Use of structure
Monte Carlo/Quasi MC – +
Sparse grids (collocation) ± +
Low-rank decompositions + –
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Problem setting
Low-rank UQ algorithms

Numerical experiments

Stochastic PDEs: solution methods

Cost vs. accuracy Use of structure
Monte Carlo/Quasi MC – +
Sparse grids (collocation) ± +
Low-rank decompositions + ?

? Stochastic PDE → block-diagonal linear system.
Generic low-rank algorithms discard the sparsity.
Can we fix that?
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Tensor decompositions: the two workhorses

Goals:

Store and integrate u

How to construct u directly?

Solve equations Au = f

In general?

How to leverage sparsity?

The story starts in two dimensions...
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

2D: low-rank matrices

Discrete Separation of variables:u1,1 · · · u1,n
...

...
un,1 · · · un,n

 =
r∑

α=1

v1,α
...

vn,α

 [wα,1 · · · wα,n
]
+O(ε).

Rank r � n.

mem(v) + mem(w) = 2nr � n2 = mem(u).
Singular Value Decomposition → optimal approximation:

‖U − VW ∗‖2F → min
V ,W
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Numerical experiments

Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation methods

Singular Value Decomposition is not always good:
impossible to start from full arrays
analytical low-rank forms may not exist

Cross algorithms: reconstruct a low-rank form from a few entries.
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation

Recall SVD: minimization of the error ‖U − VW ∗‖2F .
Interpolate instead:

U(I, :) = V (I, :)W ∗, U(:,J ) = VW ∗(:,J )

for some index sets I,J ⊂ {1, . . . , n}.
Equivalent to cross decomposition:

≈

−1

How to find index sets?
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation: alternating iteration

Practically realizable strategy: assume initial guess U ≈ VW>.

1 J = pivots (W ) → V = U(:,J ).
2 I = pivots (V ) → W = U(I, :).
3 repeat...

V ,W are n × r matrices ⇒ pivots are feasible (LU, Maxvol1)

Cost: 2nr samples + O(nr2) other flops per iteration.

1Goreinov, Tyrtyshnikov ’01
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation algorithm

Improvements:
V = qr(V ) numerical stability.
V =

[
V Z

]
rank update.

Use cross approximation to construct low-rank PDE coefficients.

Similar algorithms exist: ACA2, (D)EIM3.

2[Bebendorf]
3[Maday, Chaturantabut/Sorensen] This week: ask Chris?
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Stochastic PDE → block-diagonal matrix

We are solving −∇κ(x , θ)∇u = f

n Finite Elements for x , m collocation points for θ.

∫
κ(x , θj)∇ψi (x) · ∇u(x , θj) dx =

∫
ψi (x)f (x , θj)dx

Independent equations over x for different θ.
A1

A2
. . .

Am



u1
u2
...
um

 =


f1
f2
...
fm


But: every block Aj is not diagonal.
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation and Alternating Least Squares (ALS)

Cross approximation algorithm:
+ Good for functions defined pointwise.
– Not applicable for linear systems.
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation for linear systems

Rewrite interpolation as projection:

E>J vec(VW ∗) = E>J vec(U),

where EJ is a submatrix of identity at J .

Replace I by the stiffness matrix:

E>J · A · vec(VW ∗) = E>J

Still: any benefit for UQ?
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

How we represent the matrix?

Coefficient is low-rank:

κ(x , θ) ≈
R∑
β=1

gβ(x)hβ(θ).

Hence A is low-Kronecker-rank:

A =
R∑
β=1

Aβ ⊗ Dβ

Aβ is FEM-related, but
Dβ = diag(dβ) is diagonal.
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Interpolatory representation

VW ∗ is not unique → ensure W (J ) = I .
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. . . as a by-product V = U(:,J ).

Distribute the products

E>J ·A·vec(VW ∗) =
R∑
β=1

Aβ⊗[Dβ(J , :)W ]·v =
R∑
β=1

Aβ⊗diag(dβ(J ))·v
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Block diagonal system, stage 1: space

The first step:

{j1, . . . , jr} = pivots (W )

Aj1

Aj2

Ajr

v1
v2
vr

 =

fj1fj2
fjr



Solve r independent deterministic problems.
Similar to Monte Carlo and stochastic collocation.
Can use specialized tools (preconditioners/software).

Sergey Dolgov 17/28
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Block diagonal system, stage 2: parameters

Aj is not diagonal → ALS-projection:
1 Make V orthogonal → projection matrix V = V ⊗ I .
2 Solve

(
V>AV

)
w = V>f.

Solve m systems of size r × r .
Similar to Reduced Basis MOR (in 2 dimensions).
Extensible to many dimensions.
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Back to many variables

What about −∇κ(x , θ1, . . . , θd)∇u = f ?
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Tensor Train (TT) decomposition

Many dimensions: Matrix Product States/Tensor Train4:

u(i1 . . . id) =

rk∑
αk=1

u(1)α1
(i1) · u(2)α1,α2

(i2) · u(3)α2,α3
(i3) · · · u(d)αd−1

(id)

TT blocks u(k) are three-dimensional.

Storage: O(dnr2).

4Wilson ’75, White ’93, Verstraete ’04, Oseledets ’09
Sergey Dolgov 20/28



Problem setting
Low-rank UQ algorithms

Numerical experiments

Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Tensor Train for stochastic PDEs

TT format of the coefficient → TT format of the matrix:
Space → first TT block → FEM stiffness pattern
Parameters → other TT blocks → diagonal

A =

Rk∑
βk=1

A
(1)
β1
⊗ diag(d (2)

β1,β2
)⊗ · · · ⊗ diag(d (d)

βd−1
)
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Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

Tensor Train for stochastic PDEs

The algorithm in a nutshell:

1 Jk = pivots (U>k).
2 Generate and solve

[
U<k

>AJkU<k

]
u(k) = U><k fJk .

3 U<k+1 = U<k · u(k).
4 Set k = k + 1 or k = k − 1 and repeat...

u(1) · u(2) · · · u(k) · · · u(d−1) · u(d)
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1 Problem setting

2 Low-rank UQ algorithms
Singular value decomposition
Cross approximation for matrices
Cross approximation for sPDEs

3 Numerical experiments
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Log-normal diffusion coefficient

−∇κ(x , θ)∇u = 0 in (0, 1)2

u|x1=0 = 1, u|x1=1 = 0,
∂u

∂n
|x2=0 =

∂u

∂n
|x2=1 = 0.

κ(x , θ) = exp
(

d∑
k=1

φk(x)θk

)
φk : Karhunen-Loeve expansion of the Matern covariance
with parameters σ2 = 1 and (different) ν.
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Methods

Quasi Monte Carlo with a special lattice vector5.
Multilevel QMC.
Adaptive Sparse Grids toolbox6.
TT Cross algorithm.

5lattice-39102-1024-1048576.3600.txt from F. Kuo
6Andreas Klimke ’08 http://www.ians.uni-stuttgart.de/spinterp/

Sergey Dolgov 25/28
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Smooth (ν = 4) uniform field
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Rougher (ν = 2.5) normal field
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Conclusion

Cross interpolation can be used as a low-rank solver...

...which preserves sparsity in sPDEs.
Faster than QMC/SG if the problem has low-rank structure.
Less efficient if the problem is “more” random.

Reference and code: [arXiv:1707.04562]

Future plans: inverse problems.

Thank you for your attention!
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