Low-rank cross approximation approach for reducing stochastic collocation models

Sergey Dolgov

joint work with Robert Scheichl

UNIVERSITY OF
 BATH

Model Order Reduction Workshop
Durham, August 12, 2017

Stochastic partial differential equation

- Uncertainty quantification (UQ)
- Subsurface flow
- Calibration
- Fluid dynamics

Stochastic partial differential equation

- Uncertainty quantification (UQ)
- Subsurface flow
- Calibration
- Fluid dynamics

- Example: $-\nabla_{\mathbf{x}} \kappa\left(\mathbf{x}, \theta_{1}, \ldots, \theta_{d}\right) \nabla_{\mathbf{x}} u=f$

Stochastic partial differential equation

- Uncertainty quantification (UQ)
- Subsurface flow
- Calibration
- Fluid dynamics

- Example: $-\nabla_{\mathbf{x}} \kappa\left(\mathbf{x}, \theta_{1}, \ldots, \theta_{d}\right) \nabla_{\mathbf{x}} u=f$
- Many uncertain quantities \rightarrow many dimensions
- Discretize: n DOFs for each $\theta_{k} \rightarrow n^{d}$ elements in total.

High-dimensional problem \rightarrow low-dimensional output

However, the output of interest is low-dimensional.

- Eliminate space $Q(\theta)=\mathcal{Q}[u(x, \theta)]$.
- Eliminate parameters by computing
- moments $\mathbb{E} Q^{p}$,
- distribution function/event probabilities $P(Q<\xi)$,
- quantiles $\xi: P(Q<\xi)>0.95$

Approximate the solution by a low-dimensional representation.

Mathematical insights for data compression

Low-rank tensor decomposition \Leftrightarrow separation of variables:

- Approximate: $\underbrace{u\left(i_{1}, \ldots, i_{d}\right)}_{\text {tensor }} \approx \underbrace{\sum_{\alpha} u_{\alpha}^{(1)}\left(i_{1}\right) u_{\alpha}^{(2)}\left(i_{2}\right) \cdots u_{\alpha}^{(d)}\left(i_{d}\right)}_{\text {tensor product decomposition }}$.

Goals:

- Store and integrate u
- Solve equations $A u=f$
$\mathcal{O}(d n)$ cost instead of $\mathcal{O}\left(n^{d}\right)$.
$\mathcal{O}\left(d n^{2}\right)$ cost instead of $\mathcal{O}\left(n^{2 d}\right)$.

Stochastic PDEs: solution methods

	Cost vs. accuracy	Use of structure
Monte Carlo/Quasi MC	-	+
Sparse grids (collocation)	\pm	+
Low-rank decompositions	+	-

Stochastic PDEs: solution methods

	Cost vs. accuracy	Use of structure
Monte Carlo/Quasi MC	-	+
Sparse grids (collocation)	\pm	+
Low-rank decompositions	+	$?$

? - Stochastic PDE \rightarrow block-diagonal linear system.

- Generic low-rank algorithms discard the sparsity.
- Can we fix that?

Tensor decompositions: the two workhorses

Goals:

- Store and integrate u

How to construct u directly?

- Solve equations $A u=f$

In general?
How to leverage sparsity?

Tensor decompositions: the two workhorses

Goals:

- Store and integrate u

How to construct u directly?

my talk

 How to leverage sparsity?
Tensor decompositions: the two workhorses

Goals:

- Store and integrate u

How to construct u directly?
my talk
In general? How to leverage sparsity?

Alternating Least Squares
Cross interpolation

- Sol

The story starts in two dimensions...

2D: low-rank matrices

- Discrete Separation of variables:

$$
\left[\begin{array}{ccc}
u_{1,1} & \cdots & u_{1, n} \\
\vdots & & \vdots \\
u_{n, 1} & \cdots & u_{n, n}
\end{array}\right]=\sum_{\alpha=1}^{r}\left[\begin{array}{c}
v_{1, \alpha} \\
\vdots \\
v_{n, \alpha}
\end{array}\right]\left[\begin{array}{lll}
w_{\alpha, 1} & \cdots & w_{\alpha, n}
\end{array}\right]+\mathcal{O}(\varepsilon) .
$$

- Rank $r \ll n$.
- $\operatorname{mem}(v)+\operatorname{mem}(w)=2 n r \ll n^{2}=\operatorname{mem}(u)$.
- Singular Value Decomposition \rightarrow optimal approximation:

$$
\left\|U-V W^{*}\right\|_{F}^{2} \rightarrow \min _{V, W}
$$

Cross approximation methods

Singular Value Decomposition is not always good:

- impossible to start from full arrays
- analytical low-rank forms may not exist

Cross algorithms: reconstruct a low-rank form from a few entries.

Cross interpolation

- Recall SVD: minimization of the error $\left\|U-V W^{*}\right\|_{F}^{2}$.
- Interpolate instead:

$$
U(\mathcal{I},:)=V(\mathcal{I},:) W^{*}, \quad U(:, \mathcal{J})=V W^{*}(:, \mathcal{J})
$$

for some index sets $\mathcal{I}, \mathcal{J} \subset\{1, \ldots, n\}$.

- Equivalent to cross decomposition:

How to find index sets?

Cross approximation: alternating iteration

Practically realizable strategy: assume initial guess $U \approx V W^{\top}$.
(1) $\mathcal{J}=\operatorname{pivots}(W) \quad \rightarrow \quad V=U(:, \mathcal{J})$.
(2) $\mathcal{I}=\operatorname{pivots}(V) \quad \rightarrow \quad W=U(\mathcal{I},:)$.
(3) repeat...
V, W are $n \times r$ matrices \Rightarrow pivots are feasible $\left(\mathrm{LU}, \mathrm{Maxvol}^{1}\right)$

Cost: $2 n r$ samples $+\mathcal{O}\left(n r^{2}\right)$ other flops per iteration.
${ }^{1}$ Goreinov, Tyrtyshnikov '01

Cross approximation algorithm

Improvements:

- $V=\operatorname{qr}(V)$
- $V=\left[\begin{array}{ll}V & Z\end{array}\right]$
numerical stability. rank update.

Use cross approximation to construct low-rank PDE coefficients.

Similar algorithms exist: ACA 2, (D)EIM ${ }^{3}$.

[^0]
Stochastic PDE \rightarrow block-diagonal matrix

- We are solving $-\nabla \kappa(x, \theta) \nabla u=f$
- n Finite Elements for x, m collocation points for θ.

$$
\int \kappa\left(x, \theta_{j}\right) \nabla \psi_{i}(x) \cdot \nabla u\left(x, \theta_{j}\right) d x=\int \psi_{i}(x) f\left(x, \theta_{j}\right) d x
$$

Independent equations over x for different θ.

$$
\left[\begin{array}{cccc}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{m}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right]
$$

But: every block A_{j} is not diagonal.

Cross approximation and Alternating Least Squares (ALS)

Cross approximation algorithm:

+ Good for functions defined pointwise.
Not applicable for linear systems.

Cross approximation and Alternating Least Squares (ALS)

Cross approximation algorithm:

+ Good for functions defined pointwise. Not applicable for linear systems.

Cross interpolation for linear systems

- Rewrite interpolation as projection:

$$
E_{\mathcal{J}}^{\top} \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \operatorname{vec}(U)
$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J}.

Cross interpolation for linear systems

- Rewrite interpolation as projection:

$$
E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U)
$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J}.

Cross interpolation for linear systems

- Rewrite interpolation as projection:

$$
E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U)
$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J}.

- Replace / by the stiffness matrix:

$$
E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}(U)
$$

Cross interpolation for linear systems

- Rewrite interpolation as projection:

$$
E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U)
$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J}.

- Replace / by the stiffness matrix:

$$
E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \operatorname{vec}(F)
$$

\ldots and $\mathbf{A} \cdot \operatorname{vec}(U)$ by the right hand side.

Cross interpolation for linear systems

- Rewrite interpolation as projection:

$$
E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \cdot I \cdot \operatorname{vec}(U)
$$

where $E_{\mathcal{J}}$ is a submatrix of identity at \mathcal{J}.

- Replace / by the stiffness matrix:

$$
E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}\left(V W^{*}\right)=E_{\mathcal{J}}^{\top} \operatorname{vec}(F)
$$

- Still: any benefit for UQ?

How we represent the matrix?

- Coefficient is low-rank:

$$
\kappa(x, \theta) \approx \sum_{\beta=1}^{R} g_{\beta}(x) h_{\beta}(\theta)
$$

- Hence \mathbf{A} is low-Kronecker-rank:

$$
\mathbf{A}=\sum_{\beta=1}^{R} A_{\beta} \otimes D_{\beta}
$$

- A_{β} is FEM-related, but
- $D_{\beta}=\operatorname{diag}\left(d_{\beta}\right)$ is diagonal.

Interpolatory representation

- $V W^{*}$ is not unique \rightarrow ensure $W(\mathcal{J})=I$.

\ldots as a by-product $V=U(:, \mathcal{J})$.
- Distribute the products

$$
E_{\mathcal{J}}^{\top} \cdot \mathbf{A} \cdot \operatorname{vec}\left(V W^{*}\right)=\sum_{\beta=1}^{R} A_{\beta} \otimes\left[D_{\beta}(\mathcal{J},:) W\right] \cdot v=\sum_{\beta=1}^{R} A_{\beta} \otimes \operatorname{diag}\left(d_{\beta}(\mathcal{J})\right) \cdot v
$$

Block diagonal system, stage 1: space

The first step:

$$
\begin{gathered}
\left\{j_{1}, \ldots, j_{r}\right\}=\operatorname{pivots}(W) \\
{\left[\begin{array}{ccc}
A_{j_{1}} & & \\
& A_{j_{2}} & \\
& & A_{j_{r}}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{r}
\end{array}\right]=\left[\begin{array}{l}
f_{j_{1}} \\
f_{j_{2}} \\
f_{j_{r}}
\end{array}\right]}
\end{gathered}
$$

- Solve r independent deterministic problems.
- Similar to Monte Carlo and stochastic collocation.
- Can use specialized tools (preconditioners/software).

Block diagonal system, stage 2: parameters

A_{j} is not diagonal \rightarrow ALS-projection:
(1) Make V orthogonal \rightarrow projection matrix $\mathcal{V}=V \otimes I$.
(2) Solve $\left(\mathcal{V}^{\top} \mathbf{A} \mathcal{V}\right) w=\mathcal{V}^{\top} \mathbf{f}$.

- Solve m systems of size $r \times r$.
- Similar to Reduced Basis MOR (in 2 dimensions).
- Extensible to many dimensions.

Back to many variables

- What about $-\nabla \kappa\left(x, \theta_{1}, \ldots, \theta_{d}\right) \nabla u=f$?

Tensor Train (TT) decomposition

- Many dimensions: Matrix Product States/Tensor Train4:

$$
u\left(i_{1} \ldots i_{d}\right)=\sum_{\alpha_{k}=1}^{r_{k}} u_{\alpha_{1}}^{(1)}\left(i_{1}\right) \cdot u_{\alpha_{1}, \alpha_{2}}^{(2)}\left(i_{2}\right) \cdot u_{\alpha_{2}, \alpha_{3}}^{(3)}\left(i_{3}\right) \cdots u_{\alpha_{d-1}}^{(d)}\left(i_{d}\right)
$$

- TT blocks $u^{(k)}$ are three-dimensional.
- Storage: $\mathcal{O}\left(d n r^{2}\right)$.

[^1]
Tensor Train for stochastic PDEs

TT format of the coefficient \rightarrow TT format of the matrix:

- Space \rightarrow first TT block \rightarrow FEM stiffness pattern
- Parameters \rightarrow other TT blocks \rightarrow diagonal

$$
\mathbf{A}=\sum_{\beta_{k}=1}^{R_{k}} A_{\beta_{1}}^{(1)} \otimes \operatorname{diag}\left(d_{\beta_{1}, \beta_{2}}^{(2)}\right) \otimes \cdots \otimes \operatorname{diag}\left(d_{\beta_{d-1}}^{(d)}\right)
$$

Tensor Train for stochastic PDEs

The algorithm in a nutshell:
(1) $\mathcal{J}_{k}=\operatorname{pivots}\left(U_{>k}\right)$.
(2) Generate and solve $\left[\mathcal{U}_{<k}^{\top} \mathbf{A}_{\mathcal{J}_{k}} \mathcal{U}_{<k}\right] u^{(k)}=\mathcal{U}_{<k}^{\top} \mathbf{f}_{\mathcal{J}_{k}}$.
(3) $\mathcal{U}_{<k+1}=\mathcal{U}_{<k} \cdot u^{(k)}$.
(4) Set $k=k+1$ or $k=k-1$ and repeat...

(1) Problem setting

(2) Low-rank UQ algorithms

- Singular value decomposition
- Cross approximation for matrices
- Cross approximation for sPDEs
(3) Numerical experiments

Log-normal diffusion coefficient

$$
\begin{aligned}
& -\nabla \kappa(x, \theta) \nabla u=0 \quad \text { in } \quad(0,1)^{2} \\
& \left.u\right|_{x_{1}=0}=1,\left.\quad u\right|_{x_{1}=1}=0, \\
& \left.\frac{\partial u}{\partial n}\right|_{x_{2}=0}=\left.\frac{\partial u}{\partial n}\right|_{x_{2}=1}=0 .
\end{aligned}
$$

- $\kappa(x, \theta)=\exp \left(\sum_{k=1}^{d} \phi_{k}(x) \theta_{k}\right)$
- ϕ_{k} : Karhunen-Loeve expansion of the Matern covariance with parameters $\sigma^{2}=1$ and (different) ν.

Methods

- Quasi Monte Carlo with a special lattice vector ${ }^{5}$.
- Multilevel QMC.
- Adaptive Sparse Grids toolbox ${ }^{6}$.
- TT Cross algorithm.

[^2]
Smooth ($\nu=4$) uniform field

Rougher ($\nu=2.5$) normal field

Conclusion

Cross interpolation can be used as a low-rank solver...

- ...which preserves sparsity in sPDEs.
- Faster than QMC/SG if the problem has low-rank structure.
- Less efficient if the problem is "more" random.
- Reference and code: [arXiv:1707.04562]
- Future plans: inverse problems.

Conclusion

Cross interpolation can be used as a low-rank solver...

- ...which preserves sparsity in sPDEs.
- Faster than QMC/SG if the problem has low-rank structure.
- Less efficient if the problem is "more" random.
- Reference and code: [arXiv:1707.04562]
- Future plans: inverse problems.

Thank you for your attention!

[^0]: ${ }^{2}$ [Bebendorf]
 ${ }^{3}$ [Maday, Chaturantabut/Sorensen] This week: ask Chris?

[^1]: ${ }^{4}$ Wilson '75, White '93, Verstraete '04, Oseledets '09

[^2]: ${ }^{5}$ lattice-39102-1024-1048576.3600.txt from F. Kuo
 ${ }^{6}$ Andreas Klimke '08 http://www.ians.uni-stuttgart.de/spinterp/

