Low-rank cross approximation approach for reducing stochastic collocation models

Sergey Dolgov

joint work with Robert Scheichl

Model Order Reduction Workshop Durham, August 12, 2017

Stochastic partial differential equation

- Uncertainty quantification (UQ)
 - Subsurface flow
 - Calibration
 - Fluid dynamics

Stochastic partial differential equation

- Uncertainty quantification (UQ)
 - Subsurface flow
 - Calibration
 - Fluid dynamics

• Example: $-\nabla_{\mathbf{x}}\kappa(\mathbf{x},\theta_1,\ldots,\theta_d)\nabla_{\mathbf{x}}u = f$

Stochastic partial differential equation

- Uncertainty quantification (UQ)
 - Subsurface flow
 - Calibration
 - Fluid dynamics

- Example: $-\nabla_{\mathbf{x}}\kappa(\mathbf{x},\theta_1,\ldots,\theta_d)\nabla_{\mathbf{x}}u = f$
- $\bullet\,$ Many uncertain quantities $\to\,$ many dimensions
- Discretize: *n* DOFs for each $\theta_k \rightarrow n^d$ elements in total.

High-dimensional problem \rightarrow low-dimensional output

However, the output of interest is <u>low</u>-dimensional.

- Eliminate space $Q(\theta) = \mathcal{Q}[u(x, \theta)].$
- Eliminate parameters by computing
 - moments $\mathbb{E}Q^p$,
 - distribution function/event probabilities $P(Q < \xi)$,
 - quantiles $\xi : P(Q < \xi) > 0.95$

Approximate the solution by a low-dimensional representation.

Mathematical insights for data compression

Low-rank tensor decomposition \Leftrightarrow separation of variables:

Goals:

- Store and integrate u = O(dn) co
- Solve equations Au = f

 $\mathcal{O}(dn) \operatorname{cost} \operatorname{instead} \operatorname{of} \mathcal{O}(n^d).$ $\mathcal{O}(dn^2) \operatorname{cost} \operatorname{instead} \operatorname{of} \mathcal{O}(n^{2d}).$

Stochastic PDEs: solution methods

	Cost vs. accuracy	Use of structure
Monte Carlo/Quasi MC	_	+
Sparse grids (collocation)	±	+
Low-rank decompositions	+	_

Stochastic PDEs: solution methods

	Cost vs. accuracy	Use of structure
Monte Carlo/Quasi MC	_	+
Sparse grids (collocation)	±	+
Low-rank decompositions	+	?

- Stochastic PDE \rightarrow **block-diagonal** linear system.
 - Generic low-rank algorithms discard the sparsity.
 - Can we fix that?

?

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Tensor decompositions: the two workhorses

Goals:

• Store and integrate *u*

How to construct u directly?

- Solve equations Au = f
 - In general?
 - How to leverage sparsity?

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Tensor decompositions: the two workhorses

• Store and integrate *u*

How to construct u directly?

Alternating Least Squares Cross interpolation

• Solve equations Au = f

my talk

In general? 🖊

How to leverage sparsity?

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Tensor decompositions: the two workhorses

Goals:

• Store and integrate *u* How to construct *u* directly? Alternating Least Squares Cross interpolation • Solve equations Au =In general? 4 my talk How to leverage sparsity?

The story starts in two dimensions...

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

2D: low-rank matrices

• Discrete Separation of variables:

$$\begin{bmatrix} u_{1,1} & \cdots & u_{1,n} \\ \vdots & & \vdots \\ u_{n,1} & \cdots & u_{n,n} \end{bmatrix} = \sum_{\alpha=1}^{r} \begin{bmatrix} v_{1,\alpha} \\ \vdots \\ v_{n,\alpha} \end{bmatrix} \begin{bmatrix} w_{\alpha,1} & \cdots & w_{\alpha,n} \end{bmatrix} + \mathcal{O}(\varepsilon).$$

- <u>Rank</u> r ≪ n.
- $mem(v) + mem(w) = 2nr \ll n^2 = mem(u).$
- Singular Value Decomposition \rightarrow optimal approximation:

$$\|U - VW^*\|_F^2 \to \min_{V,W}$$

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross approximation methods

Singular Value Decomposition is not always good:

- impossible to start from full arrays
- analytical low-rank forms may not exist

Cross algorithms: reconstruct a low-rank form from <u>a few entries</u>.

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross interpolation

- Recall SVD: minimization of the error $||U VW^*||_F^2$.
- Interpolate instead:

$$U(\mathcal{I},:) = V(\mathcal{I},:)W^*, \qquad U(:,\mathcal{J}) = VW^*(:,\mathcal{J})$$

for some $\underline{index \ sets} \ \mathcal{I}, \mathcal{J} \subset \{1, \dots, n\}.$

• Equivalent to cross decomposition:

How to \underline{find} index sets?

Cross approximation: alternating iteration

Practically realizable strategy: assume initial guess $U \approx V W^{\top}$.

- $2 \ \mathcal{I} = \text{pivots}(V) \quad \rightarrow \quad W = U(\mathcal{I}, :).$

Interpret in the second sec

V, W are $n \times r$ matrices \Rightarrow pivots are feasible (LU, <u>Maxvol</u>¹)

Cost: 2nr samples + $\mathcal{O}(nr^2)$ other flops per iteration.

¹Goreinov, Tyrtyshnikov '01

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross approximation algorithm

Improvements:

V = qr(*V*) *V* = [*V* Z]

numerical stability. rank update.

Use cross approximation to construct low-rank PDE coefficients.

Similar algorithms exist: ACA², (D)EIM³.

²[Bebendorf]
 ³[Maday, Chaturantabut/Sorensen] This week: ask Chris?
 Sergey Dolgov 11/28

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Stochastic PDE \rightarrow block-diagonal matrix

- We are solving $-\nabla \kappa(x,\theta)\nabla u = f$
- *n* Finite Elements for x, *m* collocation points for θ .

$$\int \kappa(\mathbf{x}, \boldsymbol{\theta}_j) \nabla \psi_i(\mathbf{x}) \cdot \nabla u(\mathbf{x}, \boldsymbol{\theta}_j) \, d\mathbf{x} = \int \psi_i(\mathbf{x}) f(\mathbf{x}, \boldsymbol{\theta}_j) d\mathbf{x}$$

Independent equations over x for different θ .

$$\begin{bmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_m \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_m \end{bmatrix}$$

But: every block A_j is **<u>not</u>** diagonal.

Sergey Dolgov 12/28

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross approximation and Alternating Least Squares (ALS)

Cross approximation algorithm:

- + Good for functions defined pointwise.
- Not applicable for linear systems.

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross approximation and Alternating Least Squares (ALS)

Cross approximation algorithm:

- + Good for functions defined pointwise.
- ? Not applicable for linear systems.

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross interpolation for linear systems

• Rewrite interpolation as projection:

$$E_{\mathcal{J}}^{\top} \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top} \operatorname{vec}(U),$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J} .

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross interpolation for linear systems

• Rewrite interpolation as projection:

$$E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U),$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J} .

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross interpolation for linear systems

• Rewrite interpolation as projection:

$$E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U),$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J} .

• Replace / by the stiffness matrix:

$$E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}(U)$$

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross interpolation for linear systems

• Rewrite interpolation as projection:

$$E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U),$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J} .

• Replace / by the stiffness matrix:

$$E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top}\operatorname{vec}(F)$$

... and $\mathbf{A} \cdot \operatorname{vec}(U)$ by the right hand side.

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Cross interpolation for linear systems

• Rewrite interpolation as projection:

$$E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U),$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J} .

• Replace / by the stiffness matrix:

$$E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}(VW^*) = E_{\mathcal{J}}^{\top}\operatorname{vec}(F)$$

• Still: any benefit for UQ?

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

How we represent the matrix?

• **Coefficient** is low-rank:

$$\kappa(x, oldsymbol{ heta}) pprox \sum_{eta=1}^R g_eta(x) h_eta(oldsymbol{ heta}).$$

• Hence A is low-Kronecker-rank:

$$\mathsf{A} = \sum_{eta=1}^R \mathsf{A}_eta \otimes \mathsf{D}_eta$$

- A_{β} is FEM-related, but
- $D_{\beta} = \operatorname{diag}(d_{\beta})$ is diagonal.

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Interpolatory representation

• **Distribute** the products

$$E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}(VW^*) = \sum_{\beta=1}^{R} A_{\beta} \otimes [D_{\beta}(\mathcal{J}, :)W] \cdot v = \sum_{\beta=1}^{R} A_{\beta} \otimes \operatorname{diag}(d_{\beta}(\mathcal{J})) \cdot v$$

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Block diagonal system, stage 1: space

The first step:

 $\{\mathbf{j}_1,\ldots,\mathbf{j}_r\} = \texttt{pivots}(W)$

$$\begin{bmatrix} A_{j_1} & & \\ & A_{j_2} & \\ & & A_{j_r} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_r \end{bmatrix} = \begin{bmatrix} f_{j_1} \\ f_{j_2} \\ f_{j_r} \end{bmatrix}$$

- Solve *r* independent deterministic problems.
 - Similar to Monte Carlo and stochastic collocation.
 - Can use specialized tools (preconditioners/software).

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Block diagonal system, stage 2: parameters

 A_j is not diagonal \rightarrow ALS-projection:

() Make V orthogonal \rightarrow projection matrix $\mathcal{V} = \mathbf{V} \otimes \mathbf{I}$.

2 Solve $(\mathcal{V}^{\top} \mathbf{A} \mathcal{V}) \mathbf{w} = \mathcal{V}^{\top} \mathbf{f}$.

- Solve *m* systems of size $r \times r$.
- Similar to Reduced Basis MOR (in 2 dimensions).
- Extensible to many dimensions.

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Back to many variables

• What about $-\nabla \kappa(x, \theta_1, \dots, \theta_d) \nabla u = f$?

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Tensor Train (TT) decomposition

• Many dimensions: Matrix Product States/Tensor Train⁴:

$$u(i_1 \dots i_d) = \sum_{\alpha_k=1}^{r_k} u_{\alpha_1}^{(1)}(i_1) \cdot u_{\alpha_1,\alpha_2}^{(2)}(i_2) \cdot u_{\alpha_2,\alpha_3}^{(3)}(i_3) \cdots u_{\alpha_{d-1}}^{(d)}(i_d)$$

- TT blocks $u^{(k)}$ are <u>three-dimensional</u>.
- Storage: $\mathcal{O}(dnr^2)$.

⁴Wilson '75, White '93, Verstraete '04, Oseledets '09

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Tensor Train for stochastic PDEs

TT format of the coefficient \rightarrow TT format of the matrix:

- \bullet Space \rightarrow first TT block \rightarrow FEM stiffness pattern
- $\bullet~\mbox{Parameters} \rightarrow \mbox{other TT}~\mbox{blocks} \rightarrow \mbox{diagonal}$

$$\mathbf{A} = \sum_{\beta_k=1}^{R_k} A_{\beta_1}^{(1)} \otimes \operatorname{diag}(\boldsymbol{d}_{\beta_1,\beta_2}^{(2)}) \otimes \cdots \otimes \operatorname{diag}(\boldsymbol{d}_{\beta_{d-1}}^{(d)})$$

Singular value decomposition Cross approximation for matrices Cross approximation for sPDEs

Tensor Train for stochastic PDEs

The algorithm in a nutshell:

- **2** Generate and solve $\left[\mathcal{U}_{<k}^{\top} \mathbf{A}_{\mathcal{J}_{k}} \mathcal{U}_{<k}\right] \mathbf{u}^{(k)} = \mathcal{U}_{<k}^{\top} \mathbf{f}_{\mathcal{J}_{k}}.$
- Set k = k + 1 or k = k 1 and repeat...

$$\begin{array}{c} & \longrightarrow \\ u^{(1)} \cdot u^{(2)} \cdots u^{(k)} \cdots u^{(d-1)} \cdot u^{(d)} \\ \leftarrow & \end{array}$$

Problem setting

2 Low-rank UQ algorithms

- Singular value decomposition
- Cross approximation for matrices
- Cross approximation for sPDEs

Log-normal diffusion coefficient

$$-\nabla\kappa(x,\theta)\nabla u = 0 \quad \text{in} \quad (0,1)^2$$

$$u|_{x_1=0} = 1, \qquad u|_{x_1=1} = 0,$$

$$\frac{\partial u}{\partial n}|_{x_2=0} = \frac{\partial u}{\partial n}|_{x_2=1} = 0.$$

•
$$\kappa(x,\theta) = \exp\left(\sum_{k=1}^{d} \phi_k(x)\theta_k\right)$$

• ϕ_k : Karhunen-Loeve expansion of the Matern covariance with parameters $\sigma^2 = 1$ and (different) ν .

Methods

- Quasi Monte Carlo with a special lattice vector⁵.
- Multilevel QMC.
- Adaptive Sparse Grids toolbox⁶.
- TT Cross algorithm.

⁵lattice-39102-1024-1048576.3600.txt from F. Kuo

⁶Andreas Klimke '08 http://www.ians.uni-stuttgart.de/spinterp/

Smooth ($\nu = 4$) uniform field

Rougher ($\nu = 2.5$) normal field

Conclusion

Cross interpolation can be used as a low-rank solver...

- ...which preserves sparsity in sPDEs.
- Faster than QMC/SG if the problem has low-rank structure.
- Less efficient if the problem is "more" random.
- Reference and code: [arXiv:1707.04562]
- Future plans: inverse problems.

Conclusion

Cross interpolation can be used as a low-rank solver...

- ...which preserves sparsity in sPDEs.
- Faster than QMC/SG if the problem has low-rank structure.
- Less efficient if the problem is "more" random.
- Reference and code: [arXiv:1707.04562]
- Future plans: inverse problems.

Thank you for your attention!