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Problem setting

Stochastic partial differential equation

@ Uncertainty quantification (UQ)
o Subsurface flow

e Calibration

o Fluid dynamics
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Problem setting

Stochastic partial differential equation

@ Uncertainty quantification (UQ)
e Subsurface flow
o Calibration S oMoMc o
o Fluid dynamics

e Example: —Vyk(x,01,...,04)Vxu="f

@ Many uncertain quantities — many dimensions

e Discretize: n DOFs for each 6, — n? elements in total.
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Problem setting

High-dimensional problem — low-dimensional output

However, the output of interest is low-dimensional.

e Eliminate space Q(0) = Q [u(x, 0)].
@ Eliminate parameters by computing

e moments EQP,
o distribution function/event probabilities P(Q < &),
o quantiles £ : P(Q < &) > 0.95

Approximate the solution by a low-dimensional representation.
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Problem setting

Mathematical insights for data compression

Low-rank tensor decomposition < separation of variables:

o Approximate: u(ll, ceylg) & Z (1) (i)uy (i) - --u((yd)(id).

tensor

tensor product decomposition

Goals:
e Store and integrate u O(dn) cost instead of O(n9).
@ Solve equations Au = f O(dn?) cost instead of O(n??).
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Problem setting

Stochastic PDEs: solution methods

‘ Cost vs. accuracy Use of structure

Monte Carlo/Quasi MC - +
Sparse grids (collocation) + +
Low-rank decompositions + -
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Problem setting

Stochastic PDEs: solution methods

‘ Cost vs. accuracy Use of structure

Monte Carlo/Quasi MC - +
Sparse grids (collocation) + +
Low-rank decompositions + ?

? e Stochastic PDE — block-diagonal linear system.
o Generic low-rank algorithms discard the sparsity.
e Can we fix that?
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Tensor decompositions: the two workhorses

Goals:
@ Store and integrate u

How to construct u directly?

@ Solve equations Au = f
In general?

How to leverage sparsity?
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Tensor decompositions: the two workhorses

Goals:

@ Store and integrate u

How to construct u directly?

Alternating Least Squares
Cross interpolation
@ Solve equations Au = f

—_In general?
@m
- How to leverage sparsity?

The story starts in two dimensions...
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

2D: low-rank matrices

@ Discrete Separation of variables:

uyi -+ Uip r Via
= g [Wml Wy, ,,] + O(¢)
Un1 Un,n a=1 Vn,a
e Rank r <« n.

o mem(v) + mem(w) = 2nr < n? = mem(u).

@ Singular Value Decomposition — optimal approximation:

F
V,W
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation methods

Singular Value Decomposition is not always good:
@ impossible to start from full arrays

@ analytical low-rank forms may not exist

Cross algorithms: reconstruct a low-rank form from a few entries.
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation

o Recall SVD: minimization of the error || U — VW*|2.
@ Interpolate instead:

U(zZ,:) = V(Z,:)wW*, U@, J)=vww=(:,J)

for some index sets 7, 7 C {1,...,n}.

@ Equivalent to cross decomposition:

=

How to find index sets?
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation: alternating iteration

Practically realizable strategy: assume initial guess U ~ VW .

Q@ J =pivots (W) — V=U(,JT).
@ Z =pivots(V) — W=U(Z,:).
© repeat...

V, W are n x r matrices = pivots are feasible (LU, Maxvol')

Cost: 2nr samples + O(nr?) other flops per iteration.

1 Goreinov, Tyrtyshnikov '01
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation algorithm

Improvements:
o V=qr(V) numerical stability.
o V=[V Z] rank update.

Use cross approximation to construct low-rank PDE coefficients.

Similar algorithms exist: ACA2, (D)EIM3.

2[Bebendorf]
3[Maday, Chaturantabut/Sorensen] This week: ask Chris?
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Stochastic PDE — block-diagonal matrix

e We are solving —Vk(x,0)Vu = f

@ n Finite Elements for x, m collocation points for 6.

/m(x, 0;)Vi(x) - Vu(x,0;) dx = /LZJ;(X)f(X,@j)dX

Independent equations over x for different 6.

A1 uy fi
Az up | fr
Am Um fm

But: every block A; is not diagonal.
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross approximation and Alternating Least Squares (ALS)

Cross approximation algorithm:
+ Good for functions defined pointwise.
—  Not applicable for linear systems.
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation for linear systems

@ Rewrite interpolation as projection:
E}—vec( VW*) = E}—vec( U),

where E 7 is a submatrix of identity at 7.
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation for linear systems

@ Rewrite interpolation as projection:
Ej-1-vec(VW*) = E} - I -vec(U),

where E 7 is a submatrix of identity at 7.

@ Replace I by the stiffness matrix:

Ej-A-vec(VW*)=EJ - A-vec(V)
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation for linear systems

@ Rewrite interpolation as projection:
Ej-1-vec(VW*) = E} - I -vec(U),

where E 7 is a submatrix of identity at 7.

@ Replace I by the stiffness matrix:
Ej - A-vec(VW*) = EJvec(F)

...and A - vec(U) by the right hand side.
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Cross interpolation for linear systems

@ Rewrite interpolation as projection:
Ej-1-vec(VW*) = E} - I -vec(U),

where E 7 is a submatrix of identity at 7.

@ Replace I by the stiffness matrix:

Ej - A-vec(VW*) = EJvec(F)

@ Still: any benefit for UQ?
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

How we represent the matrix?

o Coefficient is low-rank:

R
r(x,0) =Y gs(x)hs(0).
g=1

@ Hence A is low-Kronecker-rank:

R
A=> As® Dy
B=1

o Ag is FEM-related, but
e Dj = diag(d;s) is diagonal.
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Interpolatory representation

e VW™ is not unique — ensure W(7) = I.

0 0.2 0.4 0.6 0.8 1

..as a by-product V = U(:, 7).
@ Distribute the products

R
Ej -A-vec(VW™) Z Ag®[Ds(T,:)W]-v = Z As@diag(ds(J))-v
=1
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Block diagonal system, stage 1: space

The first step:

{j1,--.,Jr} = pivots (W)

Ajl Vi fj 1
Ajz V2| = 6'2
AJ r Vr fj-.r

@ Solve r independent deterministic problems.

e Similar to Monte Carlo and stochastic collocation.
o Can use specialized tools (preconditioners/software).
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Block diagonal system, stage 2: parameters

A; is not diagonal — ALS-projection:
@ Make V orthogonal — projection matrix V=V ® [.
@ Solve (VTAY)w =V'f.

@ Solve m systems of size r x r.
@ Similar to Reduced Basis MOR (in 2 dimensions).

@ Extensible to many dimensions.

Sergey Dolgov 18/28



Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Back to many variables

e What about —Vk(x,01,...,04)Vu = f7?
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Tensor Train (TT) decomposition

e Many dimensions: Matrix Product States/Tensor Train*:

rk
uliy . ig) =Y ulD (i) - u@) o, (i) - ul) (i) -+ 0l (ig)
ak:I

e TT blocks u(%) are three-dimensional.

e Storage: O(dnr?).

“Wilson '75, White '93, Verstraete '04, Oseledets '09
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Tensor Train for stochastic PDEs

TT format of the coefficient — TT format of the matrix:
@ Space — first TT block — FEM stiffness pattern
o Parameters — other TT blocks — diagonal

Rk
A= Z Agl) ® diag(dg’)ﬁgz) R ® diag(déjzl)
Brk=1
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Singular value decomposition
Low-rank UQ algorithms Cross approximation for matrices
Cross approximation for sPDEs

Tensor Train for stochastic PDEs

The algorithm in a nutshell:

Q Ji =pivots (U=k).

@ Generate and solve [U/ " Az, U] uk) = ulfs,.
© Upir=Ucy - ulb,

Q Set k=k+1or k=k—1and repeat...

_—
u(l) . u(z) e u(k) e u(d_]-) . u(d)
L —
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Numerical experiments

© Numerical experiments
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Numerical experiments

Log-normal diffusion coefficient

— Vi(x,0)Vu=0 in (0,1)°

U|X1=0 = 1a U‘Xlzl = Oa
ou ou
%|X2=0 = %’Xzz:l = 0

o n(x.) = exp ( 3 Gu(x)0)

@ ¢,: Karhunen-Loeve expansion of the Matern covariance
with parameters 02 = 1 and (different) v.
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Numerical experiments

Methods

@ Quasi Monte Carlo with a special lattice vector®.
o Multilevel QMC.

e Adaptive Sparse Grids toolbox®.

@ TT Cross algorithm.

5lattice-39102-1024-1048576.3600.txt from F. Kuo
®Andreas Klimke '08  http://www.ians.uni-stuttgart.de/spinterp/
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Numerical experiments

Smooth (v = 4) uniform field

CPU time (sec.) # solves
.\\
109 £ ~. E
- /,‘__,A i
10*F E
103 | ‘\‘\‘\‘\:
-5 —4.5 —4 -35 -3 —25 -5 —4.5 —4 -35 -3 —25
log;q error log;q error
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Numerical experiments

Rougher (v = 2.5) normal field

CPU time (sec.) # solves
i 10 ~
~
10° £ E 10° 5/’/*%\* E
10* £ 4 105% E
L | L
i | o ]
— it 1 F
102 || —=— gmc - I
——mlgmc ] 103 R
—4.5 —4 —35 -3 —25 —4.5 —4 -3.5 -3 -2.5
logyq error logy error

Sergey Dolgov
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Numerical experiments

Conclusion

Cross interpolation can be used as a low-rank solver...

...which preserves sparsity in sPDEs.
Faster than QMC/SG if the problem has low-rank structure.

Less efficient if the problem is “more” random.

Reference and code: [arXiv:1707.04562]

Future plans: inverse problems.
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Cross interpolation can be used as a low-rank solver...

...which preserves sparsity in sPDEs.
Faster than QMC/SG if the problem has low-rank structure.

Less efficient if the problem is “more” random.

Reference and code: [arXiv:1707.04562]

Future plans: inverse problems.

Thank you for your attention!
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